1
|
Detection of Chronic Wasting Disease Prions in Fetal Tissues of Free-Ranging White-Tailed Deer. Viruses 2021; 13:v13122430. [PMID: 34960698 PMCID: PMC8705995 DOI: 10.3390/v13122430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The transmission of chronic wasting disease (CWD) has largely been attributed to contact with infectious prions shed in excretions (saliva, urine, feces, blood) by direct animal-to-animal exposure or indirect contact with the environment. Less-well studied has been the role that mother-to-offspring transmission may play in the facile transmission of CWD, and whether mother-to-offspring transmission before birth may contribute to the extensive spread of CWD. We thereby focused on a population of free-ranging white-tailed deer from West Virginia, USA, in which CWD has been detected. Fetal tissues, ranging from 113 to 158 days of gestation, were harvested from the uteri of CWD+ dams in the asymptomatic phase of infection. Using serial protein misfolding amplification (sPMCA), we detected evidence of prion seeds in 7 of 14 fetuses (50%) from 7 of 9 pregnancies (78%), with the earliest detection at 113 gestational days. This is the first report of CWD detection in free ranging white-tailed deer fetal tissues. Further investigation within cervid populations across North America will help define the role and impact of mother-to-offspring vertical transmission of CWD.
Collapse
|
2
|
Gallardo MJ, Delgado FO. Animal prion diseases: A review of intraspecies transmission. Open Vet J 2021; 11:707-723. [PMID: 35070868 PMCID: PMC8770171 DOI: 10.5455/ovj.2021.v11.i4.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Animal prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. The causative agent, prion, is a misfolded isoform of normal cellular prion protein, which is found in cells with higher concentration in the central nervous system. This review explored the sources of infection and different natural transmission routes of animal prion diseases in susceptible populations. Chronic wasting disease in cervids and scrapie in small ruminants are prion diseases capable of maintaining themselves in susceptible populations through horizontal and vertical transmission. The other prion animal diseases can only be transmitted through food contaminated with prions. Bovine spongiform encephalopathy (BSE) is the only animal prion disease considered zoonotic. However, due to its inability to transmit within a population, it could be controlled. The emergence of atypical cases of scrapie and BSE, even the recent report of prion disease in camels, demonstrates the importance of understanding the transmission routes of prion diseases to take measures to control them and to assess the risks to human and animal health.
Collapse
Affiliation(s)
- Mauro Julián Gallardo
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Cs. Agrarias y Veterinarias, Universidad del Salvador, Pilar, Argentina
| |
Collapse
|
3
|
Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals (Basel) 2021; 11:ani11030691. [PMID: 33806658 PMCID: PMC7999988 DOI: 10.3390/ani11030691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.
Collapse
|
4
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
5
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
6
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Douet JY, Lacroux C, Aron N, Head MW, Lugan S, Tillier C, Huor A, Cassard H, Arnold M, Beringue V, Ironside JW, Andréoletti O. Distribution and Quantitative Estimates of Variant Creutzfeldt-Jakob Disease Prions in Tissues of Clinical and Asymptomatic Patients. Emerg Infect Dis 2018; 23:946-956. [PMID: 28518033 PMCID: PMC5443438 DOI: 10.3201/eid2306.161734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.
Collapse
|
8
|
Lacroux C, Cassard H, Simmons H, Yves Douet J, Corbière F, Lugan S, Costes P, Aron N, Huor A, Tillier C, Schelcher F, Andreoletti O. Classical scrapie transmission in ARR/ARR genotype sheep. J Gen Virol 2017; 98:2200-2204. [PMID: 28721847 DOI: 10.1099/jgv.0.000861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ARR allele is considered to provide a very strong resistance against classical scrapie infection in sheep. In this study, we report the occurrence of clinical transmissible spongiform encephalopathy in ARR/ARR sheep, following their inoculation by the intracerebral route with a classical scrapie isolate. On first passage, the disease displayed an incomplete attack rate transmission, with incubation periods exceeding 6 years. On second passage, the obtained prion did not display better abilities to propagate than the original isolate. These transmission results contrasted with the 100 % attack rate and the short incubation periods observed in ARQ/ARQ sheep challenged with the same isolate. These data confirm that ARR/ARR sheep cannot be considered to be fully resistant to classical scrapie. However, they also support the contention that classical scrapie has a very limited capacity to transmit and adapt to ARR/ARR sheep.
Collapse
Affiliation(s)
- Caroline Lacroux
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Hervé Cassard
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Hugh Simmons
- Animal and Plant Health Agency (APHA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Jean Yves Douet
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Fabien Corbière
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Severine Lugan
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Pierette Costes
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Naima Aron
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Alvina Huor
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cécile Tillier
- UMR INRA-ENVT 1225, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | | |
Collapse
|
9
|
Infectious Prions in the Pregnancy Microenvironment of Chronic Wasting Disease-Infected Reeves' Muntjac Deer. J Virol 2017; 91:JVI.00501-17. [PMID: 28539446 DOI: 10.1128/jvi.00501-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments.IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics of this disease. Direct contact with infected animals and indirect contact with infectious prions in bodily fluids and contaminated environments are suspected to explain the majority of this transmission. A third mode of transmission, from mother to offspring, may be underappreciated. The presence of pregnancy-related prion infectivity within the uterus, amniotic fluid, and the placental structure reveals that the developing fetus is exposed to a source of prions long before exposure to the infectious agent during and after the birthing process or via contact with contaminated environments. These findings have impact on our current concept of CWD disease transmission.
