1
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
2
|
von Creytz I, Rohde C, Biedenkopf N. The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription. J Virol 2024; 98:e0104724. [PMID: 39194238 PMCID: PMC11406900 DOI: 10.1128/jvi.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Edwards MR, Vogel OA, Mori H, Davey RA, Basler CF. Marburg Virus VP30 Is Required for Transcription Initiation at the Glycoprotein Gene. mBio 2022; 13:e0224322. [PMID: 35997284 PMCID: PMC9601197 DOI: 10.1128/mbio.02243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Marburg virus (MARV) is an enveloped, negative-sense RNA virus from the filovirus family that causes outbreaks of severe, frequently fatal illness in humans. Of the seven MARV proteins, the VP30 protein stands out because it is essential for viral growth but lacks a definitive function. Here, we used model MARV genome RNAs for one or two reporter genes and the MARV VP40, glycoprotein (GP), and VP24 genes to demonstrate that VP30 is dispensable for the transcription of some genes but critical for transcription reinitiation at the GP gene. This results in the loss of the expression of GP and downstream genes and the impaired production of infectious particles when VP30 is absent. Bicistronic minigenome assays demonstrate that the VP40 gene end/GP gene start junction specifically confers VP30 dependence. A region at the GP gene start site predicted to form a stem-loop contributes to VP30 dependence because the replacement of the GP stem-loop with corresponding sequences from the MARV VP35 gene relieves VP30 dependence. Finally, a Cys3-His zinc binding motif characteristic of filovirus VP30 proteins was demonstrated to be critical for reinitiation at GP. These findings address a long-standing gap in our understanding of MARV biology by defining a critical role for VP30 in MARV transcription. IMPORTANCE Marburg virus and Ebola virus encode VP30 proteins. While the role of VP30 in Ebola virus transcription has been well studied, the role of VP30 in the Marburg virus life cycle is not well understood. The work here demonstrates that different gene start sites within the Marburg viral genome have variable levels of dependence on Marburg virus VP30, with its expression being critical for transcription reinitiation at the GP gene start site. These findings address a long-standing question regarding Marburg virus VP30 function and further our understanding of how Marburg virus gene expression is regulated.
Collapse
Affiliation(s)
- Megan R. Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Olivia A. Vogel
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiroyuki Mori
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Robert A. Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Rohde C, Becker S, Krähling V. Marburg virus regulates the IRE1/XBP1-dependent unfolded protein response to ensure efficient viral replication. Emerg Microbes Infect 2020; 8:1300-1313. [PMID: 31495285 PMCID: PMC6746283 DOI: 10.1080/22221751.2019.1659552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Viruses regulate cellular signalling pathways to ensure optimal viral replication. During Marburg virus (MARV) infection, large quantities of the viral glycoprotein GP are produced in the ER; this may result in the activation of the unfolded protein response (UPR). The most conserved pathway to trigger UPR is initiated by IRE1. Activation of IRE1 results in auto-phosphorylation, splicing of the XBP1 mRNA and translation of the XBP1s protein. XBP1s binds cis-acting UPR elements (UPRE) which leads to the enhanced expression of genes which should restore ER homeostasis. XBP1u protein is translated, if IRE1 is not activated. Here we show that ectopic expression of MARV GP activated the IRE1-XBP1 axis of UPR as monitored by UPRE luciferase assays. However, while at 24 h of infection with MARV IRE1 was phosphorylated, expression of XBP1s was only slightly enhanced and UPRE activity was not detected. The IRE1-XBP1 axis was not active at 48 h p.i. Co-expression studies of MARV proteins demonstrated that the MARV protein VP30 suppressed UPRE activation. Co-immunoprecipitation analyses revealed an RNA-dependent interaction of VP30 with XBP1u. Knock-out of IRE1 supported MARV infection at late time points. Taken together, these results suggest that efficient MARV propagation requires specific regulation of IRE1 activity.
