1
|
Zhou L, Song J, Sun Z, Wang M, Sun J, Li Y, Zhu R, Jiao L, Zhuang G, Wang N, Hu H, Zhang G, Wu Y. Development of monoclonal antibodies for ASFV K205R protein and precise mapping of linear antigenic epitopes. Int J Biol Macromol 2025; 296:139701. [PMID: 39793793 DOI: 10.1016/j.ijbiomac.2025.139701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
African swine fever virus (ASFV) is a complex DNA virus belonging to the family Asfarviridae. The outbreak of African swine fever (ASF) has caused huge economic losses to the pig farming industry. The K205R protein is a key target for detecting ASFV antibodies and represents an important antigen for early serologic diagnosis. In this study, we obtained soluble K205R protein in the E. coli expression system. Furthermore, we prepared monoclonal antibodies (mAbs) 6F5 and 6E2 using cell fusion technique, and verified their specific recognition ability for recombinant ASFV K205R protein expressed in prokaryotic and eukaryotic cells using protein immunoblotting and indirect immunofluorescence. Using the truncated overlapping peptide method, 6F5 and 6E2 specifically recognized 160PEIQAILDEQF170 and 176IERLHAEG183 of K205R protein, respectively. Homology and structural analyses showed that the two epitopes are situated on the surface of the K205R protein and exhibit high conservation among ASFV epidemic strains. The identification of the conserved epitopes will help to further investigate the structural biology and function of K205R. Our study contributes to a better understanding of the ASFV K205R antigenic region and provides a basis for serological diagnosis and vaccine development.
Collapse
Affiliation(s)
- Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxing Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanze Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruiqin Zhu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Liuyang Jiao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Na Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Hu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Yang Y, Li Y, Wang Z, Tong M, Zhu P, Deng J, Li Z, Liu K, Li B, Shao D, Zhou Z, Qiu Y, Ma Z, Wei J. p54-Fc-Labeled Gold Nanoparticle-Based Lateral Flow Strip-Assisted Portable Devices for Rapid and Quantitative Point-of-Care Detection of ASFV Antibodies. BIOSENSORS 2025; 15:25. [PMID: 39852075 PMCID: PMC11763327 DOI: 10.3390/bios15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle. p54 is an important structural protein of African swine fever, and an ideal protein for serotype diagnosis. Gold nanoparticles are attached to the ASFV p54-Fc fusion protein, and the ASFV-specific antigen p54 and Staphylococcus aureus protein A (SPA) are labeled on a nitrocellulose membrane, at positions T and C, respectively. We developed a SPA double sandwich IC test strip, and assessed its feasibility using ASFV p54 and p54-Fc fusion proteins as antigens. ASFV p54 and p54-Fc fusion proteins were expressed and purified. A sandwich cross-flow detection method for p54, which is the primary structural protein of ASFV, was established, using colloidal gold conjugation. Our method can detect ASFV antibodies in field serum samples in about 15 min using a portable colloidal gold detector, demonstrating high specificity and sensitivity (1:320), and the coincidence rate was 98% using a commercial ELISA kit. The dilution of the serum sample can be determined by substituting the absorbance (T-line) interpreted by portable devices into the calibration curve function formula of an African swine fever virus standard serum. In summary, our method is rapid, cost-effective, precise, and highly selective. Additionally, it introduces a new approach for constructing IC test strips using SPA protein without antibody preparation, making it a reliable on-site antibody test for ASFV.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Ziyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Minglong Tong
- Yixing Customs, Yixing 214200, China; (M.T.); (P.Z.)
| | - Pengcheng Zhu
- Yixing Customs, Yixing 214200, China; (M.T.); (P.Z.)
- Nanjing Customs, Nanjing 210001, China;
| | | | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Zhongren Zhou
- Shanghai Quicking Biotech Co., Shanghai 201314, China;
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| |
Collapse
|
3
|
Song J, Wang M, Zhou L, Tian P, Sun J, Sun Z, Guo C, Wu Y, Zhang G. A novel conserved B-cell epitope in pB602L of African swine fever virus. Appl Microbiol Biotechnol 2024; 108:78. [PMID: 38194141 PMCID: PMC10776737 DOI: 10.1007/s00253-023-12921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
African swine fever virus (ASFV) is a complex DNA virus and the only member of the Asfarviridae family. It causes high mortality and severe economic losses in pigs. The ASFV pB602L protein plays a key role in virus assembly and functions as a molecular chaperone of the major capsid protein p72. In addition, pB602L is an important target for the development of diagnostic tools for African swine fever (ASF) because it is a highly immunogenic antigen against ASFV. In this study, we expressed and purified ASFV pB602L and validated its immunogenicity in serum from naturally infected pigs with ASFV. Furthermore, we successfully generated an IgG2a κ subclass monoclonal antibody (mAb 7E7) against pB602L using hybridoma technology. Using western blot and immunofluorescence assays, mAb 7E7 specifically recognized the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV pB602L protein in vitro. The 474SKENLTPDE482 epitope in the ASFV pB602L C-terminus was identified as the minimal linear epitope for mAb 7E7 binding, with dozens of truncated pB602l fragments characterized by western blot assay. We also showed that this antigenic epitope sequence has a high conservation and antigenic index. Our study contributes to improved vaccine and antiviral development and provides new insights into the serologic diagnosis of ASF. KEY POINTS: • We developed a monoclonal antibody against ASFV pB602L, which can specifically recognize the ASFV Pig/HLJ/2018/ strain. • This study found one novel conserved B-cell epitope 474SKENLTPDE482. • In the 3D structure, 474SKENLTPDE482 is exposed on the surface of ASFV pB602L, forming a curved linear structure.
Collapse
Affiliation(s)
- Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyun Guo
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Agriculture Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhang SJ, Niu B, Liu SM, Bu ZG, Hua RH. Identification of linear B cell epitopes on the E146L protein of African swine fever virus with monoclonal antibodies. Virol J 2024; 21:286. [PMID: 39533386 PMCID: PMC11558817 DOI: 10.1186/s12985-024-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The outbreak and spread of African swine fever virus (ASFV) have caused considerable economic losses to the pig industry worldwide. Currently, to promote the development of effective ASF vaccines, especially subunit vaccines, more antigenic protein targets are urgently needed. In this work, six transmembrane proteins (I329L, E146L, C257L, EP153R, I177L, and F165R) were expressed in mammalian cell lines and screened with pig anti-ASFV serum. It was found that the E146L protein was an immunodominant protein antigen among the six selected proteins. Moreover, the E146L protein induced antibody responses in all immunized pigs. To gain insight into the antigenic characteristics of the E146L protein, three monoclonal antibodies (mAbs; 12H12, 15G1, and 15H10) were generated by immunizing BALB/c mice with the purified E146L protein. The epitopes of the mAbs were further finely mapped through a peptide fusion protein expression strategy. Finally, the epitopes of the mAbs were identified as 48PDESSIAYMRFRN61 of the mAb 12H12, 138TLTGLQRII146 of the mAb 15G1, and 30GWSPFKYSKGNT41 of the mAb 15H10. Furthermore, the epitope of mAb 15H10 was validated as the immunodominant epitope with ASFV-infected pig sera. The chemically synthesized mAb 15H10 epitope peptide (EP1) exhibited the most extensive immunoreactivity with artificially or naturally ASFV-infected pig sera. The epitope 15H10 is located on the surface of the E146L protein and is highly conserved. These findings provide insight into the structure and function of the E146L protein of ASFV.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Bei Niu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shi-Meng Liu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
5
|
Gao C, Huang Z, You J, Zhang W, Tang S, Gong L, Zhang G. Identification of a novel B cell epitope of ASFV pCP312R recognized using a monoclonal antibody. Vet Microbiol 2024; 298:110247. [PMID: 39241537 DOI: 10.1016/j.vetmic.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
African swine fever (ASF) is an acute and devastating infectious disease that has caused significant economic losses to the global pig industry since it was first discovered and reported. African swine fever virus (ASFV) has a large genome encoding more than 160 proteins. The biological characteristics and functions of its various proteins still remain unclear; therefore, the efficacy of specific drugs and vaccines against ASFV remains limited. ASFV pCP312R is an important ASFV protein that exhibits good immunogenicity. In this study, five monoclonal antibodies (mAbs) targeting pCP312R were successfully prepared. Confocal microscopy observations showed that pCP312R was located in the viral factory at the late stage of ASFV infection, and was co-located with p30 and pK205R. These results suggested that pCP312R might be involved in ASFV assembly. Neutralization tests revealed that pCP312R mAb could not neutralize ASFV. Next, we identified the B cell epitopes of one of the most immunogenic mAbs and found a novel epitope of pCP312R, 72TIPPSTDEEVIR83, which was conserved in different pCP312R strains. Overall, five ASFV pCP312R monoclonal antibodies were prepared, and the antigenic epitope of one strain was identified in this study, laying a foundation for further studies on ASFV pCP312R function and facilitating serological diagnosis vaccine development for ASFV.
