1
|
Shaw AB, Tse HN, Byford O, Plahe G, Moon-Walker A, Hover SE, Saphire EO, Whelan SPJ, Mankouri J, Fontana J, Barr JN. Cellular endosomal potassium ion flux regulates arenavirus uncoating during virus entry. mBio 2024; 15:e0168423. [PMID: 38874413 PMCID: PMC11253613 DOI: 10.1128/mbio.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an enveloped and segmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromised populations and, as the prototypical arenavirus member, acts as a model for the many highly pathogenic members of the Arenaviridae family, such as Junín, Lassa, and Lujo viruses, all of which are associated with devastating hemorrhagic fevers. To enter cells, the LCMV envelope fuses with late endosomal membranes, for which two established requirements are low pH and interaction between the LCMV glycoprotein (GP) spike and secondary receptor CD164. LCMV subsequently uncoats, where the RNA genome-associated nucleoprotein (NP) separates from the Z protein matrix layer, releasing the viral genome into the cytosol. To further examine LCMV endosome escape, we performed an siRNA screen which identified host cell potassium ion (K+) channels as important for LCMV infection, with pharmacological inhibition confirming K+ channel involvement during the LCMV entry phase completely abrogating productive infection. To better understand the K+-mediated block in infection, we tracked incoming virions along their entry pathway under physiological conditions, where uncoating was signified by separation of NP and Z proteins. In contrast, K+ channel blockade prevented uncoating, trapping virions within Rab7 and CD164-positive endosomes, identifying K+ as a third LCMV entry requirement. K+ did not increase GP-CD164 binding or alter GP-CD164-dependent fusion. Thus, we propose that K+ mediates uncoating by modulating NP-Z interactions within the virion interior. These results suggest K+ channels represent a potential anti-arenaviral target.IMPORTANCEArenaviruses can cause fatal human disease for which approved preventative or therapeutic options are not available. Here, using the prototypical LCMV, we identified K+ channels as critical for arenavirus infection, playing a vital role during the entry phase of the infection cycle. We showed that blocking K+ channel function resulted in entrapment of LCMV particles within late endosomal compartments, thus preventing productive replication. Our data suggest K+ is required for LCMV uncoating and genome release by modulating interactions between the viral nucleoprotein and the matrix protein layer inside the virus particle.
Collapse
Affiliation(s)
- Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Grace Plahe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E. Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Byford O, Shaw AB, Tse HN, Todd EJAA, Álvarez-Rodríguez B, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus requires cellular COPI and AP-4 complexes for efficient virion production. J Virol 2024; 98:e0200623. [PMID: 38334330 PMCID: PMC10949467 DOI: 10.1128/jvi.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Jetzer T, Studer L, Bieri M, Greber UF, Hemmi S. Engineered Human Adenoviruses of Species B and C Report Early, Intermediate Early, and Late Viral Gene Expression. Hum Gene Ther 2023; 34:1230-1247. [PMID: 37725579 DOI: 10.1089/hum.2023.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Adenoviruses (AdVs) are being developed for oncolytic or vaccination therapy against existing and emerging conditions. Well-characterized replication-competent human and human primate AdVs expressing multiple payloads are desirable, but their replication in rodent models is limited. To score the timing of adenoviral gene expression in cell cultures, we developed fully replication-competent transcriptional reporter viruses for HAdV-C5, -B3, and -B35. The picornavirus-derived 2A sequence, which induces cotranslational peptide splitting and reinitiation (skipping), was linked to GFP and the fused sequence was inserted C-terminal of the early gene E1A, the intermediate early gene protein IX and the late fiber gene. The 2A peptide induced ribosomal skipping during translation of the messenger RNA (mRNA) and gave rise to GFP from the corresponding viral promoters, as shown by immunoblotting and flow cytometry analyses of human and rodent cells. In human cells, both species B and C AdV exhibited highest reporter expression for fiber, followed by protein IX and lowest for E1A. Inoculation with either HAdV-C5 or -B3/35 viruses encoding protein IX- or fiber-GFP gave rise to higher GFP levels in hamster than mouse cells. Remarkably, despite rather low 2A ribosomal skipping efficiency of ∼50% for E1A-2A-GFP, protein IX-2A-GFP, and fiber-2A-GFP, unprocessed protein IX-2A-GFP and fiber-2A-GFP fusion proteins were efficiently incorporated into HAdV-B3 virions, respectively. These data indicate that the B3 C-termini of protein IX and fiber can be considered for retargeting engineered oncolytic or vaccination vectors, or for antigen display. The variable expression levels of transgenes from different subviral promoters may be used to improve oncolytic AdV vectors expressing therapeutic genes.