Collapse
|
10
|
Garza MC, Eraña H, Castilla J, Acín C, Vargas A, Badiola JJ, Monleón E. Protein misfolding cyclic amplification corroborates the absence of PrP Sc accumulation in placenta from foetuses with the ARR/ARQ genotype in natural scrapie. Vet Microbiol 2017; 203:294-300. [PMID: 28619160 DOI: 10.1016/j.vetmic.2017.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
Ovine scrapie is a worldwide spread prion disease that is transmitted horizontally under field conditions. Placenta from scrapie-infected ewes is an important source of infection, since this tissue can accumulate high amounts of PrPSc depending on the foetal genotype. Therefore, placentas carrying susceptible foetuses can accumulate PrPSc but there is not PrPSc accumulation in presence of foetuses with at least one ARR haplotype. In scrapie eradication programs, ARR/ARR males are used for breeding to increase the resistant progeny and reduce the horizontal transmission of the disease through the placenta. The development of highly sensitive techniques, that allow the detection of minimal amounts of PrPSc, has caused many secretions/excretions and tissues that had previously been deemed negative to be relabeled as positive for PrPSc. This has raised concerns about the possible presence of minimal amounts of PrPSc in placentas from ARR foetuses that conventional techniques had indicated were negative. In the present study we examined 30 placentas from a total of 23 gestations; 15 gestations resulted from naturally ARQ/ARQ scrapie-infected ewes mated with ARR/ARR rams. The absence of PrPSc in placentas carrying the foetal ARR haplotype (n=19) was determined by IDEXX HerdChek scrapie/BSE Antigen EIA Test, Prionics®-Check WESTERN and corroborated by the highly sensitive Protein Misfolding Cyclic Amplification technique (PMCA). By immunohistochemistry, several unspecific stainings that might mislead a diagnosis were observed. The results of the present study support that using ARR/ARR males in scrapie eradication programs efficiently decreases the spreading of the agent in the environment via shed placentas.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Cristina Acín
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonia Vargas
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Monleón
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain; Dpto. Anatomía e Histología Humanas. Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
11
|
Adams DB. Prenatal transmission of scrapie in sheep and goats: A case study for veterinary public health. Open Vet J 2016; 6:194-214. [PMID: 27928518 PMCID: PMC5133396 DOI: 10.4314/ovj.v6i3.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 01/11/2023] Open
Abstract
Unsettled knowledge as to whether scrapie transmits prenatally in sheep and goats and transmits by semen and preimplantation embryos has a potential to compromise measures for controlling, preventing and eliminating the disease. The remedy may be analysis according to a systematic review, allowing comprehensive and accessible treatment of evidence and reasoning, clarifying the issue and specifying the uncertainties. Systematic reviews have clearly formulated questions, can identify relevant studies and appraise their quality and can summarise evidence and reasoning with an explicit methodology. The present venture lays a foundation for a possible systematic review and applies three lines of evidence and reasoning to two questions. The first question is whether scrapie transmits prenatally in sheep and goats. It leads to the second question, which concerns the sanitary safety of artificial breeding technologies, and is whether scrapie transmits in sheep and goats by means of semen and washed or unwashed in vivo derived embryos. The three lines of evidence derive from epidemiological, field and clinical studies, experimentation, and causal reasoning, where inferences are made from the body of scientific knowledge and an understanding of animal structure and function. Evidence from epidemiological studies allow a conclusion that scrapie transmits prenatally and that semen and embryos are presumptive hazards for the transmission of scrapie. Evidence from experimentation confirms that semen and washed or unwashed in vivo derived embryos are hazards for the transmission of scrapie. Evidence from causal reasoning, including experience from other prion diseases, shows that mechanisms exist for prenatal transmission and transmission by semen and embryos in both sheep and goats.
Collapse
Affiliation(s)
- D B Adams
- 24 Noala Street, Aranda, ACT 2614, Australia
| |
Collapse
|
12
|
Niedermeyer S, Eiden M, Toumazos P, Papasavva-Stylianou P, Ioannou I, Sklaviadis T, Panagiotidis C, Langeveld J, Bossers A, Kuczius T, Kaatz M, Groschup MH, Fast C. Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus. Vet Res 2016; 47:99. [PMID: 27716411 PMCID: PMC5053211 DOI: 10.1186/s13567-016-0379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSE’s) affecting sheep and goats. Susceptibility of goats to scrapie is influenced by polymorphisms of the prion protein gene (PRNP) of the host. Five polymorphisms are associated with reduced susceptibility to TSE’s. In the study presented here caprine samples from a scrapie eradication program on Cyprus were genotyped and further characterized using BioRad TeSeE rapid test, histological, immunohistochemical and biochemical methods. In total 42 goats from 20 flocks were necropsied from which 25 goats showed a positive result in the rapid test, a spongiform encephalopathy and an accumulation of pathological prion protein (PrPSc) in the obex. PrPSc deposits were demonstrated in the placenta, peripheral nervous and lymphoreticular system. Two animals showed PrPSc-accumulations in peripheral tissues only. By discriminatory immunoblots a scrapie infection could be confirmed for all cases. Nevertheless, slight deviations in the glycosylation pattern might indicate the presence of different scrapie strains. Furthermore scrapie samples from goats in the current study demonstrated less long term resistance to proteinase K than ovine or caprine BSE control samples. Reduced scrapie susceptibility according to the PRNP genotype was demonstrated (Fishers Exact test, p < 0.05) for the goats with at least one polymorphism (p = 0.023) at the six codons examined and in particular for those with polymorphisms at codon 146 (p = 0.016). This work characterizes scrapie in goats having implications for breeding and surveillance strategies.
Collapse
Affiliation(s)
- Susanne Niedermeyer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Pavlos Toumazos
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | | | - Ioannis Ioannou
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Cynthia Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jan Langeveld
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Martin Kaatz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany.
| |
Collapse
|
13
|
Epidemiological investigations on the potential transmissibility of a rare disease: the case of atypical scrapie in Great Britain. Epidemiol Infect 2016; 144:2107-16. [PMID: 26976340 DOI: 10.1017/s0950268816000303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Multiple cases of atypical scrapie in the same holding and co-existence with classical scrapie have been reported in Great Britain. A two-stage simulation tool was developed by combining a sampling algorithm and a hierarchical Bayesian model to simulate the number of positive cases of atypical scrapie from: (i) random sampling and (ii) using the actual sampled population in Great Britain, being the output probability of detection of flocks with one and more cases. Cluster analysis was conducted to assess the level of geographical over- and under-sampling over the years. The probability of detecting at least two cases of atypical scrapie in the same holding is much lower in simulated random data than in simulated actual data for all scenarios. Sampling bias in the selection of sheep for testing led to multiple sampling from fewer but larger holdings, Scotland, and areas of Wales were under-sampled and the South-West and East of England oversampled. The pattern of atypical scrapie cases observed is unlikely to be explained by a multi-case event epidemiologically linked. The co-existence of classical and atypical scrapie is a rare event with 19 holdings detected in GB and does not suggest an epidemiological link between the two types of disease.
Collapse
|
14
|
Jeffrey M, Witz JP, Martin S, Hawkins SAC, Bellworthy SJ, Dexter GE, Thurston L, González L. Dynamics of the natural transmission of bovine spongiform encephalopathy within an intensively managed sheep flock. Vet Res 2015; 46:126. [PMID: 26511838 PMCID: PMC4625529 DOI: 10.1186/s13567-015-0269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Sheep are susceptible to the bovine spongiform encephalopathy (BSE) agent and in the UK they may have been exposed to BSE via contaminated meat and bone meal. An experimental sheep flock was established to determine whether ovine BSE could be naturally transmitted under conditions of intensive husbandry. The flock consisted of 113 sheep of different breeds and susceptible PRNP genotypes orally dosed with BSE, 159 sheep subsequently born to them and 125 unchallenged sentinel controls. BSE was confirmed in 104 (92%) orally dosed sheep and natural transmission was recorded for 14 of 79 (18%) lambs born to BSE infected dams, with rates varying according to PRNP genotype. The likelihood of natural BSE transmission was linked to stage of incubation period of the dam: the attack rate for lambs born within 100 days of the death of BSE infected dams was significantly higher (9/22, 41%) than for the rest (5/57, 9%). Within the group of ewes lambing close to death, those rearing infected progeny (n = 8, for 9/12 infected lambs) showed a significantly greater involvement of lymphoid tissues than those rearing non-infected offspring (n = 8, for 0/10 infected lambs). Horizontal transmission to the progeny of non-infected mothers was recorded only once (1/205, 0.5%). This low rate of lateral transmission was attributed, at least partly, to an almost complete absence of infected placentas. We conclude that, although BSE can be naturally transmitted through dam-lamb close contact, the infection in this study flock would not have persisted due to low-efficiency maternal and lateral transmissions.