Collapse
Affiliation(s)
- Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in the Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in the Northern Region, Shaoguan University, Shaoguan, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Le AD, Nguyen GV, Vu AT, Hoang PT, Le TT, Nguyen HT, Nguyen HTT, Lai HLT, Bui DAT, Huynh LMT, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen LT, Shi J. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses 2024; 16:1326. [PMID: 39205300 PMCID: PMC11359042 DOI: 10.3390/v16081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Giap Van Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Trang Thi Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huyen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hang Thu Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huong Lan Thi Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Dao Anh Tran Bui
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Le My Thi Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| |
Collapse
|
7
|
Portugal R, Goldswain H, Moore R, Tully M, Harris K, Corla A, Flannery J, Dixon LK, Netherton CL. Six adenoviral vectored African swine fever virus genes protect against fatal disease caused by genotype I challenge. J Virol 2024; 98:e0062224. [PMID: 38953377 PMCID: PMC11264932 DOI: 10.1128/jvi.00622-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.
Collapse
Affiliation(s)
| | | | - Rebecca Moore
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Matthew Tully
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katie Harris
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Amanda Corla
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - John Flannery
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
8
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Chen Q, Liu L, Guo S, Li L, Yu Y, Liu Z, Tan C, Chen H, Wang X. Characterization of the monoclonal antibody and the immunodominant B-cell epitope of African swine fever virus pA104R by using mouse model. Microbiol Spectr 2024; 12:e0140123. [PMID: 38305163 PMCID: PMC10913377 DOI: 10.1128/spectrum.01401-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The African swine fever virus (ASFV) structural protein pA104R is the only histone-like protein encoded by eukaryotic viruses. pA104R is an essential DNA-binding protein required for DNA replication and genome packaging of ASFV, which are vital for pathogen survival and proliferation. pA104R is an important target molecule for diagnosing, treating, and immune prevention of ASFV. This study characterized monoclonal antibodies (mAbs) against pA104R and found them to recognize natural pA104R in ASFV strains with different genotypes, showing high conservation. Confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Furthermore, the pA104R protein functions through the polar interactions between the binding amino acid sites; however, these interactions may be blocked by the recognition of generated mAbs. Characterizing the immunodominant B-cell epitope of the ASFV critical proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and vaccine candidate targets.IMPORTANCEAfrican swine fever (ASF) is a highly pathogenic, lethal, and contagious viral disease affecting domestic pigs and wild boars. As no effective vaccine or other treatments have been developed, the control of African swine fever virus (ASFV) relies heavily on virus detection and diagnosis. A potential serological target is the structural protein pA104R. However, the molecular basis of pA104R antigenicity remains unclear, and a specific monoclonal antibody (mAb) against this protein is still unavailable. In this study, mAbs against pA104R were characterized and found to recognize natural pA104R in ASFV strains with different genotypes. In addition, confirmation analyses of pA104R epitopes using mAbs indicated the presence of immunodominant B-cell epitopes, and further characterization showed the high antigenic index and surface accessibility coefficients of the identified epitope. Characteristics of the immunodominant B-cell epitope of ASFV proteins, such as pA104R, may contribute to developing sensitive diagnostic tools and identifying vaccine candidate targets.
Collapse
Affiliation(s)
- Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yifeng Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
10
|
Urbano AC, Ferreira N, Jordão N, Boinas F, Martins C, Ferreira F. Targeted mutagenesis of the β-strand DNA binding region of African swine fever virus histone-like protein (pA104R) impairs DNA-binding activity and antibody recognition. Antiviral Res 2024; 221:105784. [PMID: 38103699 DOI: 10.1016/j.antiviral.2023.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
African Swine Fever (ASF) is a highly contagious disease caused by a double-stranded DNA virus (ASFV). Despite significant advances made over the last decade, issues such as residual virulence and absence of differentiating infected from vaccinated animals (DIVA) capacity remain an obstacle in the development of live attenuated vaccines (LAVs) against ASFV. It is, therefore, necessary to identify novel strategies to improve vaccine safety, by rational mutagenesis of virulence associated genes and generation of DIVA markers. ASFV encodes a HU (histone-like protein from E. coli strain U93) homolog protein, pA104R, which is involved in viral genome assembly and host immune recognition. A phylogenetic analysis revealed that pA104R is highly conserved among ASFV isolates, suggesting that it can be a good target for vaccine design. Thus, we selectively mutated the β-strand DNA binding region (BDR) of pA104R to attenuate its enzymatic activity, and identified and mutated several B-cell epitopes present in pA104R to generate a negative marker. Residues K64, K66, and R69 in the BDR were identified as relevant for pA104R activity, with double mutation of the first two showing additive attenuation. pA104R-reactive IgM and IgG epitopes were also identified in the bottom of the BDR, with selective mutagenesis drastically reducing antibody recognition and, when combined with mutations in the arm of the BDR, leading to a further reduction of DNA-binding activity. Interestingly, the immunodominant pA104R-reactive IgG epitope was mainly recognized by IgG1 suggesting that pA104R induces a dominant Th2 response. In sum, the rational mutagenesis can reduce pA104R-DNA binding activity and immune reactivity, providing a rationale for the development of an ASFV pA104R-based DIVA vaccine.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Nicolas Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Nuno Jordão
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Fernando Boinas
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carlos Martins
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Fernando Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
11
|
Huang C, Cao C, Xu Z, Lin Y, Wu J, Weng Q, Liu Z, Jin Y, Chen P, Hua Q. A blocking ELISA based on virus-like nanoparticles chimerized with an antigenic epitope of ASFV P54 for detecting ASFV antibodies. Sci Rep 2023; 13:19928. [PMID: 37968284 PMCID: PMC10651890 DOI: 10.1038/s41598-023-47068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
African swine fever virus (ASFV) is a highly lethal pathogen of domestic and wild pigs. Due to no vaccines or drugs available, early accurate diagnosis and eradication of infected animals are the most important measures for ASFV prevention and control. Bluetongue virus (BTV) core-like particles (CLPs) are non-infectious hollow nanoparticles assembled from the BTV VP3 and VP7 proteins, which could be used as a platform for presenting foreign epitopes. In this study, the secondary structure of BTV VP7 protein was analyzed and predicted using the IEDB Analysis resource. Based on the prediction results of the VP7 protein, the chimeric CLPs with an ASFV P54 epitope were successfully prepared through the BAC-to-BAC baculovirus expression system and sucrose gradient centrifugation. Based on the chimeric CLPs and mAb 2E4 against AFSV P54 epitope, a blocking ELISA for detecting AFSV antibodies was established, and its reaction conditions were optimized. Through comprehensive evaluation of the method, the results showed the chimeric CLPs-based blocking ELISA displayed the best detection performance, with an AUC of 0.9961, a sensitivity of 97.65%, and a specificity of 95.24% in ROC analysis. Compared with western blot and a commercial c-ELISA for detecting anti-ASFV antibodies, this method had an excellent agreement of 96.35% (kappa value = 0.911) and 97.76% (kappa value = 0.946) with the other tests, respectively. This ELISA also had high repeatability, with CV < 10%, and no cross-reaction with the serum antibodies against other swine viruses or Orbivirus. In brief, this was the first report on developing a blocking ELISA based on virus-like nanoparticles chimerized with an antigenic epitope of ASFV P54 for serological diagnosis of ASFV.
Collapse
Affiliation(s)
- Chaohua Huang
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Chenfu Cao
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yanxing Lin
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Jiang Wu
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Qiaoyu Weng
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Ye Jin
- Hu Nan Project Bioscience LTD, Changsha, 410137, People's Republic of China
| | - Peng Chen
- Shenzhen Biolove Technology CO., LTD., Shenzhen, 518110, People's Republic of China
| | - Qunyi Hua
- Animal and Plant Inspection and Quarantine Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China.
| |
Collapse
|
12
|
Luong HQ, Lai HTL, Truong LQ, Nguyen TN, Vu HD, Nguyen HT, Nguyen LT, Pham TH, McVey DS, Vu HLX. Comparative Analysis of Swine Antibody Responses following Vaccination with Live-Attenuated and Killed African Swine Fever Virus Vaccines. Vaccines (Basel) 2023; 11:1687. [PMID: 38006019 PMCID: PMC10674706 DOI: 10.3390/vaccines11111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection.