Collapse
Affiliation(s)
- Cornelius Rohde
- Institut für Virologie, Philipps-Universität Marburg , Marburg , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen - Marburg - Langen , Marburg , Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg , Marburg , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen - Marburg - Langen , Marburg , Germany
| | - Verena Krähling
- Institut für Virologie, Philipps-Universität Marburg , Marburg , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen - Marburg - Langen , Marburg , Germany
| |
Collapse
|
6
|
Hume AJ, Mühlberger E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J Mol Biol 2019; 431:4290-4320. [PMID: 31260690 PMCID: PMC6879820 DOI: 10.1016/j.jmb.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Research on filoviruses has historically focused on the highly pathogenic ebola- and marburgviruses. Indeed, until recently, these were the only two genera in the filovirus family. Recent advances in sequencing technologies have facilitated the discovery of not only a new ebolavirus, but also three new filovirus genera and a sixth proposed genus. While two of these new genera are similar to the ebola- and marburgviruses, the other two, discovered in saltwater fishes, are considerably more diverse. Nonetheless, these viruses retain a number of key features of the other filoviruses. Here, we review the key characteristics of filovirus replication and transcription, highlighting similarities and differences between the viruses. In particular, we focus on key regulatory elements in the genomes, replication and transcription strategies, and the conservation of protein domains and functions among the viruses. In addition, using computational analyses, we were able to identify potential homology and functions for some of the genes of the novel filoviruses with previously unknown functions. Although none of the newly discovered filoviruses have yet been isolated, initial studies of some of these viruses using minigenome systems have yielded insights into their mechanisms of replication and transcription. In general, the Cuevavirus and proposed Dianlovirus genera appear to follow the transcription and replication strategies employed by the ebola- and marburgviruses, respectively. While our knowledge of the fish filoviruses is currently limited to sequence analysis, the lack of certain conserved motifs and even entire genes necessitates that they have evolved distinct mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating disease in humans. In 2012, we published a comprehensive review of the first 45 years of research on marburgviruses and the disease they cause, ranging from molecular biology to ecology. Spurred in part by the deadly Ebola virus outbreak in West Africa in 2013-2016, research on all filoviruses has intensified. Not meant as an introduction to marburgviruses, this article instead provides a synopsis of recent progress in marburgvirus research with a particular focus on molecular biology, advances in animal modeling, and the use of Egyptian fruit bats in infection experiments.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| |
Collapse
|
8
|
Phosphorylated VP30 of Marburg Virus Is a Repressor of Transcription. J Virol 2018; 92:JVI.00426-18. [PMID: 30135121 DOI: 10.1128/jvi.00426-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
The filoviruses Marburg virus (MARV) and Ebola virus (EBOV) cause hemorrhagic fever in humans and nonhuman primates, with high case fatality rates. MARV VP30 is known to be phosphorylated and to interact with nucleoprotein (NP), but its role in regulation of viral transcription is disputed. Here, we analyzed phosphorylation of VP30 by mass spectrometry, which resulted in identification of multiple phosphorylated amino acids. Modeling the full-length three-dimensional structure of VP30 and mapping the identified phosphorylation sites showed that all sites lie in disordered regions, mostly in the N-terminal domain of the protein. Minigenome analysis of the identified phosphorylation sites demonstrated that phosphorylation of a cluster of amino acids at positions 46 through 53 inhibits transcription. To test the effect of VP30 phosphorylation on its interaction with other MARV proteins, coimmunoprecipitation analyses were performed. They demonstrated the involvement of VP30 phosphorylation in interaction with two other proteins of the MARV ribonucleoprotein complex, NP and VP35. To identify the role of protein phosphatase 1 (PP1) in the identified effects, a small molecule, 1E7-03, targeting a noncatalytic site of the enzyme that previously was shown to increase EBOV VP30 phosphorylation was used. Treatment of cells with 1E7-03 increased phosphorylation of VP30 at a cluster of phosphorylated amino acids from Ser-46 to Thr-53, reduced transcription of MARV minigenome, enhanced binding to NP and VP35, and dramatically reduced replication of infectious MARV particles. Thus, MARV VP30 phosphorylation can be targeted for development of future antivirals such as PP1-targeting compounds. IMPORTANCE The largest outbreak of MARV occurred in Angola in 2004 to 2005 and had a 90% case fatality rate. There are no approved treatments available for MARV. Development of antivirals as therapeutics requires a fundamental understanding of the viral life cycle. Because of the close similarity of MARV to another member of Filoviridae family, EBOV, it was assumed that the two viruses have similar mechanisms of regulation of transcription and replication. Here, characterization of the role of VP30 and its phosphorylation sites in transcription of the MARV genome demonstrated differences from those of EBOV. The identified phosphorylation sites appeared to inhibit transcription and appeared to be involved in interaction with both NP and VP35 ribonucleoproteins. A small molecule targeting PP1 inhibited transcription of the MARV genome, effectively suppressing replication of the viral particles. These data demonstrate the possibility developing antivirals based on compounds targeting PP1.
Collapse
|
9
|
Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018; 28:e1976. [PMID: 29656441 PMCID: PMC7169094 DOI: 10.1002/rmv.1976] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene‐silencing phenomenon in which sequence‐specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed.
Collapse
Affiliation(s)
- Abid Qureshi
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Vaqar Gani Tantray
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Altaf Rehman Kirmani
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Abdul Ghani Ahangar
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| |
Collapse
|
10
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
11
|
Hoenen T, Brandt J, Caì Y, Kuhn JH, Finch C. Reverse Genetics of Filoviruses. Curr Top Microbiol Immunol 2017; 411:421-445. [PMID: 28918537 DOI: 10.1007/82_2017_55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reverse genetics systems are used for the generation of recombinant viruses. For filoviruses, this technology has been available for more than 15 years and has been used to investigate questions regarding the molecular biology, pathogenicity, and host adaptation determinants of these viruses. Further, reporter-expressing, recombinant viruses are increasingly used as tools for screening for and characterization of candidate medical countermeasures. Thus, reverse genetics systems represent powerful research tools. Here we provide an overview of available reverse genetics systems for the generation of recombinant filoviruses, potential applications, and the achievements that have been made using these systems.