Collapse
Affiliation(s)
- Martin Jeffrey
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Janey P Witz
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Stuart Martin
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | | | | | | | - Lisa Thurston
- APHA-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Lorenzo González
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
15
|
Schneider DA, Madsen-Bouterse SA, Zhuang D, Truscott TC, Dassanayake RP, O'Rourke KI. The placenta shed from goats with classical scrapie is infectious to goat kids and lambs. J Gen Virol 2015; 96:2464-2469. [PMID: 25888622 PMCID: PMC4681073 DOI: 10.1099/vir.0.000151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The placenta of domestic sheep plays a key role in horizontal transmission of classical scrapie. Domestic goats are frequently raised with sheep and are susceptible to classical scrapie, yet potential routes of transmission from goats to sheep are not fully defined. Sparse accumulation of disease-associated prion protein in cotyledons casts doubt about the role of the goat's placenta. Thus, relevant to mixed-herd management and scrapie-eradication efforts worldwide, we determined if the goat's placenta contains prions orally infectious to goat kids and lambs. A pooled cotyledon homogenate, prepared from the shed placenta of a goat with naturally acquired classical scrapie disease, was used to orally inoculate scrapie-naïve prion genotype-matched goat kids and scrapie-susceptible lambs raised separately in a scrapie-free environment. Transmission was detected in all four goats and in two of four sheep, which importantly identifies the goat's placenta as a risk for horizontal transmission to sheep and other goats.
Collapse
Affiliation(s)
- David A Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, 99164-6630, USA.,Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| | - Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| | - Dongyue Zhuang
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, 99164-6630, USA
| | - Thomas C Truscott
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, 99164-6630, USA
| | - Rohana P Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| | - Katherine I O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| |
Collapse
|
16
|
Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I, Costes P, Aron N, Reine F, Herzog L, Espinosa JC, Beringue V, Andréoletti O. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 2014; 5:5821. [PMID: 25510416 DOI: 10.1038/ncomms6821] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Collapse
Affiliation(s)
- Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway
| | | | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Fabienne Reine
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | - Laetitia Herzog
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | | | - Vincent Beringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
17
|
Scientific Opinion on the scrapie situation in the EU after 10 years of monitoring and control in sheep and goats. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3781] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Lacroux C, Comoy E, Moudjou M, Perret-Liaudet A, Lugan S, Litaise C, Simmons H, Jas-Duval C, Lantier I, Béringue V, Groschup M, Fichet G, Costes P, Streichenberger N, Lantier F, Deslys JP, Vilette D, Andréoletti O. Preclinical detection of variant CJD and BSE prions in blood. PLoS Pathog 2014; 10:e1004202. [PMID: 24945656 PMCID: PMC4055790 DOI: 10.1371/journal.ppat.1004202] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.
Collapse
Affiliation(s)
- Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Emmanuel Comoy
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Mohammed Moudjou
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon –Laboratoire Diagnostic Maladies à Prions; CNRS, INSERM, UCB Lyon1, Centre de Recherche en Neurosciences de Lyon, BioRan, Bron, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Claire Litaise
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Hugh Simmons
- VLA Weybridge, ASU, New Haw, Addlestone, Surrey, United Kingdom
| | | | - Isabelle Lantier
- INRA, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Vincent Béringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Martin Groschup
- Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Guillaume Fichet
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
- Franklab, Montigny-le-Bretonneux, France
| | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Nathalie Streichenberger
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Frederic Lantier
- INRA, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Jean Philippe Deslys
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
19
|
Di Gangi S, Bertin M, Noventa M, Cagnin A, Cosmi E, Gizzo S. Obstetric dilemma on the most appropriate management of Creutzfeldt-Jakob disease in pregnancy: seventh case presentation, literature review and new insight. J Matern Fetal Neonatal Med 2014; 28:254-61. [PMID: 24749800 DOI: 10.3109/14767058.2014.916678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prion diseases (PDs) are fatal neurological disorders that are thought to be caused by the accumulation of an altered variant of a benign, widely expressed protein (PrPC) into a distinct pathological conformation(s) (PrPSc). The PDs are so rare but lethal pathologies that need an early diagnosis to adequately support the infected patient. A maternal-fetal transmission during pregnancy has been supposed to be on the basis of animal studies, but till now the effective vertical transmission in humans has not been proved. We present a case of infected pregnant woman with a peculiar pregnancy course and outcome. We also provided a systematic literature review to find the best obstetrical management of women affected by prionic disease during pregnancy. The available data underline the potential risk of prenatal and postnatal transmission of the disease but do not permit to define the exact molecular mechanism of transmission, the best follow-up and recommendations that are useful in both obstetrical and neonatal practice. At present awaiting for further clarifications about this topic, it is mandatory to personalize the management of this rare pregnancy complication according to the maternal-fetal well-being status.
Collapse
|
20
|
Johnson ML, Grazul-Bilska AT, Reynolds LP, Redmer DA. Prion (PrPC) expression in ovine uteroplacental tissues increases after estrogen treatment of ovariectomized ewes and during early pregnancy. Reproduction 2014; 148:1-10. [PMID: 24664411 DOI: 10.1530/rep-13-0548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Scrapie in sheep is spread laterally by placental transmission of an infectious misfolded form (PrPSc) of a normal prion protein (PrPC) used as a template in PrPSc formation. We hypothesized that PrPC would be expressed in uterine and placental tissues and estradiol-17β (E2) would affect uterine PrPC expression. PrPC expression was evaluated in the uterus of long-term ovariectomized (OVX) ewes treated with an E2 implant for 2-24 h and in uteroplacental tissues from day 20 to day 30 of pregnancy. Expression of PrPC mRNA and PrPC protein increased in the uterus after E2 treatment of OVX ewes. In the maternal placenta, expression of PrPC mRNA and PrPC protein were unchanged, but in the fetal membranes (FM) PrPC mRNA and PrPC protein expression increased from day 20 to day 28. In the nonpregnant uterus, PrPC protein was immunolocalized at apical borders of the surface epithelium, in outer smooth muscle layers of large blood vessels, and in scattered stromal cells of the deep intercaruncular areas of the uterus. In the maternal placenta, PrPC protein was immunolocalized in the cytoplasm of flattened luminal epithelial cells apposed to the FM, whereas in the FM PrPC protein was in trophoblast cells and was also in several tissues of the developing embryo during early pregnancy. These data linking estrogen stimulation to increases in PrPC expression in uteroplacental tissues suggest that PrPC has a specific function during the estrous cycle and early pregnancy. Future studies should determine whether or not estrogen influences PrPC expression in other tissues, such as the nervous system and brain.