Collapse
Affiliation(s)
- Hung Q. Luong
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Huong T. L. Lai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lam Q. Truong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - The N. Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hanh D. Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Hoa T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lan T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Trang H. Pham
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - D. Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
13
|
Tng PYL, Al-Adwani L, Pauletto E, Hui JYK, Netherton CL. Capsid-Specific Antibody Responses of Domestic Pigs Immunized with Low-Virulent African Swine Fever Virus. Vaccines (Basel) 2023; 11:1577. [PMID: 37896980 PMCID: PMC10611099 DOI: 10.3390/vaccines11101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever (ASF) is a lethal disease in pigs that has grave socio-economic implications worldwide. For the development of vaccines against the African swine fever virus (ASFV), immunogenic antigens that generate protective immune responses need to be identified. There are over 150 viral proteins-many of which are uncharacterized-and humoral immunity to ASFV has not been closely examined. To profile antigen-specific antibody responses, we developed luciferase-linked antibody capture assays (LACAs) for a panel of ASFV capsid proteins and screened sera from inbred and outbred animals that were previously immunized with low-virulent ASFV before challenge with virulent ASFV. Antibodies to B646L/p72, D117L/p17, M1249L, and E120R/p14.5 were detected in this study; however, we were unable to detect B438L-specific antibodies. Anti-B646L/p72 and B602L antibodies were associated with recovery from disease after challenges with genotype I OUR T88/1 but not genotype II Georgia 2007/1. Antibody responses against M1249L and E120R/p14.5 were observed in animals with reduced clinical signs and viremia. Here, we present LACAs as a tool for the targeted profiling of antigen-specific antibody responses to inform vaccine development.
Collapse
Affiliation(s)
- Priscilla Y. L. Tng
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Laila Al-Adwani
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Egle Pauletto
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Joshua Y. K. Hui
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Christopher L. Netherton
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| |
Collapse
|
14
|
Hua RH, Liu J, Zhang SJ, Liu RQ, Zhang XF, He XJ, Zhao DM, Bu ZG. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses 2023; 15:1467. [PMID: 37515155 PMCID: PMC10383863 DOI: 10.3390/v15071467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
A cell line expressing the CD2v protein of ASFV was generated. The efficient expression of CD2v protein was determined by immunofluorescence and Western blotting. The CD2v protein was Ni-affinity purified from the supernatant of cell cultures. The CD2v-expressing cells showed properties of hemadsorption, and the secreted CD2v protein exhibited hemagglutinating activity. The antigenicity and immunoprotection ability of CD2v were evaluated by immunizing pigs alone, combined with a cell-line-expressed p30 protein or triple combined with p30 and K205R protein. Immunized pigs were challenged with the highly virulent ASFV strain HLJ/18. Virus challenge results showed that CD2v immunization alone could provide partial protection at the early infection stage. Protein p30 did not show synergistic protection effects in immunization combined with CD2v. Interestingly, immunization with the triple combination of CD2V, p30 and K205R reversed the protection effect. The viremia onset time was delayed, and one pig out of three recovered after the challenge. The pig recovered from ASFV clinical symptoms, the rectal temperature returned to normal levels and the viremia was cleared. The mechanism of this protection effect warrants further investigation.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ren-Qiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xian-Feng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dong-Ming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
15
|
Zhang G, Liu W, Yang S, Song S, Ma Y, Zhou G, Liang X, Miao C, Li J, Liu Y, Shao J, Chang H. Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with OprI in domestic pigs. Virol J 2023; 20:104. [PMID: 37237390 DOI: 10.1186/s12985-023-02070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND African swine fever (ASF) is a highly fatal disease in domestic pigs caused by ASF virus (ASFV), for which there is currently no commercial vaccine available. The genome of ASFV encodes more than 150 proteins, some of which have been included in subunit vaccines but only induce limited protection against ASFV challenge. METHODS To enhance immune responses induced by ASFV proteins, we expressed and purified three fusion proteins with each consisting of bacterial lipoprotein OprI, 2 different ASFV proteins/epitopes and a universal CD4+ T cell epitope, namely OprI-p30-modified p54-TT, OprI-p72 epitopes-truncated pE248R-TT, and OprI-truncated CD2v-truncated pEP153R-TT. The immunostimulatory activity of these recombinant proteins was first assessed on dendritic cells. Then, humoral and cellular immunity induced by these three OprI-fused proteins cocktail formulated with ISA206 adjuvant (O-Ags-T formulation) were assessed in pigs. RESULTS The OprI-fused proteins activated dendritic cells with elevated secretion of proinflammatory cytokines. Furthermore, the O-Ags-T formulation elicited a high level of antigen-specific IgG responses and interferon-γ-secreting CD4+ and CD8+ T cells after stimulation in vitro. Importantly, the sera and peripheral blood mononuclear cells from pigs vaccinated with the O-Ags-T formulation respectively reduced ASFV infection in vitro by 82.8% and 92.6%. CONCLUSIONS Our results suggest that the OprI-fused proteins cocktail formulated with ISA206 adjuvant induces robust ASFV-specific humoral and cellular immune responses in pigs. Our study provides valuable information for the further development of subunit vaccines against ASF.
Collapse
Affiliation(s)
- Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Lanzhou Institute of Biological Products Co., Ltd. (LIBP), a subsidiary company of China National Biotec Group Company Limited (CNBG), Lanzhou, 730046, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Sicheng Yang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunyun Ma
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaxia Liang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Chun Miao
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junhui Li
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanhong Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
16
|
Sereda AD, Kazakova AS, Namsrayn SG, Vlasov ME, Sindryakova IP, Kolbasov DV. Subsequent Immunization of Pigs with African Swine Fever Virus (ASFV) Seroimmunotype IV Vaccine Strain FK-32/135 and by Recombinant Plasmid DNA Containing the CD2v Derived from MK-200 ASFV Seroimmunotype III Strain Does Not Protect from Challenge with ASFV Seroimmunotype III. Vaccines (Basel) 2023; 11:vaccines11051007. [PMID: 37243111 DOI: 10.3390/vaccines11051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.
Collapse
Affiliation(s)
- Alexey D Sereda
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Anna S Kazakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Sanzhi G Namsrayn
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Mikhail E Vlasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Irina P Sindryakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Denis V Kolbasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| |
Collapse
|
17
|
Xu Z, Hu Y, Li J, Wang A, Meng X, Chen L, Wei J, Tong W, Kong N, Yu L, Yu H, Shan T, Tong G, Wang G, Zheng H. Screening and identification of the dominant antigens of the African swine fever virus. Front Vet Sci 2023; 10:1175701. [PMID: 37215478 PMCID: PMC10192620 DOI: 10.3389/fvets.2023.1175701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
African swine fever is a highly lethal contagious disease of pigs for which there is no vaccine. Its causative agent African swine fever virus (ASFV) is a highly complex enveloped DNA virus encoding more than 150 open reading frames. The antigenicity of ASFV is still unclear at present. In this study, 35 proteins of ASFV were expressed by Escherichia coli, and ELISA was developed for the detection of antibodies against these proteins. p30, p54, and p22 were presented as the major antigens of ASFV, positively reacting with all five clinical ASFV-positive pig sera, and 10 pig sera experimentally infected by ASFV. Five proteins (pB475L, pC129R, pE199L, pE184L, and pK145R) reacted well with ASFV-positive sera. The p30 induced a rapid and strong antibody immune response during ASFV infection. These results will promote the development of subunit vaccines and serum diagnostic methods against ASFV.
Collapse
Affiliation(s)
- Zhaoyang Xu
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine of Shandong Agricultural University, Tai'an, China
| | - Yifan Hu
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junbo Li
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ancheng Wang
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xin Meng
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lingchao Chen
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guihua Wang
- College of Veterinary Medicine of Shandong Agricultural University, Tai'an, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Zhang SJ, Liu J, Niu B, Zhu YM, Zhao DM, Chen WY, Liu RQ, Bu ZG, Hua RH. Comprehensive mapping of antigenic linear B-cell epitopes on K205R protein of African swine fever virus with monoclonal antibodies. Virus Res 2023; 328:199085. [PMID: 36889544 DOI: 10.1016/j.virusres.2023.199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
African swine fever virus causes an acute, highly contagious swine disease with high mortality, leading to enormous losses in the pig industry. The K205R, a nonstructural protein of African swine fever virus, is abundantly expressed in the cytoplasm of infected cells at the early stage of infection and induces a strong immune response. However, to date, the antigenic epitopes of this immunodeterminant have not been characterized. In the present study, the K205R protein was expressed in a mammalian cell line and purified using Ni-affinity chromatography. Furthermore, three monoclonal antibodies (mAbs; 5D6, 7A8, and 7H10) against K205R were generated. Indirect immunofluorescence assay and western blot results showed that all three mAbs recognized native and denatured K205R in African swine fever virus (ASFV)-infected cells. To identify the epitopes of the mAbs, a series of overlapping short peptides were designed and expressed as fusion proteins with maltose-binding protein. Subsequently, the peptide fusion proteins were probed with monoclonal antibodies using western blot and enzyme-linked immunosorbent assay. The three target epitopes were fine-mapped; the core sequences of recognized by the mAbs 5D6, 7A8, and 7H10 were identified as 157FLTPEIQAILDE168, 154REKFLTP160, and 136PTNAMFFTRSEWA148, respectively. Probing with sera from ASFV-infected pigs in a dot blot assay demonstrated that epitope 7H10 was the immunodominant epitope of K205R. Sequence alignment showed that all epitopes were conserved across ASFV strains and genotypes. To our knowledge, this is the first study to characterize the epitopes of the antigenic K205R protein of ASFV. These findings may serve as a basis for the development of serological diagnostic methods and subunit vaccines.
