1
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Dulin H, Hendricks N, Xu D, Gao L, Wuang K, Ai H, Hai R. Impact of Protein Nitration on Influenza Virus Infectivity and Immunogenicity. Microbiol Spectr 2022; 10:e0190222. [PMID: 36314966 PMCID: PMC9769652 DOI: 10.1128/spectrum.01902-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza viruses are deadly respiratory pathogens of special importance due to their long history of global pandemics. During influenza virus infections, the host responds by producing interferons, which activate interferon-stimulated genes (ISGs) inside target cells. One of these ISGs is inducible nitric oxide synthase (iNOS). iNOS produces nitric oxide (NO) from arginine and molecular oxygen inside the cell. NO can react with superoxide radicals to form reactive nitrogen species, principally peroxynitrite. While much work has been done studying the many roles of nitric oxide in influenza virus infections, the direct effect of peroxynitrite on influenza virus proteins has not been determined. Manipulations of NO, either by knocking out iNOS or chemically inhibiting NO, produced no change in virus titers in mouse models of influenza infection. However, peroxynitrite has a known antimicrobial effect on various bacteria and parasites, and the reason for its lack of antimicrobial effect on influenza virus titers in vivo remains unclear. Therefore, we wished to test the direct effect of nitration of influenza virus proteins. We examined the impact of nitration on virus infectivity, replication, and immunogenicity. We observed that the nitration of influenza A virus proteins decreased virus infectivity and replication ex vivo. We also determined that the nitration of influenza virus hemagglutinin protein can reduce antibody responses to native virus protein. However, our study also suggests that nitration of influenza virus proteins in vivo is likely not extensive enough to inhibit virus functions substantially. These findings will help clarify the role of peroxynitrite during influenza virus infections. IMPORTANCE Nitric oxide and peroxynitrite produced during microbial infections have diverse and seemingly paradoxical functions. While nitration of lung tissue during influenza virus infection has been observed in both mice and humans, the direct effect of protein nitration on influenza viruses has remained elusive. We addressed the impact of nitration of influenza virus proteins on virus infectivity, replication, and immunogenicity. We observed that ex vivo nitration of influenza virus proteins reduced virus infectivity and immunogenicity. However, we did not detect nitration of influenza virus hemagglutinin protein in vivo. These results contribute to our understanding of the roles of nitric oxide and peroxynitrite in influenza virus infections.
Collapse
Affiliation(s)
- Harrison Dulin
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, California, USA
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Nathan Hendricks
- Proteomics Core, University of California, Riverside, Riverside, California, USA
| | - Duo Xu
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Linfeng Gao
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Keidy Wuang
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Rong Hai
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, California, USA
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
3
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
4
|
Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021; 12:688946. [PMID: 34366882 PMCID: PMC8339726 DOI: 10.3389/fphys.2021.688946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca K Masanetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Vivarelli S, Falzone L, Basile MS, Candido S, Libra M. Nitric Oxide in Hematological Cancers: Partner or Rival? Antioxid Redox Signal 2021; 34:383-401. [PMID: 32027171 DOI: 10.1089/ars.2019.7958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significance: Hematological malignancies represent the fourth most diagnosed cancer. Relapse and acquired resistance to anticancer therapy constitute two actual issues that need to be overcome. Nitric oxide (NO) plays a pivotal role in regulating cancer progression. At present, many studies are attempting to uncover the potentials of modulating NO levels to improve the efficacy of currently available treatments against lymphoma, leukemia, and myeloma. Recent Advances: It is becoming progressively clear that NO modulation may help hematological cancer management, either by targeting directly tumor cells or by driving the immune system to eliminate cancer cells. Critical Issues: NO is a dual molecule that can have a tumor-protecting or stimulating effect, depending on its local concentration. Moreover, NO is able to target a wide range of molecules involved in both cancer genesis and evolution. In this review, an overview of the recent findings regarding the pivotal role played by NO and nitric oxide synthase in cancer progression and anticancer therapy is presented, with particular focus on hematological malignancies. Future Directions: It is critical to establish the cancer-specific function of NO and critically drive its modulation to improve cancer management toward a personalized approach. This has a special importance in hematological tumors, where the urgency of finding eradicative therapies is constant. Antioxid. Redox Signal. 34, 383-401.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Biondo C, Lentini G, Beninati C, Teti G. The dual role of innate immunity during influenza. Biomed J 2019; 42:8-18. [PMID: 30987709 PMCID: PMC6468094 DOI: 10.1016/j.bj.2018.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
One of the distinguishing features of the 1918 pandemic is the occurrence of massive, potentially detrimental, activation of the innate immune system in critically ill patients. Whether this reflects an intrinsic capacity of the virus to induce an exaggerated inflammatory responses or its remarkable ability to reproduce in vivo is still open to debate. Tremendous progress has recently been made in our understanding of innate immune responses to influenza infection and it is now time to translate this knowledge into therapeutic strategies, particularly in view of the possible occurrence of future outbreaks caused by virulent strains.