Collapse
Affiliation(s)
- Thomas Hoenen
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Janine Brandt
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| | - Courtney Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| |
Collapse
|
12
|
Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol 2016; 33:47-55. [PMID: 27375107 PMCID: PMC5069135 DOI: 10.1016/j.mib.2016.05.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 01/17/2023]
Abstract
Antisense antimicrobial therapeutics are synthetic oligomers that silence expression of specific genes. This specificity confers an advantage over broad-spectrum antibiotics by avoiding unintended effects on commensal bacteria. The sequence-specificity and short length of antisense antimicrobials also pose little risk to human gene expression. Because antisense antimicrobials are a platform technology, they can be rapidly designed and synthesized to target almost any microbe. This reduces drug discovery time, and provides flexibility and a rational approach to drug development. Recent work has shown that antisense technology has the potential to address the antibiotic-resistance crisis, since resistance mechanisms for standard antibiotics apparently have no effect on antisense antimicrobials. Here, we describe current reports of antisense antimicrobials targeted against viruses, parasites, and bacteria.
Collapse
Affiliation(s)
- Erin K Sully
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331-3804, USA
| | - Bruce L Geller
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331-3804, USA.
| |
Collapse
|
13
|
Schmidt KM, Mühlberger E. Marburg Virus Reverse Genetics Systems. Viruses 2016; 8:E178. [PMID: 27338448 PMCID: PMC4926198 DOI: 10.3390/v8060178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.
Collapse
Affiliation(s)
- Kristina Maria Schmidt
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems 17493, Germany.
| | - Elke Mühlberger
- Department of Microbiology, School of Medicine, Boston University, 620 Albany Street, Boston, MA 02118, USA.
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Janeba Z. Development of Small-Molecule Antivirals for Ebola. Med Res Rev 2015; 35:1175-94. [PMID: 26172225 PMCID: PMC7168439 DOI: 10.1002/med.21355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
Abstract
Ebola hemorrhagic fever is a deadly disease caused by infection with one of the Ebola virus species. Although a significant progress has recently been made in understanding of Ebola virus biology and pathogenesis, development of effective anti-Ebola treatments has not been very productive, compared to other areas of antiviral research (e.g., HIV and HCV infections). No approved vaccine or medicine is available for Ebola but several are currently under development. This review summarises attempts in identification, evaluation, and development of small-molecule candidates for treatment of Ebola viral disease, including the most promising experimental drugs brincidofovir (CMX001), BCX4430, and favipiravir (T-705).
Collapse
Affiliation(s)
- Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
15
|
Rivera A, Messaoudi I. Pathophysiology of Ebola Virus Infection: Current Challenges and Future Hopes. ACS Infect Dis 2015; 1:186-97. [PMID: 27622648 PMCID: PMC7443712 DOI: 10.1021/id5000426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), are among the deadliest viruses that cause disease in humans, with reported case fatality rates of up to 90% in some outbreaks. The high virulence of EBOV and MARV is largely attributed to the ability of these viruses to interfere with the host immune response. Currently, there are no approved vaccines or postexposure therapeutics, and treatment options for patients infected with EBOV are limited to supportive care. In this review, we discuss mechanisms of EBOV pathogenesis and its ability to subvert host immunity as well as several vaccines and therapeutics with respect to their evaluation in small animal models, nonhuman primates, and human clinical trials.
Collapse
Affiliation(s)
- Andrea Rivera
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA
| |
Collapse
|
16
|
Uebelhoer LS, Albariño CG, McMullan LK, Chakrabarti AK, Vincent JP, Nichol ST, Towner JS. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses. Antiviral Res 2014; 106:86-94. [PMID: 24713118 DOI: 10.1016/j.antiviral.2014.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/27/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle.
Collapse
Affiliation(s)
| | | | | | | | - Joel P Vincent
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | | |
Collapse
|
17
|
Paragas J, Geisbert TW. Development of treatment strategies to combat Ebola and Marburg viruses. Expert Rev Anti Infect Ther 2014; 4:67-76. [PMID: 16441210 DOI: 10.1586/14787210.4.1.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ebola and Marburg viruses are emerging/re-emerging pathogens that pose a significant threat to human health. These naturally occurring viral infections frequently cause a lethal hemorrhagic fever in humans and nonhuman primates. The disastrous consequences of infection with these viruses have been pursued as potential biological weapons. To date, there are no therapeutic options available for the prophylaxis or treatment of infected individuals. The recognition that Ebola and Marburg viruses may be exploited as biological weapons has resulted in major efforts to develop modalities to counter infection. In this review, select technologies and approaches will be highlighted as part of the critical path for the development of therapeutics to ameliorate the invariably devastating outcomes of human filoviral infections.
Collapse
Affiliation(s)
- Jason Paragas
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | |
Collapse
|
18
|
Nakayama E, Saijo M. Animal models for Ebola and Marburg virus infections. Front Microbiol 2013; 4:267. [PMID: 24046765 PMCID: PMC3763195 DOI: 10.3389/fmicb.2013.00267] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/19/2013] [Indexed: 11/16/2022] Open
Abstract
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan
| | | |
Collapse
|
19
|
Ursic-Bedoya R, Mire CE, Robbins M, Geisbert JB, Judge A, MacLachlan I, Geisbert TW. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J Infect Dis 2013; 209:562-70. [PMID: 23990568 PMCID: PMC3903369 DOI: 10.1093/infdis/jit465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. METHODS The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). RESULTS Treatment resulted in 60%-100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. CONCLUSIONS These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection.