Collapse
Affiliation(s)
- Shu-Jian Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bei Niu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Mao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dong-Ming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei-Ye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ren-Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
19
|
Zheng N, Li C, Hou H, Chen Y, Zhang A, Han S, Wan B, Wu Y, He H, Wang N, Du Y. A Novel Linear B-Cell Epitope on the P54 Protein of African Swine Fever Virus Identified Using Monoclonal Antibodies. Viruses 2023; 15:v15040867. [PMID: 37112846 PMCID: PMC10142506 DOI: 10.3390/v15040867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The African swine fever virus (ASFV) is a highly infectious viral pathogen that presents a major threat to the global pig industry. No effective vaccine is available for the virus. The p54 protein, a major structural component of ASFV, is involved in virus adsorption and entry to target cells and also plays a key role in ASFV vaccine development and disease prevention. Here, we generated species-specific monoclonal antibodies (mAbs), namely 7G10A7F7, 6E8G8E1, 6C3A6D12, and 8D10C12C8 (subtype IgG1/kappa type), against the ASFV p54 protein and characterized the specificity of these mAbs. Peptide scanning techniques were used to determine the epitopes that are recognized by the mAbs, which defined a new B-cell epitope, TMSAIENLR. Amino acid sequence comparison showed that this epitope is conserved among all reference ASFV strains from different regions of China, including the widely prevalent, highly pathogenic strain Georgia 2007/1 (NC_044959.2). This study reveals important signposts for the design and development of ASFV vaccines and also provides critical information for the functional studies of the p54 protein via deletion analysis.
Collapse
|
20
|
Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses 2023; 15:v15020557. [PMID: 36851771 PMCID: PMC9963768 DOI: 10.3390/v15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
African Swine Fever (ASF) is a highly contagious and lethal pig disease and poses a huge threat to the pig industry worldwide. ASF virus (ASFV) encodes more than 150 different proteins, but the biological properties of most viral proteins are still unknown. ASFV CP312R protein has been proven to be one of the most immunogenic proteins during ASFV infection in pigs; however, its specific epitopes have yet to be identified. In this study, we verified the immunogenicity of CP312R protein in the sera from attenuated ASFV-inoculated pigs. We generated seven anti-ASFV CP312R mouse monoclonal antibodies (mAbs) from mice immunized with recombinant CP312R protein (rCP312R). All seven mAbs are the IgG2b-Kappa isotype and specifically interacted with the CP312R protein expressed in various cells that were infected by ASFVs or transfected with plasmid CP312R. The epitope mapping was performed by using these characterized mAbs and the peptide scanning (Pepscan) method followed by Western blot. As a result, two antigenic determinant regions were identified: two of the seven mAbs recognized the 122KNEQGEEIYP131 amino acids, and the remaining five mAbs recognized the 78DEEVIRMNAE87 amino acids of the CP312R protein. These antigenic determinants of CP312R are conserved in different ASFV strains of seven genotypes. By using the characterized mAb, confocal microscopy observation revealed that the CP312R was mainly localized in the cytoplasm and, to some extent, in nuclei and on the nuclear membrane of infected host cells. In summary, our results benefit our understanding on the antigenic regions of ASFV CP312R and help to develop better serological diagnosis of ASF and vaccine research.
Collapse
|
21
|
Li L, Qiao S, Liu J, Zhou Y, Tong W, Dong S, Liu C, Jiang Y, Guo Z, Zheng H, Zhao R, Tong G, Li G, Gao F. A highly efficient indirect ELISA and monoclonal antibody established against African swine fever virus pK205R. Front Immunol 2023; 13:1103166. [PMID: 36700212 PMCID: PMC9868132 DOI: 10.3389/fimmu.2022.1103166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
African swine fever (ASF) is a contagious infectious disease with high lethality which continuously threatens the global pig industry causing huge economic losses. Currently, there are no commercially available vaccines or antiviral drugs that can effectively control ASF. The pathogen of ASF, ASF virus (ASFV) is a double-stranded DNA virus with a genome ranging from 170 to 193 kb and 151 to 167 open reading frames in various strains, which encodes 150-200 proteins. An effective method of monitoring ASFV antibodies, and specific antibodies against ASFV to promote the development of prevention techniques are urgently needed. In the present study, pK205R of ASFV was successfully expressed in mammalian cells using a suspension culture system. An indirect enzyme-linked immunosorbent assay (ELISA) based on the purified pK205R was established and optimized. The monoclonal antibody (mAb) against pK205R recognized a conservative linear epitope (2VEPREQFFQDLLSAV16) and exhibited specific reactivity, which was conducive to the identification of the recombinant porcine reproductive and respiratory syndrome virus (PRRSV) expressing pK205R. The ELISA method efficiently detected clinical ASFV infection and revealed good application prospects in monitoring the antibody level in vivo for recombinant PRRSV live vector virus expressing the ASFV antigen protein. The determination of the conserved linear epitope of pK205R would contribute to further research on the structural biology and function of pK205R. The indirect ELISA method and mAb against ASFV pK205R revealed efficient detection and promising application prospects, making them ideal for epidemiological surveillance and vaccine research on ASF.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sina Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ziqiang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haihong Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ran Zhao
- Xiamen Center for Animal Disease Control and Prevention, Xiamen, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China,*Correspondence: Guoxin Li, ; Fei Gao,
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China,*Correspondence: Guoxin Li, ; Fei Gao,
| |
Collapse
|
22
|
Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. J Virol Methods 2022; 309:114611. [PMID: 36058340 DOI: 10.1016/j.jviromet.2022.114611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
African swine fever (ASF) is a highly fatal viral disease affecting pigs. It is caused by the ASF virus (ASFV), and causes serious economic losses to the swine industry worldwide, including in Korea. Commercially available enzyme-linked immunosorbent assay (ELISA) kits for detecting anti-ASFV antibodies are used for the diagnosis and surveillance of ASF. In this study, an ELISA was developed to detect anti-ASFV antibodies using two recombinant proteins, p22 and p30, from genotype II ASFV. Recombinant transmembrane domain-deleted p22 (p22∆TM) and p30 were expressed in E.coli vector system pET32a and mixed for use as antigens in indirect ELISA. The p22∆TM/p30-based indirect ELISA was validated using 31 sera from genotype I ASFV-infected pigs and 1133 sera from uninfected pigs. Area under the curve of this test was 0.999 [95 % concentration interval 0.992-1.000], and sensitivity and specificity were 93.5 % and 99.8 %, respectively. The between run coefficient of variation for internal quality control serum was 6.61 %. In the seroconversion analysis, the p22∆TM/p30-based indirect ELISA showed equal or better ability to detect antibodies in pigs experimentally challenged with ASFV p72 genotypes I and II (p < 0.05). In conclusion, the p22∆TM/p30-based indirect ELISA is a reliable diagnostic method for detecting anti-ASFV antibodies.
Collapse
|
23
|
Istrate C, Marques J, Bule P, Correia S, Aires-da-Silva F, Duarte M, Reis AL, Machuqueiro M, Leitão A, Victor BL. In Silico Characterization of African Swine Fever Virus Nucleoprotein p10 Interaction with DNA. Viruses 2022; 14:v14112348. [PMID: 36366446 PMCID: PMC9694697 DOI: 10.3390/v14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly contagious, hemorrhagic infectious swine disease, with a tremendous sanitary and economic impact on a global scale. Currently, there are no globally available vaccines or treatments. The p10 protein, a structural nucleoprotein encoded by ASFV, has been previously described as capable of binding double-stranded DNA (dsDNA), which may have implications for viral replication. However, the molecular mechanism that governs this interaction is still unknown, mostly due to the lack of a structural model for this protein. In this work, we have generated an ab initio model of the p10 protein and performed extensive structural characterization, using molecular dynamics simulations to identify the motifs and residues regulating DNA recognition. The helix-turn-helix motif identified at the C-terminal region of the protein was shown to be crucial to the dsDNA-binding efficiency. As with other DNA-binding proteins, two distinct serine and lysine-rich regions found in the two helices were identified as key players in the binding to DNA, whose importance was later validated using experimental binding assays. Altogether, these findings may contribute to a better understanding of the p10 function in ASFV replication.