Collapse
Affiliation(s)
- Mary Lynn Johnson
- Department of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USADepartment of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USA
| | - Anna T Grazul-Bilska
- Department of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USADepartment of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USA
| | - Lawrence P Reynolds
- Department of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USADepartment of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USA
| | - Dale A Redmer
- Department of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USADepartment of Animal SciencesCenter for Nutrition and PregnancyNorth Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
21
|
Abstract
In goats, several field studies have identified coding mutations of the gene encoding the prion protein (I/M142, N/D146, S/D146, R/Q211, and Q/K222) that are associated with a lower risk of developing classical scrapie. However, the data related to the levels of resistance to transmissible spongiform encephalopathies (TSEs) of these different PRNP gene mutations are still considered insufficient for developing large-scale genetic selection against scrapie in this species. In this study, we inoculated wild-type (WT) PRNP (I142R154R211Q222) goats and homozygous and/or heterozygous I/M142, R/H154, R/Q211, and Q/K222 goats with a goat natural scrapie isolate by either the oral or the intracerebral (i.c.) route. Our results indicate that the I/M142 PRNP polymorphism does not provide substantial resistance to scrapie infection following intracerebral or oral inoculation. They also demonstrate that H154, Q211, and K222 PRNP allele carriers are all resistant to scrapie infection following oral exposure. However, in comparison to WT animals, the H154 and Q211 allele carriers displayed only moderate increases in the incubation period following i.c. challenge. After i.c. challenge, heterozygous K222 and a small proportion of homozygous K222 goats also developed the disease, but with incubation periods that were 4 to 5 times longer than those in WT animals. These results support the contention that the K222 goat prion protein variant provides a strong but not absolutely protective effect against classical scrapie.
Collapse
|
22
|
Foster JD, Goldmann W, Hunter N. Evidence in sheep for pre-natal transmission of scrapie to lambs from infected mothers. PLoS One 2013; 8:e79433. [PMID: 24260219 PMCID: PMC3832582 DOI: 10.1371/journal.pone.0079433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 01/09/2023] Open
Abstract
Natural scrapie transmission from infected ewes to their lambs is thought to occur by the oral route around the time of birth. However the hypothesis that scrapie transmission can also occur before birth (in utero) is not currently favoured by most researchers. As scrapie is an opportunistic infection with multiple infection routes likely to be functional in sheep, definitive evidence for or against transmission from ewe to her developing fetus has been difficult to achieve. In addition the very early literature on maternal transmission of scrapie in sheep was compromised by lack of knowledge of the role of the PRNP (prion protein) gene in control of susceptibility to scrapie. In this study we experimentally infected pregnant ewes of known PRNP genotype with a distinctive scrapie strain (SSBP/1) and looked for evidence of transmission of SSBP/1 to the offspring. The sheep were from the NPU Cheviot flock, which has endemic natural scrapie from which SSBP/1 can be differentiated on the basis of histology, genetics of disease incidence and strain typing bioassay in mice. We used embryo transfer techniques to allow sheep fetuses of scrapie-susceptible PRNP genotypes to develop in a range of scrapie-resistant and susceptible recipient mothers and challenged the recipients with SSBP/1. Scrapie clinical disease, caused by both natural scrapie and SSBP/1, occurred in the progeny but evidence (including mouse strain typing) of SSBP/1 infection was found only in lambs born to fully susceptible recipient mothers. Progeny were not protected from transmission of natural scrapie or SSBP/1 by washing of embryos to International Embryo Transfer Society standards or by caesarean derivation and complete separation from their birth mothers. Our results strongly suggest that pre-natal (in utero) transmission of scrapie may have occurred in these sheep.
Collapse
Affiliation(s)
- James D. Foster
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|
23
|
Identical pathogenesis and neuropathological phenotype of scrapie in valine, arginine, glutamine/valine, arginine, glutamine sheep infected experimentally by the oral and conjunctival routes. J Comp Pathol 2013; 150:47-56. [PMID: 24035191 DOI: 10.1016/j.jcpa.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/02/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
Abstract
The pathogenesis of scrapie in sheep after natural or oral exposure to the infectious agent generally involves the early accumulation of disease-associated prion protein (PrP(d)) in the lymphoreticular system (LRS). This phase is followed by neuroinvasion, for which two routes, ascending neural and haematogenous, have been postulated. The present study reports the use of immunohistochemistry to track the tissue progression of PrP(d) deposition in sheep of a single, highly scrapie-susceptible PrP genotype administered by the oral or conjunctival routes. Regardless of the route of infection, the earliest detection of PrP(d) was in gut- and pharynx-associated LRS tissues. Subsequently, the brain became PrP(d) positive simultaneously with other LRS tissues, but before the spinal cord and peripheral nervous tissues of the enteric, parasympathetic and sympathetic systems. The sites of initial PrP(d) accumulation in the brain were the dorsal motor nucleus of the vagus and the hypothalamus and their related circumventricular organs (the area postrema and the median eminence, respectively). These were the same for both routes of infection. Rapid progression to clinical disease was observed in sheep infected orally or conjunctivally, with definite signs of scrapie recorded at around 6 and 8 months after infection, respectively. Longer incubation periods in sheep infected by the conjunctival route were probably due to them receiving a lower dose than those infected orally. Irrespective of the route of infection, clinically affected sheep showed the same pathological phenotype (PrP(d) profile) and PrP(d) distribution throughout the brain. The identical peripheral and central pathogenesis observed in sheep of both groups suggests early dissemination of the infectious agent in the bloodstream and a common neuroinvasion pathway. The late involvement of the enteric and autonomic nervous system supports a haematogenous route of infection to the brain.
Collapse
|
24
|
Nalls AV, McNulty E, Powers J, Seelig DM, Hoover C, Haley NJ, Hayes-Klug J, Anderson K, Stewart P, Goldmann W, Hoover EA, Mathiason CK. Mother to offspring transmission of chronic wasting disease in reeves' muntjac deer. PLoS One 2013; 8:e71844. [PMID: 23977159 PMCID: PMC3743758 DOI: 10.1371/journal.pone.0071844] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/03/2013] [Indexed: 01/09/2023] Open
Abstract
The horizontal transmission of prion diseases has been well characterized in bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD) of deer and elk and scrapie of sheep, and has been regarded as the primary mode of transmission. Few studies have monitored the possibility of vertical transmission occurring within an infected mother during pregnancy. To study the potential for and pathway of vertical transmission of CWD in the native cervid species, we used a small cervid model-the polyestrous breeding, indoor maintainable, Reeves' muntjac deer-and determined that the susceptibility and pathogenesis of CWD in these deer reproduce that in native mule and white-tailed deer. Moreover, we demonstrate here that CWD prions are transmitted from doe to fawn. Maternal CWD infection also appears to result in lower percentage of live birth offspring. In addition, evolving evidence from protein misfolding cyclic amplification (PMCA) assays on fetal tissues suggest that covert prion infection occurs in utero. Overall, our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases.