Collapse
Affiliation(s)
- Tania Jetzer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lukas Studer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Manuela Bieri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Science Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Meng H, Wang X, Wang L, Wang Q, Zhu L, Sang Y, Liu F. Identification of cis-acting replication element in VP2-encoding region of Senecavirus A genome. Vet Microbiol 2023; 280:109717. [PMID: 36893554 DOI: 10.1016/j.vetmic.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Picornavirus possesses one positive-sense, single-stranded RNA genome, in which a cis-acting replication element (cre) is located. The cre is a stem-loop structure that harbors a conserved AAACA motif within its loop region. This motif functions as a template for adding two U residues to the viral VPg, therefore generating a VPg-pUpU that is required for viral RNA synthesis. Senecavirus A (SVA) is an emerging picornavirus. Its cre has not been identified as yet. In the present study, one putative cre containing a typical AAACA motif was computationally predicted to exist within the VP2-encoding sequence of SVA. To test the role of this putative cre, 22 SVA cDNA clones with different point mutations in their cre-formed sequences were constructed in an attempt to rescue replication-competent SVAs. A total of 11 viruses were rescued from their individual cDNA clones, implying that some mutated cres exerted lethal impacts on SVA replication. To eliminate these impacts, an intact cre was artificially inserted into those SVA cDNA clones without ability of recovering virus. The artificial cre was proven to be able of compensating for some, but not all, defects caused by mutated cres, leading to successful recovery of SVAs. These results indicated that the putative cre of SVA was functionally similar to those of other picornaviruses, perhaps involved in the uridylylation of VPg.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Heather JM, Spindler MJ, Alonso M, Shui Y, Millar DG, Johnson D, Cobbold M, Hata A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e68. [PMID: 35325179 PMCID: PMC9262623 DOI: 10.1093/nar/gkac190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.
Collapse
Affiliation(s)
- James M Heather
- To whom correspondence should be addressed. Tel: +1 617 724 0104;
| | | | | | | | - David G Millar
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron N Hata
- Correspondence may also be addressed to Aaron N. Hata. Tel: +1 617 724 3442;
| |
Collapse
|
7
|
Clarkin RG, Del Papa J, Poulin KL, Parks RJ. The genome position of a therapeutic transgene strongly influences the level of expression in an armed oncolytic human adenovirus vector. Virology 2021; 561:87-97. [PMID: 34171766 DOI: 10.1016/j.virol.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Efficacy of oncolytic, conditionally-replicating adenovirus (CRAd) vectors can be enhanced by "arming" the vector with therapeutic transgenes. We examined whether inclusion of an intact early region 3 (E3) and the reptilian reovirus fusogenic p14 fusion-associated small transmembrane (FAST) protein enhanced vector efficacy. The p14 FAST transgene was cloned between the fiber gene and E4 region, with an upstream splice acceptor for replication-dependent expression from the major late promoter. In A549 cells, this vector expressed p14 FAST protein at very low levels, and showed a poor ability to mediate cell-cell fusion, relative to a similar vector encoding p14 FAST within the E3 deletion. Although expression of E3 proteins from the CRAd increased plaque size, poor expression of p14 FAST protein compromised the fusogenic capacity of the vector. Thus, location of a therapeutic transgene within a CRAd can significantly impact expression of the transgene and is an important consideration in vector design.
Collapse
Affiliation(s)
- Ryan G Clarkin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
8
|
Hyaluronidase expression within tumors increases virotherapy efficacy and T cell accumulation. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:27-35. [PMID: 34377767 PMCID: PMC8321894 DOI: 10.1016/j.omto.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses (OVs) preferentially infect and selectively replicate in cancer cells. OVs have been tested in clinical trials as monotherapy or in combination with chemotherapy, radiotherapy, and immunotherapy. However, the dense extracellular matrix hampers the intratumoral spreading and efficacy of OVs. Previously we described VCN-01, an oncolytic adenovirus expressing a soluble version of human sperm hyaluronidase (hyal) PH20, which exhibited enhanced intratumoral distribution and antitumor activity in different models. Here, we present two oncolytic adenoviruses designed to increase the secretion of PH20 compared to VCN-01. ICO15K-40SAPH20, encoding PH20 under an Ad40 splice acceptor, and ICO15K-E1aPH20 expressing PH20 fused to the E1A gene by P2A peptide. We demonstrate that increased hyal activity improves antitumor efficacy in both a sensitive immunodeficient model and an immunocompetent model. Moreover, we show that hyal activity impacts T cell accumulation in tumors, highlighting the value of a hyaluronidase-expressing virus for combinations with other immunotherapies in cancers involving dense stroma.
Collapse
|
9
|
Shakya B, Patel SD, Tani Y, Egan ES. Erythrocyte CD55 mediates the internalization of Plasmodium falciparum parasites. eLife 2021; 10:61516. [PMID: 34028351 PMCID: PMC8184214 DOI: 10.7554/elife.61516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum is a multi-step process. Previously, a forward genetic screen for P. falciparum host factors identified erythrocyte CD55 as essential for invasion, but its specific role and how it interfaces with the other factors that mediate this complex process are unknown. Using CRISPR-Cas9 editing, antibody-based inhibition, and live cell imaging, here we show that CD55 is specifically required for parasite internalization. Pre-invasion kinetics, erythrocyte deformability, and echinocytosis were not influenced by CD55, but entry was inhibited when CD55 was blocked or absent. Visualization of parasites attached to CD55-null erythrocytes points to a role for CD55 in stability and/or progression of the moving junction. Our findings demonstrate that CD55 acts after discharge of the parasite’s rhoptry organelles, and plays a unique role relative to all other invasion receptors. As the requirement for CD55 is strain-transcendent, these results suggest that CD55 or its interacting partners may hold potential as therapeutic targets for malaria.