Collapse
Affiliation(s)
- Claudia Istrate
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Jéssica Marques
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Sílvia Correia
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Frederico Aires-da-Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Marlene Duarte
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Luísa Reis
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Miguel Machuqueiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Correspondence: (A.L.); (B.L.V.)
| | - Bruno L. Victor
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
- Correspondence: (A.L.); (B.L.V.)
| |
Collapse
|
24
|
Preparation of Monoclonal Antibodies against the Viral p54 Protein and a Blocking ELISA for Detection of the Antibody against African Swine Fever Virus. Viruses 2022; 14:v14112335. [PMID: 36366433 PMCID: PMC9694993 DOI: 10.3390/v14112335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus (ASFV) causes a highly contagious viral disease in domestic and wild pigs, leading to serious economic losses. As there are no vaccines or drugs available, early accurate diagnosis and eradiation of infected animals are the most important measures for ASFV prevention and control. Therefore, improvement of available diagnostic assays and development of novel effective techniques are required. This study is devoted to generating a new detection platform of blocking monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) against ASFV p54 protein. Seven monoclonal antibodies against recombinant p54 protein were produced and four epitopes were identified. Three blocking ELISAs were developed with 6A5 and 6F9 mAbs labeled with HRP, respectively, of which the 6A5/6F9-based blocking ELISA displayed the best detection performance, with an AUC of 0.986, sensitivity of 98.36% and specificity of 92.36% in ROC analysis. Moreover, it has an excellent agreement at 96.59% (198/205) when compared to the commercial blocking ELISA (kappa value = 0.920). The method also has high repeatability, with CV <10%, and no cross reaction with the serum antibodies against PRV, PRRSV, CSFV, PCV2 or SVA. This indicates that the 6A5/6F9-based blocking ELISA has high accuracy with good sensitivity and specificity, suitable for viral detection, field surveillance and epidemiological studies.
Collapse
|
25
|
Zhao J, Zhu J, Wang Y, Yang M, Zhang Q, Zhang C, Nan Y, Zhou EM, Sun Y, Zhao Q. A simple nanobody-based competitive ELISA to detect antibodies against African swine fever virus. Virol Sin 2022; 37:922-933. [PMID: 36089216 PMCID: PMC9797394 DOI: 10.1016/j.virs.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/17/2022] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus (ASFV) infection is a big threat to the global pig industry. Because there is no effective vaccine, rapid, low-cost, and simple diagnosis methods are necessary to detect the ASFV infection in pig herds. Nanobodies, with advantages of small molecular weight and easy genetic engineering, have been universally used as reagents for developing diagnostic kits. In this study, the recombinant ASFV-p30 was expressed and served as an antigen to immunize the Bactrian camel. Then, seven nanobodies against ASFV-p30 were screened using phage display technique. Subsequently, the seven nanobodies fused horseradish peroxidase (nanobody-HRP) were secretory expressed and one fusion protein ASFV-p30-Nb75-HRP was selected with the highest sensitivity in blocking ELISA. Using the ASFV-p30-Nb75-HRP fusion protein as a probe, a competitive ELISA (cELISA) was developed for detecting anti-ASFV antibodies in pig sera. The cut-off value of cELISA was determined to be 22.7% by testing 360 negative pig sera. The detection limit of the cELISA for positive pig sera was 1:320, and there was no cross-reaction with anti-other swine virus antibodies. The comparative assay showed that the agreement of the cELISA with a commercial ELISA kit was 100%. More importantly, the developed cELISA showed low cost and easy production as a commercial kit candidate. Collectively, a simple nanobody-based cELISA for detecting antibodies against ASFV is developed and it provides a new method for monitoring ASFV infection in the pig herds.
Collapse
Affiliation(s)
- Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Mengting Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Qiang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Chong Zhang
- Kunming Customs Technology Center, Kunming, 650228, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China,Corresponding authors.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China,Corresponding authors.
| |
Collapse
|
26
|
Hemmink JD, Khazalwa EM, Abkallo HM, Oduor B, Khayumbi J, Svitek N, Henson SP, Blome S, Keil G, Bishop RP, Steinaa L. Deletion of the CD2v Gene from the Genome of ASFV-Kenya-IX-1033 Partially Reduces Virulence and Induces Protection in Pigs. Viruses 2022; 14:v14091917. [PMID: 36146726 PMCID: PMC9503863 DOI: 10.3390/v14091917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Infection of pigs with the African swine fever virus (ASFV) leads to a devastating hemorrhagic disease with a high mortality of up to 100%. In this study, a CD2v gene deletion was introduced to a genotype IX virus from East Africa, ASFV-Kenya-IX-1033 (ASFV-Kenya-IX-1033-∆CD2v), to investigate whether this deletion led to reduced virulence in domestic pigs and to see if inoculation with this LA-ASFV could induce protective immunity against parental virus challenge. All pigs inoculated with ASFV-Kenya-IX-1033-ΔCD2v survived inoculation but presented with fever, reduced appetite and lethargy. ASFV genomic copies were detected in only one animal at one time point. Seven out of eight animals survived subsequent challenge with the pathogenic parental strain (87.5%) but had mild to moderate clinical symptoms and had a gross pathology compatible with chronic ASFV infection. All mock-immunised animals developed acute ASF upon challenge with ASFV-Kenya-IX-1033 and were euthanised upon meeting the humane endpoint criteria. ASFV genome copy numbers after challenge were similar in the two groups. ASFV-Kenya-IX-1033-∆CD2v is therefore a useful tool to investigate the development of immunity to ASFV genotype IX, but safety concerns preclude its use as a candidate vaccine without further attenuation.
Collapse
Affiliation(s)
- Johanneke D. Hemmink
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
- Correspondence: (J.D.H.); (L.S.)
| | - Emmanuel M. Khazalwa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Hussein M. Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Bernard Oduor
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Jeremiah Khayumbi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Nicholas Svitek
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Sonal P. Henson
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
- Deep Seq, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493 Greifswald, Germany
| | - Günther Keil
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Insel Riems, 17493 Greifswald, Germany
| | | | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
- Correspondence: (J.D.H.); (L.S.)
| |
Collapse
|
27
|
Zhang A, Wu S, Duan X, Zhao H, Dong H, Ren J, Zhang M, Li J, Duan H, Zhang G. K205R specific nanobody-horseradish peroxidase fusions as reagents of competitive ELISA to detect African swine fever virus serum antibodies. BMC Vet Res 2022; 18:321. [PMID: 35987654 PMCID: PMC9392344 DOI: 10.1186/s12917-022-03423-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background African swine fever virus (ASFV) is a highly contagious hemorrhagic disease and often lethal, which has significant economic consequences for the swine industry. Due to lacking of commercial vaccine, the prevention and control of ASF largely depend on early large-scale detection and screening. So far, the commercial ELISA kits have a long operation time and are expensive, making it difficult to achieve large-scale clinical applications. Nanobodies are single-domain antibodies produced by camelid animals, and have unique advantages such as smaller molecular weight, easy genetic engineering modification and low-costing of mass production, thus exhibiting good application prospects. Results The present study developed a new method for detection of ASFV specific antibodies using nanobody-horseradish peroxidase (Nb-HRP) fusion proteins as probe. By using camel immunization, phage library construction and phage display technology, five nanobodies against K205R protein were screened. Then, Nb-HRP fusion proteins were produced using genetic modification technology. Based on the Nb-HRP fusion protein as specific antibodies against K205R protein, a new type of cELISA was established to detect ASFV antibodies in pig serum. The cut-off value of the cELISA was 34.8%, and its sensitivity, specificity, and reproducibility were good. Furthermore, the developed cELISA exhibited 99.3% agreement rate with the commercial available ELISA kit (kappa value = 0.98). Conclusions The developed cELISA method has the advantages of simple operation, rapid and low-costing, and can be used for monitoring of ASFV infection in pigs, thus providing a new method for the prevention and control of ASF. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03423-0.
Collapse
|
28
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
29
|
Goatley LC, Nash RH, Andrews C, Hargreaves Z, Tng P, Reis AL, Graham SP, Netherton CL. Cellular and Humoral Immune Responses after Immunisation with Low Virulent African Swine Fever Virus in the Large White Inbred Babraham Line and Outbred Domestic Pigs. Viruses 2022; 14:v14071487. [PMID: 35891467 PMCID: PMC9322176 DOI: 10.3390/v14071487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
African swine fever virus is currently present in all of the world’s continents apart from Antarctica, and efforts to control the disease are hampered by the lack of a commercially available vaccine. The Babraham large white pig is a highly inbred line that could represent a powerful tool to improve our understanding of the protective immune responses to this complex pathogen; however, previous studies indicated differential vaccine responses after the African swine fever virus challenge of inbred minipigs with different swine leukocyte antigen haplotypes. Lymphocyte numbers and African swine fever virus-specific antibody and T-cell responses were measured in inbred and outbred animals after inoculation with a low virulent African swine fever virus isolate and subsequent challenge with a related virulent virus. Surprisingly, diminished immune responses were observed in the Babraham pigs when compared to the outbred animals, and the inbred pigs were not protected after challenge. Recovery of Babraham pigs after challenge weakly correlated with antibody responses, whereas protective responses in outbred animals more closely correlated with the T-cell response. The Babraham pig may, therefore, represent a useful model for studying the role of antibodies in protection against the African swine fever virus.