Collapse
|
20
|
Abstract
In 1967, the first reported filovirus hemorrhagic fever outbreak took place in Germany and the former Yugoslavia. The causative agent that was identified during this outbreak, Marburg virus, is one of the most deadly human pathogens. This article provides a comprehensive overview of our current knowledge about Marburg virus disease ranging from ecology to pathogenesis and molecular biology.
Collapse
Affiliation(s)
- Kristina Brauburger
- Department of Microbiology, School of Medicine and National Emerging Infectious Diseases Laboratories Institute, Boston University, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
21
|
Friedrich BM, Trefry JC, Biggins JE, Hensley LE, Honko AN, Smith DR, Olinger GG. Potential vaccines and post-exposure treatments for filovirus infections. Viruses 2012; 4:1619-50. [PMID: 23170176 PMCID: PMC3499823 DOI: 10.3390/v4091619] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of the family Filoviridae represent significant health risks as emerging infectious diseases as well as potentially engineered biothreats. While many research efforts have been published offering possibilities toward the mitigation of filoviral infection, there remain no sanctioned therapeutic or vaccine strategies. Current progress in the development of filovirus therapeutics and vaccines is outlined herein with respect to their current level of testing, evaluation, and proximity toward human implementation, specifically with regard to human clinical trials, nonhuman primate studies, small animal studies, and in vitro development. Contemporary methods of supportive care and previous treatment approaches for human patients are also discussed.
Collapse
Affiliation(s)
- Brian M. Friedrich
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - John C. Trefry
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Julia E. Biggins
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Lisa E. Hensley
- United States Food and Drug Administration (FDA), Medical Science Countermeasures Initiative (McMi), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA; (L.E.H.)
| | - Anna N. Honko
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Darci R. Smith
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Gene G. Olinger
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
- Author to whom correspondence should be addressed; (G.G.O.); Tel.: +1-301-619-8581; +1-301-619-2290
| |
Collapse
|
22
|
Ramirez-Carvajal L, Long CR. Down-regulation of viral replication by lentiviral-mediated expression of short-hairpin RNAs against vesicular stomatitis virus ribonuclear complex genes. Antiviral Res 2012; 95:150-8. [DOI: 10.1016/j.antiviral.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/03/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
|
23
|
Scott T, Paweska JT, Arbuthnot P, Weinberg MS. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs. Antivir Ther 2012; 17:643-56. [DOI: 10.3851/imp2073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 10/28/2022]
|
24
|
Johnston BH, Ge Q. Design of Synthetic shRNAs for Targeting Hepatitis C: A New Approach to Antiviral Therapeutics. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7138429 DOI: 10.1007/978-3-642-27426-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small hairpin RNAs (shRNAs) are widely used as gene silencing tools and typically consist of a duplex stem of 19–29 bp, a loop, and often a dinucleotide overhang at the 3′ end. Like siRNAs, shRNAs show promise as potential therapeutic agents due to their high level of specificity and potency, although effective delivery to target tissues remains a challenge. Algorithms used to predict siRNA performance are frequently used to design shRNAs as well. However, the differences between these two kinds of RNAi mediators indicate that the factors affecting target gene silencing will not be the same for siRNAs and shRNAs. Stem and loop lengths, structures of the termini, the identity of nucleotides adjacent to and near the loop, and the position of the guide (antisense) strand all affect the efficacy of shRNAs. In addition, shRNAs with 19-bp or shorter stem lengths are processed and function differently than those with longer stems. In this review, we describe studies of targeting the hepatitis C virus that have provided guidelines for an optimal design for short (19 bp) shRNAs (sshRNAs) that are highly potent, stable in biological fluids, and have minimal immunostimulatory properties.
Collapse
|
25
|
Shah PS, Schaffer DV. Antiviral RNAi: translating science towards therapeutic success. Pharm Res 2011; 28:2966-82. [PMID: 21826573 PMCID: PMC5012899 DOI: 10.1007/s11095-011-0549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 01/07/2023]
Abstract
Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)-a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates-can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.
Collapse
Affiliation(s)
- Priya S. Shah
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
| | - David V. Schaffer
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
- Department of Bioengineering, University of California, Berkeley, California 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720 USA
| |
Collapse
|
26
|
Narayanan A, Bailey C, Kashanchi F, Kehn-Hall K. Developments in antivirals against influenza, smallpox and hemorrhagic fever viruses. Expert Opin Investig Drugs 2011; 20:239-54. [PMID: 21235430 PMCID: PMC9476113 DOI: 10.1517/13543784.2011.547852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION the search for effective inhibitors to multiple infectious agents including influenza, smallpox and hemorrhagic fever viruses is an area of active research as many of these agents pose dramatic health and economic challenges to the human population. Many of these infectious agents are not only endemic threats in different parts of the globe, but are also considered to have the potential of being used as bioterrorism agents. AREAS COVERED this review focuses on inhibitors that are currently in use in the research community against specific emerging infectious agents and those that have bioterrorism potential. The paper provides information about the availability of FDA approved drugs, whenever applicable, and insights into the specific aspect of the agent life cycle that is affected by drug treatment, when known. EXPERT OPINION the key message that is conveyed in this review is that a combination of pathogen and host-based inhibitors may have to be used for successful control of viral replication to limit the development of drug resistance.