Collapse
Affiliation(s)
- Carmelo Biondo
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | - Germana Lentini
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | | | - Giuseppe Teti
- Metchnikoff Laboratory, University of Messina, Messina, Italy.
| |
Collapse
|
7
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
8
|
Gansukh E, Muthu M, Paul D, Ethiraj G, Chun S, Gopal J. Nature nominee quercetin's anti-influenza combat strategy-Demonstrations and remonstrations. Rev Med Virol 2017; 27:e1930. [PMID: 31211498 DOI: 10.1002/rmv.1930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Nature's providences are rather the choicest remedies for human health and welfare. One such is quercetin, which is nature's nominee for cancer cure and recently demonstrated against influenza attack. Quercetin is highly recognized for its anticancer applications. This review emphasizes on yet another gift that this compound has to offer for mankind, which is none other than combating the deadly evasive influenza virus. The chemistry of this natural bioflavonoid and its derivatives and its modus operandi against influenza virus is consolidated into this review. The advancements and achievements made in the anti-influenza clinical history are also documented. Further, the challenges facing the progress of this compound to emerge as a predominant anti-influenza drug are discussed, and the future perspective for breaking its limitations through integration with nanoplatforms is envisioned.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Manikandan Muthu
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Diby Paul
- Environmental Microbiology, Department of Environmental Engineering, Konkuk University, Seoul, South Korea
| | - Gopal Ethiraj
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Sechul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
9
|
Simioni PU, Fernandes LG, Tamashiro WM. Downregulation of L-arginine metabolism in dendritic cells induces tolerance to exogenous antigen. Int J Immunopathol Pharmacol 2017; 30:44-57. [PMID: 27903843 PMCID: PMC5806782 DOI: 10.1177/0394632016678873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are potential tools for therapeutic applications and several strategies to generate tolerogenic DCs are under investigation. When activated by cytokines and microbial products, DCs express mediators that modulate immune responses. In this regard, the metabolites generated by the activities of inducible nitric oxide synthase (iNOS) and arginase in DCs seem to play important roles. Here, we evaluated the effects of adoptive transfer of DCs generated in vitro from bone marrow precursors (BMDC) modulated with L-NAME (Nω-nitro-L-arginine methyl ester) and NOHA (NG-Hydroxy-L-arginine), inhibitors of iNOS and arginase, respectively, upon the immune response of the wild type (BALB/c) and OVA-TCR transgenic (DO11.10) mice. The modulation with L-NAME increased CD86 expression in BMDC, whereas treatment with NOHA increased both CD80 and CD86 expression. Adoptive transfer of either L-NAME- or NOHA-modulated BMDCs to BALB/c mice reduced the plasma levels of ovalbumin-specific antibody as well as proliferation and cytokine secretion in cultures of spleen cells in comparison adoptive transfer of non-modulated DCs. Conversely, transfer of both modulated and non-modulated BMDCs had no effect on immune response of DO11.10 mice. Together, these results show that the treatment with iNOS and Arg inhibitors leads to increased expression of co-stimulatory molecules in DCs, and provides evidences that L-arginine metabolism may be an important therapeutic target for modulating immune responses in inflammatory disorders.