Collapse
|
30
|
Chen L, Chen L, Chen H, Zhang H, Dong P, Sun L, Huang X, Lin P, Wu L, Jing D, Qian Y, Wu Y. Structural insights into the CP312R protein of the African swine fever virus. Biochem Biophys Res Commun 2022; 624:68-74. [DOI: 10.1016/j.bbrc.2022.07.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/19/2023]
|
31
|
Yu X, Zhu X, Chen X, Li D, Xu Q, Yao L, Sun Q, Ghonaim AH, Ku X, Fan S, Yang H, He Q. Establishment of a Blocking ELISA Detection Method for Against African Swine Fever Virus p30 Antibody. Front Vet Sci 2022; 8:781373. [PMID: 34977214 PMCID: PMC8718596 DOI: 10.3389/fvets.2021.781373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease of domestic pigs caused by African swine fever virus (ASFV). A sensitive and reliable serological diagnostic assay is required, so laboratories can effectively and quickly detect ASFV infection. The p30 protein is abundantly expressed early in cells and has excellent antigenicity. Therefore, this study aimed to produce and characterize p30 monoclonal antibodies with an ultimate goal of developing a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. Three monoclonal antibodies against p30 protein that were expressed in E. coli were generated, and their characterizations were investigated. Furthermore, a blocking ELISA based on a monoclonal antibody was developed. To evaluate the performance of the assay, 186 sera samples (88 negative and 98 positive samples) were analyzed and a receiver-operating characteristic (ROC) analysis was applied to determine the cutoff value. Based on the ROC analysis, the area under the curve (AUC) was 0.997 (95% confidence interval: 99.2 to 100%). Besides, a diagnostic sensitivity of 97.96% (95% confidence interval: 92.82 to 99.75%) and a specificity of 98.96% (95% confidence interval: 93.83 to 99.97%) were achieved when the cutoff value was set to 38.38%. Moreover, the coefficients of inter- and intra-batches were <10%, indicating the good repeatability of the method. The maximum dilution of positive standard serum detected by this ELISA method was 1:512. The blocking ELISA was able to detect seroconversion in two out of five pigs at 10 Dpi and the p30 response increasing trend through the time course of the study (0–20 Dpi). In conclusion, the p30 mAb-based blocking ELISA developed in this study demonstrated a high repeatability with maximized diagnostic sensitivity and specificity. The assay could be a useful tool for field surveillance and epidemiological studies in swine herd.
Collapse
Affiliation(s)
- Xuexiang Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianjing Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongfan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qian Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lun Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ahmed H Ghonaim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Desert Research Center, Cairo, Egypt
| | - Xugang Ku
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengxian Fan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qigai He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
32
|
Luong HQ, Lai HT, Do LD, Ha BX, Nguyen GV, Vu HL. Differential antibody responses in sows and finishing pigs naturally infected with African swine fever virus under field conditions. Virus Res 2022; 307:198621. [PMID: 34799123 DOI: 10.1016/j.virusres.2021.198621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022]
Abstract
Antibody profile of pigs naturally infected with a virulent African swine fever virus (ASFV) strain under field conditions was studied. Twenty-three serum samples were collected from pigs surviving a natural ASFV infection: 17 samples from finishing pigs (∼7 months old) and 6 samples from sows (between 12 and 36 months old). Additionally, 24 serum samples were collected from ASFV-naïve pigs to serve as negative controls. All sera from ASFV-surviving pigs tested positive while all sera from control pigs tested negative by two different commercial ELISA kits. Antibody reactivity of each serum sample was simultaneously measured against six selected ASFV antigens including p12, p32, p54, pp62, C-type lectin and CD2v. All ASFV-surviving pigs had antibody against p32, p54 and pp62 while 91.3% surviving pigs had antibody against p12. Only small portions of ASFV-surviving pigs exhibited antibodies against C-type lectin (34.8%) and CD2v (26.1%). While antibodies against p12, p32, p54 and pp62 were similarly detected in both finishing pigs and sows, antibodies against C-type lectin and CD2v were mainly detected in sows but not in finishing pigs. These results suggest a differential humoral immune response to ASFV infection in sows and finishing pigs. Further studies are needed to better understand the nature of immune responses to ASFV infection in different pig populations.
Collapse
Affiliation(s)
- Hung Q Luong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Viet Nam
| | - Huong Tl Lai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Viet Nam
| | - Luc D Do
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Viet Nam
| | - Bo X Ha
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Viet Nam
| | - Giap V Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Viet Nam
| | - Hiep Lx Vu
- Nebraska Center for Virology and Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| |
Collapse
|
33
|
Xu L, Cao C, Yang Z, Jia W. Identification of a conservative site in the African swine fever virus p54 protein and its preliminary application in a serological assay. J Vet Sci 2022; 23:e55. [PMID: 35698809 PMCID: PMC9346533 DOI: 10.4142/jvs.21134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lingyu Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenfu Cao
- Shenzhen Customs District P.R. China, Shenzhen 518045, China
| | - Zhiyi Yang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Zhang G, Liu W, Gao Z, Yang S, Zhou G, Chang Y, Ma Y, Liang X, Shao J, Chang H. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. Int Immunopharmacol 2021; 101:108251. [PMID: 34715492 DOI: 10.1016/j.intimp.2021.108251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023]
Abstract
African swine fever (ASF) is a highly fatal swine disease threatening the global pig industry. Currently, vaccine is not commercially available for ASF. Hence, it is desirable to develop effective subunit vaccines against ASF. Here, we expressed and purified two recombinant fusion proteins comprising ASFV proteins p30 and p54 fused to a novel cell-penetrating peptide Z12, which were labeled as ZPM (Z12-p30-modified p54) and ZPMT (Z12-p30-modified p54-T cell epitope). Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The transduction capacity of these recombinant proteins was assessed in RAW264.7 cells. Both ZPM and ZPMT exhibited higher transduction efficiency than the other proteins. Subsequently, humoral and cellular immune responses elicited by these proteins were evaluated in mice. ZPMT elicited the highest levels of antigen-specific IgG responses, cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) and lymphocyte proliferation. Importantly, sera from mice immunized with ZPM or ZPMT neutralized greater than 85% of ASFV in vitro. Our results indicate that ZPMT induces potent neutralizing antibody responses and cellular immunity in mice. Therefore, ZPMT may be a suitable candidate to elicit immune responses in swine, providing valuable information for the development of subunit vaccines against ASF.
Collapse
Affiliation(s)
- Guanglei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhan Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Sicheng Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanyan Chang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yunyun Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaxia Liang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
35
|
Transcriptome view of a killer: African swine fever virus. Biochem Soc Trans 2021; 48:1569-1581. [PMID: 32725217 PMCID: PMC7458399 DOI: 10.1042/bst20191108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5' and RNA-3' termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.
Collapse
|
36
|
Tesfagaber W, Wang L, Tsegay G, Hagoss YT, Zhang Z, Zhang J, Huangfu H, Xi F, Li F, Sun E, Bu Z, Zhao D. Characterization of Anti-p54 Monoclonal Antibodies and Their Potential Use for African Swine Fever Virus Diagnosis. Pathogens 2021; 10:pathogens10020178. [PMID: 33562314 PMCID: PMC7915713 DOI: 10.3390/pathogens10020178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease of domestic pigs caused by African swine fever virus (ASFV). Although a good advance has been made to understand the virus, a safe and effective vaccine against ASFV is still lacking and its eradication solely depends on its early and accurate diagnosis. Thus, improving the available diagnostic assays and adding some validated techniques are useful for a range of serological investigations. The aim of this study was to produce and characterize p54 monoclonal antibodies with an ultimate goal of developing a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. Five monoclonal antibodies against p54 protein expressed in Escherichia coli was generated and their characterizations were investigated. Furthermore, a competitive enzyme-linked immunosorbent assay (cELISA) based on a monoclonal antibody designated as 2A7 was developed. To evaluate the performance of the assay, a total of 365 pig serum samples (178 negative and 187 positive samples) were tested and a receiver-operating characteristic (ROC) analysis was applied to determine the cut-off value. Based on the ROC analysis, the area under the curve (AUC) was 0.982 (95% confidence interval: 96.9% to 99.4%), besides a sensitivity of 92.5% and a specificity of 98.9% was achieved when the percent inhibition of 20% was selected as a threshold. Moreover, the result showed an excellent agreement when compared to other commercially available blocking ELISA (kappa value = 0.912) and showed no reaction to other swine pathogens. Overall, the newly developed cELISA method offers a promising approach for a rapid and convenient ASFV serodiagnosis, which could be used as alternative to other serological assays for screening possible ASFV infection.