Collapse
Affiliation(s)
- Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenny Powers
- Biological Resource Management Division, National Park Service, Fort Collins, Colorado, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Clare Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nicholas J. Haley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeanette Hayes-Klug
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paula Stewart
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Scientific Opinion on the risk of transmission of classical scrapie via in vivo derived embryo transfer in ovine animals. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Corbière F, Chauvineau-Perrin C, Lacroux C, Lugan S, Costes P, Thomas M, Brémaud I, Chartier C, Barillet F, Schelcher F, Andréoletti O. The limits of test-based scrapie eradication programs in goats. PLoS One 2013; 8:e54911. [PMID: 23372789 PMCID: PMC3553010 DOI: 10.1371/journal.pone.0054911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022] Open
Abstract
Small ruminant post-mortem testing programs were initially designed for monitoring the prevalence of prion disease. They are now considered as a potential alternative to genetic selection for eradicating/controlling classical scrapie at population level. If such policy should be implemented, its success would be crucially dependent on the efficiency of the surveillance system used to identify infected flocks. In this study, we first determined the performance of post-mortem classical scrapie detection in eight naturally affected goat herds (total n = 1961 animals) according to the age at culling. These results provided us with necessary parameters to estimate, through a Monte Carlo simulation model, the performance of scrapie detection in a commercial population. According to this model, whatever the number of tests performed, post mortem surveillance will have limited success in identifying infected herds. These data support the contention that scrapie eradication programs relying solely on post mortem testing in goats will probably fail. Considering the epidemiological and pathological similarities of scrapie in sheep and goats, the efficiency of scrapie surveillance in both species is likely to be similar.
Collapse
Affiliation(s)
- Fabien Corbière
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Caroline Lacroux
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Séverine Lugan
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Pierrette Costes
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Myriam Thomas
- ANSES, Laboratoire d’études et recherches caprines, Niort, France
| | - Isabelle Brémaud
- ANSES, Laboratoire d’études et recherches caprines, Niort, France
| | | | - Francis Barillet
- INRA, UR 631, Station d’Amélioration Génétique des Animaux, Castanet-Tolosan, France
| | - François Schelcher
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Olivier Andréoletti
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
- * E-mail:
| |
Collapse
|
27
|
Corbière F, Perrin-Chauvineau C, Lacroux C, Costes P, Thomas M, Brémaud I, Martin S, Lugan S, Chartier C, Schelcher F, Barillet F, Andreoletti O. PrP-associated resistance to scrapie in five highly infected goat herds. J Gen Virol 2012; 94:241-245. [PMID: 23100359 DOI: 10.1099/vir.0.047225-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PrP gene polymorphisms at codons 142 (I/M), 154 (R/H), 211 (R/Q), 222 (Q/K) and 240 (S/P) and their association with susceptibility to classical scrapie infection were investigated in five French goat herds displaying a high disease prevalence (>10%). On the basis of PrP(Sc) detection in the central nervous system and in various lymphoid tissues, 301 of 1343 goats were found to be scrapie infected. The statistical analyses indicated that while P(240) mutation had no direct impact on scrapie infection risk, the H(154), Q(211) and K(222) mutations were associated with high resistance to scrapie. The M(142) mutated allele was associated with a limited protection level against the disease. These results further reinforce the view that, like in sheep, the control and eradication of classical scrapie through the selection of certain PrP alleles could be envisaged in commercial goat population.
Collapse
Affiliation(s)
- Fabien Corbière
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | | | - Caroline Lacroux
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Pierrette Costes
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Myriam Thomas
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Isabelle Brémaud
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Samuel Martin
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Séverine Lugan
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Christophe Chartier
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - François Schelcher
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Francis Barillet
- INRA, UR 631, Station d'Amélioration Génétique des Animaux, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Olivier Andreoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| |
Collapse
|
28
|
Lacroux C, Bougard D, Litaise C, Simmons H, Corbiere F, Dernis D, Tardivel R, Morel N, Simon S, Lugan S, Costes P, Weisbecker JL, Schelcher F, Grassi J, Coste J, Andréoletti O. Impact of leucocyte depletion and prion reduction filters on TSE blood borne transmission. PLoS One 2012; 7:e42019. [PMID: 22860049 PMCID: PMC3409224 DOI: 10.1371/journal.pone.0042019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022] Open
Abstract
The identification in the UK of 4 v-CJD infected patients thought to be due to the use of transfused Red Blood Cell units prepared from blood of donors incubating v-CJD raised major concerns in transfusion medicine. The demonstration of leucocyte associated infectivity using various animal models of TSE infection led to the implementation of systematic leuco-depletion (LD) of Red Blood cells concentrates (RBCs) in a number of countries. In the same models, plasma also demonstrated a significant level of infectivity which raised questions on the impact of LD on the v-CJD transmission risk. The recent development of filters combining LD and the capture of non-leucocyte associated prion infectivity meant a comparison of the benefits of LD alone versus LD/prion-reduction filters (LD/PR) on blood-borne TSE transmission could be made. Due to the similarity of blood/plasma volumes to human transfusion medicine an experimental TSE sheep model was used to characterize the abilities of whole blood, RBCs, plasma and buffy-coat to transmit the disease through the transfusion route. The impact of a standard RBCs LD filter and of two different RBCs LD/PR prototype filters on the disease transmission was then measured. Homologous recipients transfused with whole-blood, buffy-coat and RBCs developed the disease with 100% efficiency. Conversely, plasma, when intravenously administered resulted in an inconstant infection of the recipients and no disease transmission was observed in sheep that received cryo-precipitated fraction or supernatant obtained from infectious plasma. Despite their high efficacy, LD and LD/PR filtration of the Red Blood Cells concentrate did not provide absolute protection from infection. These results support the view that leuco-depletion strongly mitigates the v-CJD blood borne transmission risk and provide information about the relative benefits of prion reduction filters.
Collapse
Affiliation(s)
- Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Daisy Bougard
- UPR CNRS 1142, R&D TransDiag, EFS Pyrénées –Méditerranée, Montpellier, France
| | - Claire Litaise
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Hugh Simmons
- AHVLA Weybridge, ASU, New Haw, Addlestone, Surrey, United Kingdom
| | - Fabien Corbiere
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | | | - Nathalie Morel
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Stephanie Simon
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | - François Schelcher
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Jacques Grassi
- CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France
| | - Joliette Coste
- UPR CNRS 1142, R&D TransDiag, EFS Pyrénées –Méditerranée, Montpellier, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
29
|
Andréoletti O, Litaise C, Simmons H, Corbière F, Lugan S, Costes P, Schelcher F, Vilette D, Grassi J, Lacroux C. Highly efficient prion transmission by blood transfusion. PLoS Pathog 2012; 8:e1002782. [PMID: 22737075 PMCID: PMC3380953 DOI: 10.1371/journal.ppat.1002782] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/16/2012] [Indexed: 11/19/2022] Open
Abstract
It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 103ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 103.6 ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation. In the UK, several v-CJD cases have been identified in patients that received blood or blood-derived products prepared from incubating asymptomatic donors. Since there is no screening test to identify infected donors, procedural risk reduction measures remain the only protection against v-CJD transfusion risk. These measures rely, in part, on the assumptions that (i) the level of infectivity in blood is low and (ii) the risk of blood borne transmission is directly correlated with the infectious titer of blood and blood products. Using a transmissible spongiform encephalopathy (TSE) animal model, we have provided evidence that despite a very low infectious titer in blood as measured by inoculation into brain, the transfusion of 0.2 mL of blood from asymptomatic infected donors is sufficient to transmit the disease with a 100% efficacy. We further demonstrated that this high efficiency of disease transmission is crucially dependant on the viability of the transfused white blood cells rather than on their infectious titer. These findings provide new insights into the pathogenesis of TSE diseases and require revision of some of the key assumptions of the v-CJD blood borne risk assessments.