Collapse
Affiliation(s)
- Patricia U Simioni
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.,2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,3 Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Luis Gr Fernandes
- 2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,4 Medical School, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Wirla Msc Tamashiro
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
10
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
11
|
Abstract
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5′-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Song Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Munir
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Burrack KS, Morrison TE. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol 2014; 5:428. [PMID: 25250029 PMCID: PMC4157561 DOI: 10.3389/fimmu.2014.00428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| |
Collapse
|
14
|
Giordano D, Draves KE, Li C, Hohl TM, Clark EA. Nitric oxide regulates BAFF expression and T cell-independent antibody responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:1110-20. [PMID: 24951820 DOI: 10.4049/jimmunol.1303158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Whereas NO is known to regulate T cell responses, its role in regulating B cell responses remains unclear. Previous studies suggested that inducible NO synthase 2 (NOS2/iNOS) is required for normal IgA Ab responses but inhibits antiviral IgG2a Ab responses. In this study we used NOS2(-/-) mice to determine the role of NO in T cell-dependent and T cell-independent (TI)-2 Ab responses. Whereas T cell-dependent Ab responses were only modestly increased in NOS2(-/-) mice, IgM and IgG3 Ab responses as well as marginal zone B cell plasma cell numbers and peritoneal B1b B cells were significantly elevated after immunization with the TI-2 Ag 4-hydroxy-3-nitrophenyl acetyl (NP)-Ficoll. The elevated TI-2 responses in NOS2(-/-) mice were accompanied by significant increases in serum levels of BAFF/BLyS and by increases in BAFF-producing Ly6C(hi) inflammatory monocytes and monocyte-derived dendritic cells (DCs), suggesting that NO normally inhibits BAFF expression. Indeed, we found that NOS2(-/-) DCs produced more BAFF than did wild-type DCs, and addition of a NO donor to NOS2(-/-) DCs reduced BAFF production. Bone marrow chimeric mice that lack NOS2 in either nonhematopoietic or hematopoietic cells had intermediate IgM and IgG3 Ab responses after NP-Ficoll immunization, suggesting that NOS2 from both hematopoietic and nonhematopoietic sources regulates TI-2 Ab responses. Similar to NOS2(-/-) mice, depletion of Ly6C(hi) inflammatory monocytes and monocyte-derived DCs enhanced NP-specific IgM and IgG3 responses to NP-Ficoll. Thus, NO produced by inflammatory monocytes and their derivative DC subsets plays an important role in regulating BAFF production and TI-2 Ab responses.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Chang Li
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Tobias M Hohl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| |
Collapse
|
15
|
White MR, Doss M, Boland P, Tecle T, Hartshorn KL. Innate immunity to influenza virus: implications for future therapy. Expert Rev Clin Immunol 2014; 4:497-514. [PMID: 19756245 DOI: 10.1586/1744666x.4.4.497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immunity is critical in the early containment of influenza virus infection. The innate response is surprisingly complex. A variety of soluble innate inhibitors in respiratory secretions provide an initial barrier to infection. Dendritic cells, phagocytes and natural killer cells mediate viral clearance and promote further innate and adaptive responses. Toll-like receptors 3 and 7 and cytoplasmic RNA sensors are critical for activating these responses. In general, the innate response restricts viral replication without injuring the lung; however, the 1918 pandemic and H5N1 strains cause more profound, possibly harmful, innate responses. In this review, we discuss the implications of burgeoning knowledge of innate immunity for therapy of influenza.
Collapse
Affiliation(s)
- Mitchell R White
- Boston University School of Medicine, Department of Medicine, EBRC 414, 650 Albany Street, Boston, MA, USA
| | | | | | | | | |
Collapse
|
16
|
Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins. Mol Cell Biol 2013; 34:415-27. [PMID: 24248598 DOI: 10.1128/mcb.01353-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcriptional activation of the Nos2 gene, encoding inducible nitric oxide synthase (iNOS), during infection or inflammation requires coordinate assembly of an initiation complex by the transcription factors NF-κB and type I interferon-activated ISGF3. Here we show that infection of macrophages with the intracellular bacterial pathogen Listeria monocytogenes caused binding of the BET proteins Brd2, Brd3, and, most prominently, Brd4 to the Nos2 promoter and that a profound reduction of Nos2 expression occurred in the presence of the BET inhibitor JQ1. RNA polymerase activity at the Nos2 gene was regulated through Brd-mediated C-terminal domain (CTD) phosphorylation at serine 5. Underscoring the critical importance of Brd for the regulation of immune responses, application of JQ1 reduced NO production in mice infected with L. monocytogenes, as well as innate resistance to L. monocytogenes and influenza virus. In a murine model of inflammatory disease, JQ1 treatment increased the colitogenic activity of dextran sodium sulfate (DSS). The data presented in our study suggest that BET protein inhibition in a clinical setting poses the risk of altering the innate immune response to infectious or inflammatory challenge.