Collapse
Affiliation(s)
- Weldu Tesfagaber
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Veterinary Science, Hamelmalo Agricultural College, Keren 397, Eritrea
| | - Lulu Wang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ghebremedhin Tsegay
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Veterinary Science, Hamelmalo Agricultural College, Keren 397, Eritrea
| | - Yibrah Tekle Hagoss
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhenjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwen Zhang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haoyue Huangfu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fei Xi
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Li
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Encheng Sun
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
37
|
Aicher SM, Monaghan P, Netherton CL, Hawes PC. Unpicking the Secrets of African Swine Fever Viral Replication Sites. Viruses 2021; 13:v13010077. [PMID: 33429879 PMCID: PMC7827680 DOI: 10.3390/v13010077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Paul Monaghan
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Christopher L. Netherton
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Philippa C. Hawes
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
- Correspondence:
| |
Collapse
|
38
|
Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens 2020; 9:pathogens9121078. [PMID: 33371523 PMCID: PMC7767518 DOI: 10.3390/pathogens9121078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus is the etiological agent of African swine fever, a transmissible severe hemorrhagic disease that affects pigs, causing massive economic losses. There is neither a treatment nor a vaccine available, and the only method to control its spread is by extensive culling of pigs. So far, classical vaccine development approaches have not yielded sufficiently good results in terms of concomitant safety and efficacy. Nowadays, thanks to advances in genomic and proteomic techniques, a reverse vaccinology strategy can be explored to design alternative vaccine formulations. In this study, ASFV protein sequences were analyzed using an in-house pipeline based on publicly available immunoinformatic tools to identify epitopes of interest for a prospective vaccine ensemble. These included experimentally validated sequences from the Immune Epitope Database, as well as de novo predicted sequences. Experimentally validated and predicted epitopes were prioritized following a series of criteria that included evolutionary conservation, presence in the virulent and currently circulating variant Georgia 2007/1, and lack of identity to either the pig proteome or putative proteins from pig gut microbiota. Following this strategy, 29 B-cell, 14 CD4+ T-cell and 6 CD8+ T-cell epitopes were selected, which represent a starting point to investigating the protective capacity of ASFV epitope-based vaccines.
Collapse
|
39
|
Role of the DNA-Binding Protein pA104R in ASFV Genome Packaging and as a Novel Target for Vaccine and Drug Development. Vaccines (Basel) 2020; 8:vaccines8040585. [PMID: 33023005 PMCID: PMC7712801 DOI: 10.3390/vaccines8040585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
The recent incursions of African swine fever (ASF), a severe, highly contagious, transboundary viral disease that affects members of the Suidae family, in Europe and China have had a catastrophic impact on trade and pig production, with serious implications for global food security. Despite efforts made over past decades, there is no vaccine or treatment available for preventing and controlling the ASF virus (ASFV) infection, and there is an urgent need to develop novel strategies. Genome condensation and packaging are essential processes in the life cycle of viruses. The involvement of viral DNA-binding proteins in the regulation of virulence genes, transcription, DNA replication, and repair make them significant targets. pA104R is a highly conserved HU/IHF-like DNA-packaging protein identified in the ASFV nucleoid that appears to be profoundly involved in the spatial organization and packaging of the ASFV genome. Here, we briefly review the components of the ASFV packaging machinery, the structure, function, and phylogeny of pA104R, and its potential as a target for vaccine and drug development.
Collapse
|
40
|
Wang T, Sun Y, Huang S, Qiu HJ. Multifaceted Immune Responses to African Swine Fever Virus: Implications for Vaccine Development. Vet Microbiol 2020; 249:108832. [PMID: 32932135 DOI: 10.1016/j.vetmic.2020.108832] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), leading to high fever, severe hemorrhages with high lethality in domestic pigs and wild boar. In 2007, ASF was reintroduced into Europe. Since then, ASF has spread to many European and Asian countries and now becomes a major concern to the swine industry worldwide. There have been various vaccine attempts, but no commercial ASF vaccines are available so far. A key hurdle in developing a safe and efficacious ASF vaccine is the limited understanding of innate and adaptive immune responses elicited by ASFV infection. Though several promising vaccine candidates have been described, more key scientific challenges remain unsolved. Here, we provide an overview of the current knowledge in innate and adaptive immune responses elicited by ASFV infection and different kinds of vaccine candidates. Additionally, the applications and prospects of vaccine candidates are discussed. Finally, we highlight the implications of these mechanisms for rational design of ASF vaccines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shujian Huang
- School of Life Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; School of Life Engineering, Foshan University, Foshan 528231, China.
| |
Collapse
|
41
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020. [PMID: 32626597 DOI: 10.1186/s40813‐020‐00154‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. Main body In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. Conclusion Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
42
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020; 6:17. [PMID: 32626597 PMCID: PMC7329361 DOI: 10.1186/s40813-020-00154-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. MAIN BODY In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. CONCLUSION Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
43
|
Goatley LC, Reis AL, Portugal R, Goldswain H, Shimmon GL, Hargreaves Z, Ho CS, Montoya M, Sánchez-Cordón PJ, Taylor G, Dixon LK, Netherton CL. A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs Against Fatal Disease. Vaccines (Basel) 2020; 8:E234. [PMID: 32443536 PMCID: PMC7349991 DOI: 10.3390/vaccines8020234] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Classical approaches to African swine fever virus (ASFV) vaccine development have not been successful; inactivated virus does not provide protection and use of live attenuated viruses generated by passage in tissue culture had a poor safety profile. Current African swine fever (ASF) vaccine research focuses on the development of modified live viruses by targeted gene deletion or subunit vaccines. The latter approach would be differentiation of vaccinated from infected animals (DIVA)-compliant, but information on which viral proteins to include in a subunit vaccine is lacking. Our previous work used DNA-prime/vaccinia-virus boost to screen 40 ASFV genes for immunogenicity, however this immunization regime did not protect animals after challenge. Here we describe the induction of both antigen and ASFV-specific antibody and cellular immune responses by different viral-vectored pools of antigens selected based on their immunogenicity in pigs. Immunization with one of these pools, comprising eight viral-vectored ASFV genes, protected 100% of pigs from fatal disease after challenge with a normally lethal dose of virulent ASFV. This data provide the basis for the further development of a subunit vaccine against this devastating disease.
Collapse
Affiliation(s)
- Lynnette C. Goatley
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Ana Luisa Reis
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Raquel Portugal
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Hannah Goldswain
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Gareth L. Shimmon
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Zoe Hargreaves
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Chak-Sum Ho
- Gift of Hope Organ and Tissue Donor Network, Itasca, IL 60143, USA;
| | - María Montoya
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Pedro J. Sánchez-Cordón
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Linda K. Dixon
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Christopher L. Netherton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| |
Collapse
|
44
|
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An Emerging DNA Arbovirus. Front Vet Sci 2020; 7:215. [PMID: 32478103 PMCID: PMC7237725 DOI: 10.3389/fvets.2020.00215] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV infection. However, ASFV causes a devastating and economically significant disease of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no ASFV vaccine available, and current control measures consist of strict animal quarantine and culling procedures. The virus is highly stable and easily spreads by infected swine, contaminated pork products and fomites, or via transmission by the Ornithodoros vector. Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa, but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs. Establishment of endemic ASFV infections in wild boar populations further complicates the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe, Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently spread into the Russian Federation and Europe, where it has continued to circulate and spread. Most recently, ASFV emerged in China and has now spread to several neighboring countries in Southeast Asia. The high morbidity and mortality associated with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV virion and genome as well as its lifecycle, make this pathogen a serious threat to the global swine industry and national economies. Topics covered by this review include factors important for ASFV infection, replication, maintenance, and transmission, with attention to the role of the argasid tick vector and the sylvatic transmission cycle, current and future control strategies for ASF, and knowledge gaps regarding the virus itself, its vector and host species.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C. Wilson
- Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
45
|
Characteristics of African Swine Fever Virus Isolated from Domestic Pigs and Wild Boars in the Russian Federation and South Ossetia. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The article presents the results of a comparative study of the biological, molecular and genetic characteristics of African swine fever virus (ASFV) isolates, obtained from domestic pigs and wild boars in the Russian Federation and South Ossetia from 2016 to 2018. The studied isolates caused the death of pigs manifesting, as a rule, signs of an acute or subacute form of the disease when using various methods of infection including intramuscular, direct contact, intranasal and oral routes. The virus was hemadsorbing, belonging to serotype 8 and genotype II, and accumulated in the blood with a titer of 6.5 to 7.5 lg HAU50/cm3. The ASFV isolates circulating in the central region of Russia were found to have an insertion of 10 base pairs in the intergenic region I73R/I329L. However, the ASFV isolated in the Irkutsk region and South Ossetia, as well as Georgia 2007/1 (FR682468.1), lacked this insertion.