Collapse
Affiliation(s)
- Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Garza MC, Fernández-Borges N, Bolea R, Badiola JJ, Castilla J, Monleón E. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie. PLoS One 2011; 6:e27525. [PMID: 22194786 PMCID: PMC3237407 DOI: 10.1371/journal.pone.0027525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Rosa Bolea
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eva Monleón
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Producció Animal, Universitat de Lleida, LLeida, Spain
- * E-mail:
| |
Collapse
|
31
|
Prionemia and leukocyte-platelet-associated infectivity in sheep transmissible spongiform encephalopathy models. J Virol 2011; 86:2056-66. [PMID: 22156536 DOI: 10.1128/jvi.06532-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.
Collapse
|
32
|
González L, Dagleish MP, Martin S, Finlayson J, Sisó S, Eaton SL, Goldmann W, Witz J, Hamilton S, Stewart P, Pang Y, Steele P, Reid HW, Chianini F, Jeffrey M. Factors influencing temporal variation of scrapie incidence within a closed Suffolk sheep flock. J Gen Virol 2011; 93:203-211. [PMID: 21918004 DOI: 10.1099/vir.0.034652-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several studies have shown that transmission of natural scrapie can occur vertically and horizontally, and that variations in scrapie incidence between and within infected flocks are mostly due to differences in the proportion of sheep with susceptible and resistant PRNP genotypes. This report presents the results of a 12-year period of scrapie monitoring in a closed flock of Suffolk sheep, in which only animals of the ARQ/ARQ genotype developed disease. Among a total of 120 of these, scrapie attack rates varied between birth cohorts from 62.5 % (5/8) to 100 % (9/9), and the incidence of clinical disease among infected sheep from 88.9 % (8/9) to 100 % (in five birth cohorts). Susceptible sheep born to scrapie-infected ewes showed a slightly higher risk of becoming infected (97.2 %), produced earlier biopsy-positive results (mean 354 days) and developed disease at a younger age (median 736 days) than those born to non-infected dams (80.3 %, 451 and 782 days, respectively). Taken together, this was interpreted as evidence of maternal transmission. However, it was also observed that, for the birth cohorts with the highest incidence of scrapie (90-100 %), sheep born to infected and non-infected dams had a similar risk of developing scrapie (97.1 and 95.3 %, respectively). Compared with moderate-attack-rate cohorts (62.5-66.7 %), high-incidence cohorts had greater numbers of susceptible lambs born to infected ewes, suggesting that increased rates of horizontal transmission in these cohorts could have been due to high levels of environmental contamination caused by infected placentas.
Collapse
Affiliation(s)
- Lorenzo González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Stuart Martin
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Jeanie Finlayson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Sílvia Sisó
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Samantha L Eaton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Wilfred Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janey Witz
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Paula Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yvonne Pang
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Hugh W Reid
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| |
Collapse
|
33
|
Wemheuer WM, Benestad SL, Wrede A, Wemheuer WE, Brenig B, Bratberg B, Schulz-Schaeffer WJ. PrPSc spreading patterns in the brain of sheep linked to different prion types. Vet Res 2011; 42:32. [PMID: 21324114 PMCID: PMC3050706 DOI: 10.1186/1297-9716-42-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/15/2011] [Indexed: 11/17/2022] Open
Abstract
Scrapie in sheep and goats has been known for more than 250 years and belongs nowadays to the so-called prion diseases that also include e.g. bovine spongiform encephalopathy in cattle (BSE) and Creutzfeldt-Jakob disease in humans. According to the prion hypothesis, the pathological isoform (PrPSc) of the cellular prion protein (PrPc) comprises the essential, if not exclusive, component of the transmissible agent. Currently, two types of scrapie disease are known - classical and atypical/Nor98 scrapie. In the present study we examine 24 cases of classical and 25 cases of atypical/Nor98 scrapie with the sensitive PET blot method and validate the results with conventional immunohistochemistry. The sequential detection of PrPSc aggregates in the CNS of classical scrapie sheep implies that after neuroinvasion a spread from spinal cord and obex to the cerebellum, diencephalon and frontal cortex via the rostral brainstem takes place. We categorize the spread of PrPSc into four stages: the CNS entry stage, the brainstem stage, the cruciate sulcus stage and finally the basal ganglia stage. Such a sequential development of PrPSc was not detectable upon analysis of the present atypical/Nor98 scrapie cases. PrPSc distribution in one case of atypical/Nor98 scrapie in a presumably early disease phase suggests that the spread of PrPSc aggregates starts in the di- or telencephalon. In addition to the spontaneous generation of PrPSc, an uptake of the infectious agent into the brain, that bypasses the brainstem and starts its accumulation in the thalamus, needs to be taken into consideration for atypical/Nor98 scrapie.
Collapse
Affiliation(s)
- Wiebke M Wemheuer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Center, Georg-August University, Robert-Koch Str, 40, 37075 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Atypical/Nor98 scrapie infectivity in sheep peripheral tissues. PLoS Pathog 2011; 7:e1001285. [PMID: 21347349 PMCID: PMC3037359 DOI: 10.1371/journal.ppat.1001285] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed. Following the bovine spongiform encephalopathy (BSE) crisis and the identification of its zoonotic properties, a sanitary policy has been implemented based on both eradication of transmissible spongiform encephalopathies (TSE) in food-producing animals and exclusion of known infectious materials from the food chain. Atypical/Nor98 scrapie is a prion disease of small ruminants identified worldwide. Currently it represents a significant part of the TSE cases detected in Europe. The restricted tissue distribution of Atypical/Nor98 scrapie agent in its natural host and the low detected prevalence of secondary cases in affected flocks meant that it is believed to be a poorly transmissible disease. This has led to the view that Atypical/Nor98 scrapie is a spontaneous disorder for which human and animal exposure risk remains low. In this study we demonstrate that in affected individuals, Atypical/Nor98 scrapie agent can disseminate in lymphoid tissues, nerves, and muscles, challenging the idea that it is a brain-restricted infectious agent. Evidence for the deficiencies in the current methods applied for monitoring Atypical/Nor98 scrapie is provided that would indicate an underestimation in the prevalence in the general population and in the affected flocks. These elements challenge the hypothesis on the biology of this recently identified TSE agent.