Collapse
Affiliation(s)
- Aarthi Narayanan
- George Mason University, National Center for Biodefense and Infectious Diseases, Discovery Hall, Room 306, 10900 University Blvd. MS 1H8, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
27
|
Flusin O, Vigne S, Peyrefitte CN, Bouloy M, Crance JM, Iseni F. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin. Virol J 2011; 8:249. [PMID: 21600011 PMCID: PMC3120786 DOI: 10.1186/1743-422x-8-249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/21/2011] [Indexed: 01/25/2023] Open
Abstract
Background The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV) belongs to the Crimean-Congo hemorrhagic fever (CCHF) serogroup that also includes CCHF virus (CCHFV) a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments) that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP), respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi) as an approach to inhibit nairovirus replication. Results Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. Conclusions Our study highlights the interest of using RNAi (alone or in combination with ribavirin) to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées, 24 avenue des Maquis du Grésivaudan, La Tronche, France.
| | | | | | | | | | | |
Collapse
|
28
|
Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles. J Virol 2010; 84:7847-56. [PMID: 20504928 DOI: 10.1128/jvi.00476-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoprotein NP of Marburg virus (MARV) is the major component of the viral nucleocapsid, which also consists of the viral proteins VP35, L, and VP30, as well as the viral genome. During virus assembly at the plasma membrane, the nucleocapsids are enwrapped by the major matrix protein VP40 and the viral envelope, which contains the transmembrane glycoprotein GP. Upon recombinant expression, VP40 alone is able to induce the formation and release of virus-like particles (VLPs) that closely resemble the filamentous morphology of MARV particles. Release of these VP40-induced VLPs is partially dependent on the cellular ESCRT machinery, which interacts with a late-domain motif in VP40. Coexpression with NP significantly enhances the budding of VP40-induced VLPs by an unknown mechanism. In the present study we analyzed the impact of late domains present in NP on the release of VLPs. We observed that the ESCRT I protein Tsg101 was recruited by NP into NP-induced inclusions in the perinuclear region. In the presence of VP40, NP was then recruited to VP40-positive membrane clusters and, in turn, recruited Tsg101 via a C-terminal PSAP late-domain motif in NP. This PSAP motif also mediated a dramatically enhanced incorporation of Tsg101 into VLPs, and its deletion significantly diminished the positive effect of NP on the release of VLPs. Taken together, these data indicate that NP enhances budding of VLPs by recruiting Tsg101 to the VP40-positive budding site through a PSAP late-domain motif.
Collapse
|
29
|
Wenigenrath J, Kolesnikova L, Hoenen T, Mittler E, Becker S. Establishment and application of an infectious virus-like particle system for Marburg virus. J Gen Virol 2010; 91:1325-34. [PMID: 20071483 DOI: 10.1099/vir.0.018226-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The highly pathogenic Marburg virus (MARV) can only be investigated in high containment laboratories, which is time consuming and expensive. To investigate the MARV life cycle under normal laboratory conditions, an infectious virus-like particle (VLP) system was developed. The infectious VLP system is based on the T7-polymerase driven synthesis of a MARV-specific minigenome that encodes luciferase and is transcribed and replicated by the simultaneously expressed MARV nucleocapsid proteins NP, VP35, L and VP30. Transcription of the minigenome resulted in luciferase activity and replication resulted in encapsidated minigenomes. The encapsidated minigenomes, together with the viral matrix proteins VP40 and VP24 and the surface glycoprotein (GP), formed VLPs at the plasma membrane. Among the released pleomorphic VLPs, filamentous particles of 200-400 nm in length showed the highest capacity to induce reporter activity upon infection of target cells. To characterize the infectious VLP system, the intracellular concentration of one of the components was titrated, while all others were held constant. Intracellular concentrations of nucleocapsid proteins that resulted in highest replication and transcription activities also yielded VLPs with the highest ability to induce luciferase activity in target cells. High intracellular levels of VP40 maximized the release of VLPs, but reduced their ability to induce luciferase activity in target cells. The intracellular concentration of GP positively correlated with its incorporation into VLPs and their infectivity. Finally, we demonstrated that the infectious VLP system was suitable for rapid screening of neutralizing antibodies directed against MARV.
Collapse
Affiliation(s)
- Jörg Wenigenrath
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Artuso MC, Ellenberg PC, Scolaro LA, Damonte EB, García CC. Inhibition of Junín virus replication by small interfering RNAs. Antiviral Res 2009; 84:31-7. [PMID: 19591878 PMCID: PMC7114203 DOI: 10.1016/j.antiviral.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/28/2009] [Accepted: 07/02/2009] [Indexed: 11/03/2022]
Abstract
Junín virus (JUNV), the etiological agent of the Argentine hemorrhagic fever, has a single-stranded RNA genome with ambisense expression which encodes for five proteins. In previous works we have demonstrated that the Z arenavirus matrix protein represents an attractive target for antiviral therapy. With the aim of studying a new alternative therapeutic mechanism, four Z-specific siRNAs (Z1- to Z4-siRNAs) were tested showing variable efficacy. The most effective inhibitor was Z2-siRNA targeted at the region encompassed by nt 179–197 of Z gene. The efficacy of this Z2-siRNA against JUNV was also demonstrated in virus-infected cells, by testing infectious virus plaque formation (92.8% JUNV yield reduction), viral RNA level or antigen expression, as well as in cells transfected with Z-specific reporter plasmids (91% reduction in expression of Z-EGFP fusion protein). Furthermore, the lack of effect of this Z-siRNA on the expression of other JUNV proteins, such as N and GPC, confirmed the specificity of action exerted by Z2-siRNA on Z transcript. Thus, the present study represents the first report of virus inhibition mediated by RNA interference for a New World arenavirus.