Collapse
|
17
|
Lactobacillus fermentum CJL-112 protects mice against influenza virus infection by activating T-helper 1 and eliciting a protective immune response. Int Immunopharmacol 2013; 18:50-4. [PMID: 24201084 DOI: 10.1016/j.intimp.2013.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022]
Abstract
We have previously reported that nasally administered Lactobacillus fermentum CJL-112 (CJL-112) efficiently improves resistance against lethal influenza infection in both mice and chicken. The aim of the present study was to understand the underlying mechanisms of the significant anti-influenza activity of this lactobacilli strain. In vitro, co-culturing of the chicken macrophage cell line HD-11 with CJL-112 significantly increased nitric oxide (NO) production. In vivo, CJL-112 was nasally administered to BALB/c mice for 21 days prior to influenza A/NWS/33 (H1N1) virus (IFV) infection. Significant up-regulation of T-helper 1 (Th1) cytokines (IL-2, IFN-γ) was observed, while the levels of T-helper 2 (Th2) cytokines (IL-4, IL-5, IL-10) was either reduced or unchanged than that in control mice were. Furthermore, IgA and specific anti-influenza IgA levels increased significantly in the treated mice than those in untreated mice. Therefore, CJL-112 likely protects the mice against lethal IFV infection via stimulation of macrophages, activation of Th1 and augmentation of IgA production, when directly delivered into the respiratory tract.
Collapse
|
18
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
19
|
Gorski SA, Hufford MM, Braciale TJ. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract. Curr Opin Virol 2012; 2:233-41. [PMID: 22608464 PMCID: PMC3378727 DOI: 10.1016/j.coviro.2012.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A hallmark of infection by respiratory viruses is productive infection of and the subsequent destruction of the airway epithelium. These viruses can also target other stromal cell types as well as in certain instances, CD45(+) hematopoietic cells either resident in the lungs or part of the inflammatory response to infection. The mechanisms by which the virus produces injury to these cell types include direct infection with cytopathic effects as a consequence of replication. Host mediated damage is also a culprit in pulmonary injury as both innate and adaptive immune cells produce soluble and cell-associated pro-inflammatory mediators. Recently, it has become increasingly clear that in addition to control of excess inflammation and virus elimination, the resolution of infection requires an active repair process, which is necessary to regain normal respiratory function and restore the lungs to homeostasis. The repair response must re-establish the epithelial barrier and regenerate the microarchitecture of the lung. Emerging areas of research have highlighted the importance of innate immune cells, particularly the newly described innate lymphoid cells, as well as alternatively activated macrophages and pulmonary stem cells in the repair process. The mechanisms by which respiratory viruses may impede or alter the repair response will be important areas of research for identifying therapeutic targets aimed at limiting virus and host mediated injury and expediting recovery.
Collapse
Affiliation(s)
- Stacey A Gorski
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
20
|
Seo BJ, Rather IA, Kumar VJR, Choi UH, Moon MR, Lim JH, Park YH. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J Appl Microbiol 2012; 113:163-71. [PMID: 22548634 DOI: 10.1111/j.1365-2672.2012.05326.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aims of the study were to isolate anti-H9N2 bacteria from Korean Kimchi isolates and to evaluate its performance in cell line, egg and in specific pathogen-free (SPF) chickens. METHODS AND RESULTS Using Madin-Darby canine kidney (MDCK) cell line, 220 bacterial isolates were screened and the isolate YML003 was selected having pronounced antiviral activity against H9N2 virus. This isolate was identified as Leuconostoc mesenteroides by 16S rRNA gene sequencing. Anti-H9N2 activity of the strain was also evaluated by hemagglutination assay. Leuconostoc mesenteroides YML003 was assessed for its survival in gastric juice and 5% bile acid and the antibiotic susceptibility. Both live and heat-killed cells were selected for in vivo chicken feeding experiment. Body weight, immune index, serobiochemical parameters and splenic IFN-γ production were assessed during selected intervals. Viral population in the trachea and cloacae were calculated by quantitative real-time reverse transcriptase PCR (qRT-PCR). CONCLUSIONS Leuconostoc mesenteroides YML003 exhibited anti-H9N2 activity both in in vitro cell line as well as in vivo SPF chickens. SIGNIFICANCE AND IMPACT OF THE STUDY This is a primary report on the anti-H9N2 activity by a Leuconostoc strain. Amid the increasing reports of avian influenza virus occurrence resulting in severe losses to the poultry industry, prophylactic administration of such probiotic strains are highly significant.