Collapse
|
46
|
Petrovan V, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RRR. Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Res 2020; 279:197871. [PMID: 32004574 DOI: 10.1016/j.virusres.2020.197871] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022]
Abstract
In the absence of a vaccine for African swine fever virus (ASFV), diagnostic tools are critical for early detection and implementation of control measures. Along with other immunogenic proteins, p54 is a good serological target for conducting ASF detection and surveillance. In this study, a panel of 12 mouse monoclonal antibodies (mAbs) was prepared against a baculovirus-expressed p54(60-178) polypeptide. Further screening showed that five mAbs were positive for reactivity against ASFV-infected cells and recombinant p54 proteins. Mapping studies using five polypeptides and 12 oligopeptides, showed that mAb #154-1 recognized a conserved polypeptide sequence, p54(65-75), and was placed into Group 1. Mabs #143-1 and #7 recognized a region covered by p54(93-113) and were placed into Group 2. Group 3 consisted of mAbs #101 and #117, which recognized p54(118-127). Sera from pigs infected with the low virulent OURT 88/3 strain recognized the same p54 region covered by the Group 3 mAbs. When tested in a neutralization format, only mAb #143-1 showed neutralization activity above background. Together, the results identify important antigenic and immunogenic regions located on p54, which provide new tools for improving ASFV diagnostics.
Collapse
Affiliation(s)
- Vlad Petrovan
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Maria V Murgia
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Ping Wu
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Services, United States Department of Agriculture, Plum Island Animal Disease Center, New York, NY, United States
| | - Andre D Lowe
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Services, United States Department of Agriculture, Plum Island Animal Disease Center, New York, NY, United States
| | - Wei Jia
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Services, United States Department of Agriculture, Plum Island Animal Disease Center, New York, NY, United States
| | - Raymond R R Rowland
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
47
|
Gaudreault NN, Richt JA. Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines (Basel) 2019; 7:vaccines7020056. [PMID: 31242632 PMCID: PMC6631172 DOI: 10.3390/vaccines7020056] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
African swine fever virus (ASFV) is the cause of a highly fatal disease in swine, for which there is no available vaccine. The disease is highly contagious and poses a serious threat to the swine industry worldwide. Since its introduction to the Caucasus region in 2007, a highly virulent, genotype II strain of ASFV has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. This review summarizes various ASFV vaccine strategies that have been investigated, with focus on antigen-, DNA-, and virus vector-based vaccines. Known ASFV antigens and the determinants of protection against ASFV versus immunopathological enhancement of infection and disease are also discussed.
Collapse
Affiliation(s)
- Natasha N Gaudreault
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K224 Mosier Hall, 1800 Denison Ave, Manhattan, KS 66506, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K224 Mosier Hall, 1800 Denison Ave, Manhattan, KS 66506, USA.
| |
Collapse
|
48
|
Lokhandwala S, Petrovan V, Popescu L, Sangewar N, Elijah C, Stoian A, Olcha M, Ennen L, Bray J, Bishop RP, Waghela SD, Sheahan M, Rowland RRR, Mwangi W. Adenovirus-vectored African Swine Fever Virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet Microbiol 2019; 235:10-20. [PMID: 31282366 DOI: 10.1016/j.vetmic.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022]
Abstract
African Swine Fever Virus (ASFV) causes a hemorrhagic disease in swine and wild boars with a fatality rate close to 100%. Less virulent strains cause subchronic or chronic forms of the disease. The virus is endemic in sub-Saharan Africa and an outbreak in Georgia in 2007 spread to Armenia, Russia, Ukraine, Belarus, Poland, Lithuania, and Latvia. In August 2018, there was an outbreak in China and in April 2019, ASFV was reported in Vietnam and Cambodia. Since no vaccine or treatment exists, a vaccine is needed to safeguard the swine industry. Previously, we evaluated immunogenicity of two adenovirus-vectored cocktails containing ASFV antigens and demonstrated induction of unprecedented robust antibody and T cell responses, including cytotoxic T lymphocytes. In the present study, we evaluated protective efficacy of both cocktails by intranasal challenge of pigs with ASFV-Georgia 2007/1. A nine antigen cocktail-(I) formulated in BioMize adjuvant induced strong IgG responses, but when challenged, the vaccinees had more severe reaction relative to the controls. A seven antigen cocktail-(II) was evaluated using two adjuvants: BioMize and ZTS-01. The BioMize formulation induced stronger antibody responses, but 8/10 vaccinees and 4/5 controls succumbed to the disease or reached experimental endpoint at 17 days post-challenge. In contrast, the ZTS-01 formulation induced weaker antibody responses, but 4/9 pigs succumbed to the disease while the 5 survivors exhibited low clinical scores and no viremia at 17 days post-challenge, whereas 4/5 controls succumbed to the disease or reached experimental endpoint. Overall, none of the immunogens conferred statistically significant protection.
Collapse
Affiliation(s)
- Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Vlad Petrovan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Luca Popescu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Catherine Elijah
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Ana Stoian
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Matthew Olcha
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Lindsey Ennen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Richard P Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman WA, United States
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Maureen Sheahan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
49
|
Netherton CL, Goatley LC, Reis AL, Portugal R, Nash RH, Morgan SB, Gault L, Nieto R, Norlin V, Gallardo C, Ho CS, Sánchez-Cordón PJ, Taylor G, Dixon LK. Identification and Immunogenicity of African Swine Fever Virus Antigens. Front Immunol 2019; 10:1318. [PMID: 31275307 PMCID: PMC6593957 DOI: 10.3389/fimmu.2019.01318] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs for which there is no vaccine. Strains of the virus with reduced virulence can provide protection against related virulent strains of ASFV, but protection is not 100% and there are concerns about the safety profile of such viruses. However, they provide a useful tool for understanding the immune response to ASFV and previous studies using the low virulent isolate OUR T88/3 have shown that CD8+ cells are crucial for protection. In order to develop a vaccine that stimulates an effective anti-ASFV T-cell response we need to know which of the >150 viral proteins are recognized by the cellular immune response. Therefore, we used a gamma interferon ELIspot assay to screen for viral proteins recognized by lymphocytes from ASF-immune pigs using peptides corresponding to 133 proteins predicted to be encoded by OUR T88/3. Eighteen antigens that were recognized by ASFV-specific lymphocytes were then incorporated into adenovirus and MVA vectors, which were used in immunization and challenge experiments in pigs. We present a systematic characterization of the cellular immune response to this devastating disease and identify proteins capable of inducing ASFV-specific cellular and humoral immune responses in pigs. Pools of viral vectors expressing these genes did not protect animals from severe disease, but did reduce viremia in a proportion of pigs following ASFV challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lynden Gault
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Raquel Nieto
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Veronica Norlin
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Chak-Sum Ho
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | | | | | | |
Collapse
|
50
|
Pérez-Núñez D, Sunwoo SY, Sánchez EG, Haley N, García-Belmonte R, Nogal M, Morozov I, Madden D, Gaudreault NN, Mur L, Shivanna V, Richt JA, Revilla Y. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs. Vet Immunol Immunopathol 2018; 208:34-43. [PMID: 30712790 DOI: 10.1016/j.vetimm.2018.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Abstract
African swine fever virus (ASFV) causes serious disease in domestic pigs for which there is no vaccine currently available. ASFV is a large DNA virus that encodes for more than 150 proteins, thus making the identification of viral antigens that induce a protective immune response difficult. Based on the functional roles of several ASFV proteins found in previous studies, we selected combinations of ASFV recombinant proteins and pcDNAs-expressing ASFV genes, to analyze their ability to induce humoral and cellular immune responses in pigs. Pigs were immunized using a modified prime-boost approach with combinations of previously selected viral DNA and proteins, resulting in induction of antibodies and specific cell-mediated immune response, measured by IFN-γ ELISpots. The ability of antibodies from pigs immunized with various combinations of ASFV-specific antigens to neutralize infection in vitro, and antigen-specific activation of the cellular immune response were analyzed.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- CBMSO-CSIC-UAM, C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Sun-Young Sunwoo
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Elena G Sánchez
- CBMSO-CSIC-UAM, C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Nicholas Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, 85308, USA
| | | | - Marisa Nogal
- CBMSO-CSIC-UAM, C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Lina Mur
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Vinay Shivanna
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K218 Mosier hall, 1800 Denison Ave, Manhattan, KS, 66506, USA.
| | - Yolanda Revilla
- CBMSO-CSIC-UAM, C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|