Collapse
Affiliation(s)
- María C Artuso
- Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Spurgers KB, Silvestri LS, Warfield KL, Bavari S. Toward RNA interference-based therapy for filovirus infections. Drug Dev Res 2009. [DOI: 10.1002/ddr.20302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
The marburg virus 3' noncoding region structurally and functionally differs from that of ebola virus. J Virol 2009; 83:4508-19. [PMID: 19225002 DOI: 10.1128/jvi.02429-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the first transcription start signal (TSS) of Zaire Ebola virus (ZEBOV) is involved in formation of an RNA secondary structure regulating VP30-dependent transcription activation. Interestingly, transcription of Marburg virus (MARV) minigenomes occurs independently of VP30. In this study, we analyzed the structure of the MARV 3' noncoding region and its influence on VP30 necessity. Secondary structure formation of the TSS of the first gene was experimentally determined and showed substantial differences from the structure formed by the ZEBOV TSS. Chimeric MARV minigenomes mimicking the ZEBOV-specific RNA secondary structure were neither transcribed nor replicated. Mapping of the MARV genomic replication promoter revealed that the region homologous to the sequence involved in formation of the regulatory ZEBOV RNA structure is part of the MARV promoter. The MARV promoter is contained within the first 70 nucleotides of the genome and consists of two elements separated by a spacer region, comprising the TSS of the first gene. Mutations within the spacer abolished transcription activity and led to increased replication, indicating competitive transcription and replication initiation. The second promoter element is located within the nontranslated region of the first gene and consists of a stretch of three UN(5) hexamers. Recombinant full-length MARV clones, in which the three conserved U residues were substituted, could not be rescued, underlining the importance of the UN(5) hexamers for replication activity. Our data suggest that differences in the structure of the genomic replication promoters might account for the different transcription strategies of Marburg and Ebola viruses.
Collapse
|
33
|
Groseth A, Hoenen T, Alimonti JB, Zielecki F, Ebihara H, Theriault S, Ströher U, Becker S, Feldmann H. In vitro evaluation of antisense RNA efficacy against filovirus infection, by use of reverse genetics. J Infect Dis 2008; 196 Suppl 2:S382-9. [PMID: 17940974 DOI: 10.1086/520604] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recent reports indicate the possibility of using small interfering RNAs (siRNAs) to treat filovirus infections; however, they also show that the effectiveness of this approach is highly dependent on target site selection. Therefore, we explored the application of minigenomes as screening tools to identify functional siRNA targets under biosafety level 2 conditions. METHODS siRNA candidates were screened using the minigenome system to identify those with potential antiviral activity, compared with controls with poor predicted function on the basis of design guidelines, or those that were noncomplementary to Zaire ebolavirus (ZEBOV). These findings were then validated in cell culture by use of a previously developed ZEBOV expressing green fluorescent protein (ZEBOV-GFP), which allowed siRNA function to be easily assessed via flow cytometry or focus formation. RESULTS The most promising siRNA based on minigenome screening, targeting the nucleoprotein (NP) mRNA (ZNP1), also reduced protein expression and decreased viral titers after infection with ZEBOV-GFP to an extent similar to that reported for an siRNA recently shown to be therapeutic in guinea pigs. CONCLUSIONS Minigenome screening appears to be an effective and convenient method of evaluating the therapeutic potential of siRNA targets, and findings suggest that its use would increase success rates in later stages of siRNA testing.
Collapse
Affiliation(s)
- Allison Groseth
- National Laboratory for Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oligonucleotide antiviral therapeutics: antisense and RNA interference for highly pathogenic RNA viruses. Antiviral Res 2008; 78:26-36. [PMID: 18258313 PMCID: PMC7114189 DOI: 10.1016/j.antiviral.2007.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
RNA viruses are a significant source of morbidity and mortality in humans every year. Additionally, the potential use of these viruses in acts of bioterrorism poses a threat to national security. Given the paucity of vaccines or postexposure therapeutics for many highly pathogenic RNA viruses, novel treatments are badly needed. Sequence-based drug design, under development for almost 20 years, is proving effective in animal models and has moved into clinical trials. Important advances in the field include the characterization of RNA interference in mammalian cells and chemical modifications that can dramatically increase the in vivo stability of therapeutic oligonucleotides. Antisense strategies utilize single-stranded DNA oligonucleotides that inhibit protein production by mediating the catalytic degradation of target mRNA, or by binding to sites on mRNA essential for translation. Double-stranded RNA oligonucleotides, known as short-interfering RNAs (siRNAs), also mediate the catalytic degradation of complementary mRNAs. As RNA virus infection is predicated on the delivery, replication, and translation of viral RNA, these pathogens present an obvious target for the rapidly advancing field of sequence-specific therapeutics. Antisense oligonucleotides or siRNAs can be designed to target the viral RNA genome or viral transcripts. This article reviews current knowledge on therapeutic applications of antisense and RNA interference for highly pathogenic RNA viral infections.