Collapse
Affiliation(s)
- B J Seo
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyongsangbuk-Do, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Kok WL, Denney L, Benam K, Cole S, Clelland C, McMichael AJ, Ho LP. Pivotal Advance: Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection. J Leukoc Biol 2011; 91:357-68. [DOI: 10.1189/jlb.0411184] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Hang DTT, Song JY, Kim MY, Park JW, Shin YK. Involvement of NF-κB in changes of IFN-γ-induced CIITA/MHC-II and iNOS expression by influenza virus in macrophages. Mol Immunol 2011; 48:1253-62. [PMID: 21481937 DOI: 10.1016/j.molimm.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 11/17/2022]
Abstract
Type II interferon (IFN-γ) plays an important role in defense against viral infection. Although this cytokine is found during influenza virus infection, it seems to have no protective function against the virus, and the reasons for this are not clear. To determine how the influenza virus overcomes the antiviral effects of IFN-γ, we examined the effect of A/Puerto-Rico/8/34 (H1N1) (PR8) infection on the expression of various IFN-γ inducible genes involved in defense against virus infection. The results showed that PR8 selectively affects IFN-γ induced MHC-II and iNOS expression in both the murine macrophage-like cell line, Raw264.7, and in primary alveolar macrophages. Infection of IFN-γ treated macrophages with PR8 resulted in decreased expression of CIITA/MHC-II and increased production of iNOS/NO. These changes correlate with activation of NF-κB but not with JAK/STAT signaling. The data indicate one possible mechanism underlying the ineffectiveness of IFN-γ against influenza virus, and suggest that NF-κB may be a promising target for anti-influenza drugs.
Collapse
Affiliation(s)
- Do Thi Thu Hang
- Virology Division, National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries, Anyang, Gyeonggido, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Abstract
Shortly after the identification of nitric oxide (NO) as a product of macrophages, it was discovered that NO generated by inducible NO synthase (iNOS) inhibits the proliferation of T lymphocytes. Since then, it has become clear that iNOS activity also regulates the development, differentiation, and/or function of various types of T cells and B cells and also affects NK cells. The three key mechanisms underlying the iNOS-dependent immunoregulation are (a) the modulation of signaling processes by NO, (b) the depletion of arginine, and (c) the alteration of accessory cell functions. This chapter highlights important principles of iNOS-dependent immunoregulation of lymphocytes and also reviews more recent evidence for an effect of endothelial or neuronal NO synthase in lymphocytes.
Collapse
Affiliation(s)
- Christian Bogdan
- Medical Microbiology and Immunology of Infectious Diseases, Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| |
Collapse
|
25
|
McGill J, Heusel JW, Legge KL. Innate immune control and regulation of influenza virus infections. J Leukoc Biol 2009; 86:803-12. [PMID: 19643736 DOI: 10.1189/jlb.0509368] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adaptive immune responses are critical for the control and clearance of influenza A virus (IAV) infection. However, in recent years, it has become increasingly apparent that innate immune cells, including natural killer cells, alveolar macrophages (aMphi), and dendritic cells (DC) are essential following IAV infection in the direct control of viral replication or in the induction and regulation of virus-specific adaptive immune responses. This review will discuss the role of these innate immune cells following IAV infection, with a particular focus on DC and their ability to induce and regulate the adaptive IAV-specific immune response.