Collapse
|
35
|
O'Rourke KI, Zhuang D, Truscott TC, Yan H, Schneider DA. Sparse PrP(Sc) accumulation in the placentas of goats with naturally acquired scrapie. BMC Vet Res 2011; 7:7. [PMID: 21284878 PMCID: PMC3041672 DOI: 10.1186/1746-6148-7-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Domestic goats (Capra hircus) are a natural and experimental host of scrapie and bovine spongiform encephalopathy, the transmissible spongiform encephalopathies (TSE) of sheep and cattle. Goats are also susceptible to experimental infection with the agents of TSEs of deer and elk (chronic wasting disease) and humans (Creutzfeldt Jakob disease). Distribution of PrPSc, the abnormal prion protein, is similar in the tissues of scrapie-infected sheep and goats but no data are available on the potential shedding of the agent through the placenta, the presumed route of transmission of ovine scrapie. We describe the sparse accumulation of PrPSc in the placentas of goats with naturally acquired classical scrapie in comparison to field cases of classical ovine scrapie. Results PrPSc was detected in the shed placentas from a sample of U.S. goats with naturally occurring scrapie, diagnosed by antemortem lymphoid tissue biopsy or identified as high risk progeny of infected dams. PrPSc accumulation patterns in the intact placentome and western blot banding was similar in the caprine and ovine samples. However, levels of PrPSc estimated from ELISA and immunohistochemistry assays were generally lower in goats than in sheep, although wide variation was noted in both species. Conclusions PrPSc accumulates in the shed placentas of goats with naturally acquired scrapie. Although these levels were low in most caprine samples, the caprine placenta may contribute to prion contamination of kidding facilities and transmission to co-housed sheep or goats.
Collapse
Affiliation(s)
- Katherine I O'Rourke
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
36
|
Gough KC, Maddison BC. Prion transmission: prion excretion and occurrence in the environment. Prion 2010; 4:275-82. [PMID: 20948292 DOI: 10.4161/pri.4.4.13678] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrP(Sc) and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of "uptake of prion from the environment--widespread in vivo prion dissemination--prion excretion--prion persistence in the environment" is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK.
| | | |
Collapse
|
37
|
Lezmi S, Baron TGM, Bencsik AA. Is the presence of abnormal prion protein in the renal glomeruli of feline species presenting with FSE authentic? BMC Vet Res 2010; 6:41. [PMID: 20684771 PMCID: PMC2923130 DOI: 10.1186/1746-6148-6-41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/04/2010] [Indexed: 11/23/2022] Open
Abstract
In a recent paper written by Hilbe et al (BMC vet res, 2009), the nature and specificity of the prion protein deposition in the kidney of feline species affected with feline spongiform encephalopathy (FSE) were clearly considered doubtful. This article was brought to our attention because we published several years ago an immunodetection of abnormal prion protein in the kidney of a cheetah affected with FSE. At this time we were convinced of its specificity but without having all the possibilities to demonstrate it. As previously published by another group, the presence of abnormal prion protein in some renal glomeruli in domestic cats affected with FSE is indeed generally considered as doubtful mainly because of low intensity detected in this organ and because control kidneys from safe animals present also a weak prion immunolabelling. Here we come back on these studies and thought it would be helpful to relay our last data to the readers of BMC Vet res for future reference on this subject. Here we come back on our material as it is possible to study and demonstrate the specificity of prion immunodetection using the PET-Blot method (Paraffin Embedded Tissue - Blot). It is admitted that this method allows detecting the Proteinase K (PK) resistant form of the abnormal prion protein (PrPres) without any confusion with unspecific immunoreaction. We re-analysed the kidney tissue versus adrenal gland and brain samples from the same cheetah affected with TSE using this PET-Blot method. The PET-Blot analysis revealed specific PrPres detection within the brain, adrenal gland and some glomeruli of the kidney, with a complete identicalness compared to our previous detection using immunohistochemistry. In conclusion, these new data enable us to confirm with assurance the presence of specific abnormal prion protein in the adrenal gland and in the kidney of the cheetah affected with FSE. It also emphasizes the usefulness for the re-examination of any available tissue blocks with the PET-Blot method as a sensitive complementary tool in case of doubtful PrP IHC results.
Collapse
|
38
|
Santucciu C, Maestrale C, Madau L, Attene S, Cancedda MG, Demontis F, Tilocca MG, Saba M, Macciocu S, Carta A, Ligios C. Association of N176K and L141F dimorphisms of the PRNP gene with lack of pathological prion protein deposition in placentas of naturally and experimentally scrapie-affected ARQ/ARQ sheep. J Gen Virol 2010; 91:2402-7. [PMID: 20463148 DOI: 10.1099/vir.0.021188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is important in the horizontal transmission of the aetiological agent in scrapie-affected sheep. It has been demonstrated that the placentas of fetuses carrying the dimorphism Q171R of the PRNP gene is resistant to pathological prion protein (PrP(Sc)) accumulation in the placenta. To test whether other PRNP polymorphisms are associated with a lack of placental PrP(Sc) deposition, we carried out a study on 26 naturally and 11 experimentally scrapie-affected ewes with or without clinical signs. PrP(Sc) was detected in the placenta of ARQ/ARQ(wild type) fetuses by Western blot and immunohistochemical analysis, but not in ARQN(176)/ARQK(176) or, as expected, ARQ/ARR samples. Furthermore, three of four AL(141)RQ/AF(141)RQ placentas were also PrP(Sc) negative, suggesting that the dimorphism at codon 141 may also mediate placental deposition of PrP(Sc). This finding demonstrates for the first time that fetal PRNP polymorphisms, other than those at codon 171, are associated with the lack of placental deposition of PrP(Sc).
Collapse
Affiliation(s)
- Cinzia Santucciu
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wemheuer WM, Benestad SL, Wrede A, Wemheuer WE, Brenig B, Bratberg B, Schulz-Schaeffer WJ. Detection of classical and atypical/Nor98 scrapie by the paraffin-embedded tissue blot method. Vet Rec 2009; 164:677-81. [PMID: 19483208 DOI: 10.1136/vr.164.22.677] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The paraffin-embedded tissue (PET) blot method was used to investigate sections of the central nervous system and lymphatic tissues from 24 cases of classical scrapie and 25 cases of atypical/Nor98 scrapie in sheep and four healthy control sheep. The PET blot detected deposits of PrP(Sc) in the brain tissue of all 49 sheep with scrapie but no PrP(Sc) labelling could be detected in the control sheep. By contrast, not all the atypical/Nor98 scrapie cases were detectable by immunohistochemistry. The high sensitivity of the PET blot method made it possible to observe that in some atypical/Nor98 cases, deposits of PrP(Sc) may be restricted to supratentorial brain structures and that the diagnosis may be missed when only testing the obex area, where deposits are common in classical scrapie, and the cerebellar structures, where deposits are considered to be common in atypical/Nor98 cases.