Collapse
|
35
|
Lofts L, Ibrahim M, Negley D, Hevey M, Schmaljohn A. Genomic Differences between Guinea Pig Lethal and Nonlethal Marburg Virus Variants. J Infect Dis 2007; 196 Suppl 2:S305-12. [DOI: 10.1086/520585] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
36
|
Abstract
Marburg (MARV) and Ebola viruses (EBOV) emerged from the rainforests of Central Africa more than 30 years ago causing outbreaks of severe and, usually, fatal hemorrhagic fever. EBOV has garnered the lion's share of the attention, fueled by the higher frequency of EBOV outbreaks, high mortality rates and importation into the USA, documented in such popular works as the best-selling novel 'The Hot Zone'. However, recent large outbreaks of hundreds of cases of MARV infection in the Democratic Republic of the Congo and Angola with case fatalities approaching 90% dramatically highlight its lethal potential. Although no vaccines or antiviral drugs for MARV are currently available, remarkable progress has been made over the last few years in developing potential countermeasures against MARV in nonhuman primate models. In particular, a vaccine based on attenuated recombinant vesicular stomatitis virus was recently shown to have both preventive and postexposure efficacy.
Collapse
Affiliation(s)
- Daniel G Bausch
- Department of Tropical Medicine, SL-17, Tulane School of Public Health and Tropical Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | |
Collapse
|
37
|
Abstract
The highly pathogenic filoviruses, Marburg and Ebola virus, belong to the nonsegmented negative-sense RNA viruses of the order Mononegavirales. The mode of replication and transcription is similar for these viruses. On one hand, the negative-sense RNA genome serves as a template for replication, to generate progeny genomes, and, on the other hand, for transcription, to produce mRNAs. Despite the similarities in the replication/transcription strategy, filoviruses have evolved structural and functional properties that are unique among the nonsegmented negative-sense RNA viruses. Moreover, there are also striking differences in the replication and transcription mechanisms of Marburg and Ebola virus. This includes nucleocapsid formation, the structure of the genomic replication promoter, the protein requirement for transcription and the use of mRNA editing. In this article, the current knowledge of the replication and transcription strategy of Marburg and Ebola virus is reviewed, with focus on the observed differences.
Collapse
Affiliation(s)
- Elke Mühlberger
- Philipps University of Marburg, Institute of Virology, Hans-Meerwein-Street 2, 35043 Marburg, Germany Tel.: +49 6421 2864 525; ;
| |
Collapse
|
38
|
Mohamadzadeh M, Chen L, Olinger GG, Pratt WD, Schmaljohn AL. Filoviruses and the Balance of Innate, Adaptive, and Inflammatory Responses. Viral Immunol 2006; 19:602-12. [PMID: 17201655 DOI: 10.1089/vim.2006.19.602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- US Army Medical Research Institute for Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Being highly pathogenic for human and nonhuman primates and the subject of former weapon programmes makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and postexposure intervention, the current response depends on rapid diagnostics, proper isolation procedures and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. Over the past years, enhanced research efforts directed to better understand virus replication and pathogenesis have identified potential new targets for intervention strategies. The authors discuss the most promising therapeutic approaches for Ebola haemorrhagic fever as judged by their efficacy in animal models. The current development in this field encourages discussions on how to move some of the experimental approaches towards clinical application.
Collapse
Affiliation(s)
- Ute Ströher
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E3R2, Canada.
| | | |
Collapse
|
40
|
Abstract
The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.
Collapse
Affiliation(s)
- J N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| |
Collapse
|
41
|
Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee ACH, Judge A, Jeffs LB, MacLachlan I. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006; 193:1650-7. [PMID: 16703508 PMCID: PMC7110204 DOI: 10.1086/504267] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/06/2006] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). METHODS Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. RESULTS Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. CONCLUSIONS Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Enterlein S, Warfield KL, Swenson DL, Stein DA, Smith JL, Gamble CS, Kroeker AD, Iversen PL, Bavari S, Mühlberger E. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother 2006; 50:984-93. [PMID: 16495261 PMCID: PMC1426423 DOI: 10.1128/aac.50.3.984-993.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphorodiamidate morpholino oligomers (PMO) are a class of uncharged single-stranded DNA analogs modified such that each subunit includes a phosphorodiamidate linkage and morpholine ring. PMO antisense agents have been reported to effectively interfere with the replication of several positive-strand RNA viruses in cell culture. The filoviruses, Marburg virus and Ebola virus (EBOV), are negative-strand RNA viruses that cause up to 90% lethality in human outbreaks. There is currently no commercially available vaccine or efficacious therapeutic for any filovirus. In this study, PMO conjugated to arginine-rich cell-penetrating peptide (P-PMO) and nonconjugated PMO were assayed for the ability to inhibit EBOV infection in cell culture and in a mouse model of lethal EBOV infection. A 22-mer P-PMO designed to base pair with the translation start site region of EBOV VP35 positive-sense RNA generated sequence-specific and time- and dose-dependent inhibition of EBOV amplification in cell culture. The same oligomer provided complete protection to mice when administered before or after an otherwise lethal infection of EBOV. A corresponding nonconjugated PMO, as well as nonconjugated truncated versions of 16 and 19 base residues, provided length-dependent protection to mice when administered prophylactically. Together, these data suggest that antisense PMO and P-PMO have the potential to control EBOV infection and are promising therapeutic candidates.