Collapse
Affiliation(s)
- Jodi McGill
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
26
|
McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, Swain SL. IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7353-63. [PMID: 19494257 PMCID: PMC2724021 DOI: 10.4049/jimmunol.0900657] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We examined the expression and influence of IL-10 during influenza infection. We found that IL-10 does not impact sublethal infection, heterosubtypic immunity, or the maintenance of long-lived influenza Ag depots. However, IL-10-deficient mice display dramatically increased survival compared with wild-type mice when challenged with lethal doses of virus, correlating with increased expression of several Th17-associated cytokines in the lungs of IL-10-deficient mice during the peak of infection, but not with unchecked inflammation or with increased cellular responses. Foxp3(-) CD4 T cell effectors at the site of infection represent the most abundant source of IL-10 in wild-type mice during high-dose influenza infection, and the majority of these cells coproduce IFN-gamma. Finally, compared with predominant Th1 responses in wild-type mice, virus-specific T cell responses in the absence of IL-10 display a strong Th17 component in addition to a strong Th1 response and we show that Th17-polarized CD4 T cell effectors can protect naive mice against an otherwise lethal influenza challenge and utilize unique mechanisms to do so. Our results show that IL-10 expression inhibits development of Th17 responses during influenza infection and that this is correlated with compromised protection during high-dose primary, but not secondary, challenge.
Collapse
Affiliation(s)
| | | | - Amanda Buck
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY
| | | | | | - Gail Huston
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY
| | - Michael Tighe
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY
| | | | - Stewart Sell
- Wadsworth Center and Ordway Research Institute, Albany, NY
| | | | | |
Collapse
|
27
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. B-Cells and Antibodies in Old Humans. HANDBOOK ON IMMUNOSENESCENCE 2009. [PMCID: PMC7121755 DOI: 10.1007/978-1-4020-9063-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of Medicine, University of Sherbrooke, 1036 Rue Belvedere, J1H 4C4 Sherbrooke, Quebec Canada
| | - Claudio Franceschi
- Department of Experimental Pathalogy, CIG Interdepartmental Center “L. Galvani” University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Katsuiku Hirokawa
- Institute for Health and Life Sciences, 4-6-22 Kohinato, Bunkyo-ku, Tokyo, 112-0006 Japan
| | - Graham Pawelec
- ZMF - Zentrum Med. Forschung Abt. Transplant./ Immunologie, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| |
Collapse
|
28
|
Chon H, Choi B, Jeong G, Mo I. Evaluation system for an experimental study of low-pathogenic avian influenza virus (H9N2) infection in specific pathogen free chickens using lactic acid bacteria,Lactobacillus plantarumKFCC11389P. Avian Pathol 2008; 37:593-7. [DOI: 10.1080/03079450802439056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. THE JOURNAL OF IMMUNOLOGY 2008; 180:2562-72. [PMID: 18250467 DOI: 10.4049/jimmunol.180.4.2562] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with pathogenic influenza virus induces severe pulmonary immune pathology, but the specific cell types that cause this have not been determined. We characterized inflammatory cell types in mice that overexpress MCP-1 (CCL2) in the lungs, then examined those cells during influenza infection of wild-type (WT) mice. Lungs of both naive surfactant protein C-MCP mice and influenza-infected WT mice contain increased numbers of CCR2(+) monocytes, monocyte-derived DC (moDC), and exudate macrophages (exMACs). Adoptively transferred Gr-1(+) monocytes give rise to both moDC and exMACs in influenza-infected lungs. MoDC, the most common inflammatory cell type in infected lungs, induce robust naive T cell proliferation and produce NO synthase 2 (NOS2), whereas exMACs produce high levels of TNF-alpha and NOS2 and stimulate the proliferation of memory T cells. Relative to WT mice, influenza-infected CCR2-deficient mice display marked reductions in the accumulation of monocyte-derived inflammatory cells, cells producing NOS2, the expression of costimulatory molecules, markers of lung injury, weight loss, and mortality. We conclude that CCR2(+) monocyte-derived cells are the predominant cause of immune pathology during influenza infection and that such pathology is markedly abrogated in the absence of CCR2.
Collapse
Affiliation(s)
- Kaifeng Lisa Lin
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|