Collapse
Affiliation(s)
- W M Wemheuer
- Prion and Dementia Research Unit, Department of Neuropathology, University Medical Centre, Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants Scientific opinion of the Panel on Biological Hazards. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Risks of transmitting ruminant spongiform encephalopathies (prion diseases) by semen and embryo transfer techniques. Theriogenology 2008; 70:725-45. [DOI: 10.1016/j.theriogenology.2008.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/21/2022]
|
42
|
Sarradin P, Melo S, Barc C, Lecomte C, Andréoletti O, Lantier F, Dacheux JL, Gatti JL. Semen from scrapie-infected rams does not transmit prion infection to transgenic mice. Reproduction 2008; 135:415-8. [PMID: 18299435 DOI: 10.1530/rep-07-0388] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Scrapie is the most common transmissible spongiform encephalopathy (TSE) in livestock. Natural contamination in sheep flocks is presumed to occur by maternal transmission to offspring. However, horizontal prion transmission from animal to animal exists and may be significant in sustaining and spreading contagion in the field. Artificial insemination is widely used in modern farming, and as large amounts of prion protein have been found in sheep sperm membrane, epididymal fluid and seminal plasma, horizontal transmission by this route was hypothesized since no clear information has been obtained on possible sexual transmission of TSE. We therefore tested the contamination levels of semen from scrapie-infected rams at different stages of incubation, including the clinical phase of the disease. We report here that under our experimental conditions ram semen did not transmit infectivity to scrapie-susceptible transgenic mice overexpressing the V(136)R(154)Q(171) allele of the sheep prion (PRNP) gene. These results suggest that artificial insemination and natural mating have a very low or negligible potential for the transmission of scrapie in sheep flocks.
Collapse
Affiliation(s)
- Pierre Sarradin
- INRA, UR1282, Infectiologie Animale et Santé Publique (IASP), Nouzilly F-37380, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Konold T, Moore SJ, Bellworthy SJ, Simmons HA. Evidence of scrapie transmission via milk. BMC Vet Res 2008; 4:14. [PMID: 18397513 PMCID: PMC2374774 DOI: 10.1186/1746-6148-4-14] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 04/08/2008] [Indexed: 11/10/2022] Open
Abstract
Background The risk of scrapie infection increases with increased duration and proximity of contact between sheep at lambing. Scrapie infectivity has not been detected in milk but cellular prion protein, the precursor of disease-associated prion protein PrPd, has been found in milk from ruminants. To determine whether milk is able to transmit scrapie, 18 lambs with a prion protein genotype associated with high susceptibility to scrapie (VRQ/VRQ) were fed milk from twelve scrapie-affected ewes of the same genotype, and 15 VRQ/VRQ sheep reared on scrapie-free dams served as controls. Results Three lambs fed milk from scrapie-affected ewes were culled due to intercurrent diseases at 43, 44 and 105 days of age respectively, and PrPd was detected in the distal ileum of the first two lambs, whilst PrPd was not found in lymphoreticular tissues in the third lamb. A control lamb, housed in a separate pen and culled at 38 days of age, was also negative for PrPd in a range of tissues. Samples of recto-anal mucosa associated lymphoid tissue collected from the remaining 15 live lambs at seven months of age (between five to seven months after mixing) were positive for PrPd in the scrapie milk recipients, whereas PrPd was not detected in the remaining 14 controls at that time. A subsequent sample collected from control lambs revealed PrPd accumulation in two of five lambs eight months after mixing with scrapie milk recipients suggestive of an early stage of infection via lateral transmission. By contrast, the control sheep housed in the same building but not mixed with the scrapie milk recipients were still negative for PrPd. Conclusion The presence of PrPd in distal ileum and rectal mucosa indicates transmission of scrapie from ewe to lamb via milk (or colostrum) although it is not yet clear if such cases would go on to develop clinical disease. The high level of infection in scrapie-milk recipients revealed by rectal mucosal testing at approximately seven months of age may be enhanced or supplemented by intra-recipient infection as these lambs were mixed together after feeding with milk from scrapie-affected ewes and we also observed lateral transmission from these animals to lambs weaned from scrapie-free ewes.
Collapse
Affiliation(s)
- Timm Konold
- Neuropathology, Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | |
Collapse
|
44
|
|
45
|
Effects of nutrition and genotype on prion protein (PrPC) gene expression in the fetal and maternal sheep placenta. Placenta 2008; 29:422-8. [PMID: 18358531 DOI: 10.1016/j.placenta.2008.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/24/2008] [Accepted: 02/09/2008] [Indexed: 11/21/2022]
Abstract
For placental transmission of scrapie to occur, the normal cellular prion protein (PrPC) must be converted to an abnormal infectious form known as PrPSc. PrPC genotype influences susceptibility to contracting scrapie, but we still do not understand whether genotype or expression levels of PrPC are important in transmission of scrapie. Some evidence exists that nutrition affects expression levels of PrPC. Thus, we evaluated the effects of genotype and nutrition on PrPC mRNA and protein expression in adolescent ewes fed at control (100% of National Research Council [NRC] requirements) or restricted (60% of NRC) levels of diet intake during two periods of pregnancy (days 50-90 and days 90-130)]. Gravid uteri (n=50) from singleton pregnancies were collected at day 130, and placentomes were either separated into caruncular (CAR; maternal) or cotyledonary (COT; fetal) placenta and snap-frozen for PrPC mRNA expression or perfusion fixed for PrPC protein expression. PrPC genotypes were determined (codons 136 and 171) using SNP assay. There were no genotype effects on PrPC mRNA expression in CAR or on PrPC protein expression in either CAR or COT, but PrPC mRNA expression in COT was greater (P<0.02) when codon 136 was homozygous for alanine. Some PrPC protein-positive cells were found in the epithelium of CAR, but most were found in trophoblast binucleate and mononucleate cells of COT. In CAR, from days 90 to 130, PrPC protein abundance was greater (P=0.003) in diet-restricted ewes than in control ewes, but was less uniformly distributed (P<0.007). Additionally, in COT, from days 90 to 130, PrPC protein was less uniformly distributed (P<0.01) in diet-restricted ewes. The localized increase in PrPC protein expression, found in ewes diet-restricted late in pregnancy, may suggest a protective role for PrPC in placental biology. Further study is needed to evaluate whether nutrition, PrPC genotype, and PrPC expression levels influence placental transmission of scrapie.
Collapse
|
46
|
van Keulen LJM, Bossers A, van Zijderveld F. TSE pathogenesis in cattle and sheep. Vet Res 2008; 39:24. [PMID: 18258167 DOI: 10.1051/vetres:2007061] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022] Open
Abstract
Many studies have been undertaken in rodents to study the pathogenesis of transmissible spongiform encephalopathies (TSE). Only a few studies have focused on the pathogenesis of bovine spongiform encephalopathy (BSE) and scrapie in their natural hosts. In this review, we summarize the most recent insights into the pathogenesis of BSE and scrapie starting from the initial uptake of TSE agents and crossing of the gut epithelium. Following replication in the gut-associated lymphoid tissues (GALT), TSE agents spread to the enteric nervous system (ENS) of the gut. Infection is then carried through the efferent fibers of the post-ganglionic neurons of the parasympathetic and sympathetic nervous system to the pre-ganglionic neurons in the medulla oblongata of the brain and the thoracic segments of the spinal cord. The differences between the pathogenesis of BSE in cattle and scrapie in sheep are discussed as well as the possible existence of additional pathogenetic routes.
Collapse
Affiliation(s)
- Lucien J M van Keulen
- Department of Bacteriology and TSE's, Central Institute for animal Disease Control , Wageningen University and Research Centre, 8203 AA Lelystad, the Netherlands.
| | | | | |
Collapse
|