Collapse
Affiliation(s)
- Sven Enterlein
- Department of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Enterlein S, Volchkov V, Weik M, Kolesnikova L, Volchkova V, Klenk HD, Mühlberger E. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 2006; 80:1038-43. [PMID: 16379005 PMCID: PMC1346851 DOI: 10.1128/jvi.80.2.1038-1043.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report recovery of infectious Marburg virus (MARV) from a full-length cDNA clone. Compared to the wild-type virus, recombinant MARV showed no difference in terms of morphology of virus particles, intracellular distribution in infected cells, and growth kinetics. The nucleocapsid protein VP30 of MARV and Ebola virus (EBOV) contains a Zn-binding motif which is important for the function of VP30 as a transcriptional activator in EBOV, whereas its role for MARV is unclear. It has been reported previously that MARV VP30 is able to support transcription in an EBOV-specific minigenome system. When the Zn-binding motif was destroyed, MARV VP30 was shown to be inactive in the EBOV system. While it was not possible to rescue recombinant MARV when the VP30 plasmid was omitted from transfection, MARV VP30 with a destroyed Zn-binding motif and EBOV VP30 were able to mediate virus recovery. In contrast, rescue of recombinant EBOV was not supported by EBOV VP30 containing a mutated Zn-binding domain.
Collapse
Affiliation(s)
- Sven Enterlein
- Department of Virology, Philipps University Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Möller P, Pariente N, Klenk HD, Becker S. Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription. J Virol 2006; 79:14876-86. [PMID: 16282487 PMCID: PMC1287548 DOI: 10.1128/jvi.79.23.14876-14886.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleocapsid protein VP35 of Marburgvirus, a filovirus, acts as the cofactor of the viral polymerase and plays an essential role in transcription and replication of the viral RNA. VP35 forms complexes with the genome encapsidating protein NP and with the RNA-dependent RNA polymerase L. In addition, a trimeric complex had been detected in which VP35 bridges L and the nucleoprotein NP. It has been presumed that the trimeric complex represents the active polymerase bound to the nucleocapsid. Here we present evidence that a predicted coiled-coil domain between amino acids 70 and 120 of VP35 is essential and sufficient to mediate homo-oligomerization of the protein. Substitution of leucine residues 90 and 104 abolished (i) the probability to form coiled coils, (ii) homo-oligomerization, and (iii) the function of VP35 in viral RNA synthesis. Further, it was found that homo-oligomerization-negative mutants of VP35 could not bind to L. Thus, it is presumed that homo-oligomerization-negative mutants of VP35 are unable to recruit the polymerase to the NP/RNA template. In contrast, inability to homo-oligomerize did not abolish the recruitment of VP35 into inclusion bodies, which contain nucleocapsid-like structures formed by NP. Finally, transcriptionally inactive mutants of VP35 containing the functional homo-oligomerization domain displayed a dominant-negative phenotype. Inhibition of VP35 oligomerization might therefore represent a suitable target for antiviral intervention.
Collapse
Affiliation(s)
- Peggy Möller
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
45
|
Bamberg S, Kolesnikova L, Möller P, Klenk HD, Becker S. VP24 of Marburg virus influences formation of infectious particles. J Virol 2005; 79:13421-33. [PMID: 16227263 PMCID: PMC1262563 DOI: 10.1128/jvi.79.21.13421-13433.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic enveloped Marburg virus (MARV) is composed of seven structural proteins and the nonsegmented negative-sense viral RNA genome. Four proteins (NP, VP35, VP30, and L) make up the helical nucleocapsid, which is surrounded by a matrix that is composed of the viral proteins VP40 and VP24. VP40 is functionally homologous to the matrix proteins of other nonsegmented negative-strand RNA viruses. As yet, the function of VP24 remains elusive. In the present study we found that VP24 colocalized with inclusions in MARV-infected cells that contain preformed nucleocapsids and with nucleocapsids outside the inclusions. Coexpression studies revealed that VP24 is recruited into the inclusions by the presence of NP. Furthermore, VP24 displayed membrane-binding properties and was recruited into filamentous virus-like particles (VLPs) that are induced by VP40. The incorporation of VP24 altered neither the morphology of VLPs nor the budding efficiency of VLPs. When VP24 was silenced in MARV-infected cells by small interfering RNA technology, the release of viral particles was significantly reduced while viral transcription and replication were unimpaired. Our data support the idea that VP24 is essential for a process that takes place after replication and transcription and before budding of virus progeny. It is presumed that VP24 is necessary for the formation of transport-competent nucleocapsids and/or the interaction between the nucleocapsids and the budding sites at the plasma membrane.
Collapse
Affiliation(s)
- Sandra Bamberg
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Strasse 17, D-35037 Marburg, Germany.
| | | | | | | | | |
Collapse
|