Collapse
Affiliation(s)
- Bikash Shakya
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| | - Saurabh D Patel
- Zuckerman Institute, Columbia University, New York City, United States
| | | | - Elizabeth S Egan
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
10
|
Hazara Nairovirus Requires COPI Components in both Arf1-Dependent and Arf1-Independent Stages of Its Replication Cycle. J Virol 2020; 94:JVI.00766-20. [PMID: 32581103 PMCID: PMC7431787 DOI: 10.1128/jvi.00766-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
Nairoviruses are tick-borne enveloped RNA viruses that include several pathogens responsible for fatal disease in humans and animals. Here, we analyzed host genes involved in trafficking networks to examine their involvement in nairovirus replication. We revealed important roles for genes that express multiple components of the COPI complex, which regulates transport of Golgi apparatus-resident cargos. COPI components influenced at least two stages of the nairovirus replication cycle: an early stage prior to and including gene expression and also a later stage during assembly of infectious virus, with COPI knockdown reducing titers by approximately 1,000-fold. Importantly, while the late stage was Arf1 dependent, as expected for canonical COPI vesicle formation, the early stage was found to be Arf1 independent, suggestive of a previously unreported function of COPI unrelated to vesicle formation. Collectively, these data improve our understanding of nairovirus host-pathogen interactions and suggest a new Arf1-independent role for components of the COPI coatomer complex. Hazara nairovirus (HAZV) is an enveloped trisegmented negative-strand RNA virus classified within the Nairoviridae family of the Bunyavirales order and a member of the same subtype as Crimean-Congo hemorrhagic fever virus, responsible for fatal human disease. Nairoviral subversion of cellular trafficking pathways to permit viral entry, gene expression, assembly, and egress is poorly understood. Here, we generated a recombinant HAZV expressing enhanced green fluorescent protein and used live-cell fluorescent imaging to screen an siRNA library targeting genes involved in cellular trafficking networks, the first such screen for a nairovirus. The screen revealed prominent roles for subunits of the coat protein 1 (COPI)-vesicle coatomer, which regulates retrograde trafficking of cargo between the Golgi apparatus and the endoplasmic reticulum, as well as intra-Golgi transport. We show the requirement of COPI-coatomer subunits impacted at least two stages of the HAZV replication cycle: an early stage prior to and including gene expression and also a later stage during assembly and egress of infectious virus, with COPI-knockdown reducing titers by approximately 1,000-fold. Treatment of HAZV-infected cells with brefeldin A (BFA), an inhibitor of Arf1 activation required for COPI coatomer formation, revealed that this late COPI-dependent stage was Arf1 dependent, consistent with the established role of Arf1 in COPI vesicle formation. In contrast, the early COPI-dependent stage was Arf1 independent, with neither BFA treatment nor siRNA-mediated ARF1 knockdown affecting HAZV gene expression. HAZV exploitation of COPI components in a noncanonical Arf1-independent process suggests that COPI coatomer components may perform roles unrelated to vesicle formation, adding further complexity to our understanding of cargo-mediated transport. IMPORTANCE Nairoviruses are tick-borne enveloped RNA viruses that include several pathogens responsible for fatal disease in humans and animals. Here, we analyzed host genes involved in trafficking networks to examine their involvement in nairovirus replication. We revealed important roles for genes that express multiple components of the COPI complex, which regulates transport of Golgi apparatus-resident cargos. COPI components influenced at least two stages of the nairovirus replication cycle: an early stage prior to and including gene expression and also a later stage during assembly of infectious virus, with COPI knockdown reducing titers by approximately 1,000-fold. Importantly, while the late stage was Arf1 dependent, as expected for canonical COPI vesicle formation, the early stage was found to be Arf1 independent, suggestive of a previously unreported function of COPI unrelated to vesicle formation. Collectively, these data improve our understanding of nairovirus host-pathogen interactions and suggest a new Arf1-independent role for components of the COPI coatomer complex.
Collapse
|
11
|
Farrera-Sal M, de Sostoa J, Nuñez-Manchón E, Moreno R, Fillat C, Bazan-Peregrino M, Alemany R. Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. Int J Mol Sci 2020; 21:E5158. [PMID: 32708234 PMCID: PMC7404292 DOI: 10.3390/ijms21145158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as "arming OAds", has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
- VCN Biosciences S.L., 08174 Sant Cugat, Spain;
| | - Jana de Sostoa
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Estela Nuñez-Manchón
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | - Rafael Moreno
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Cristina Fillat
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | | | - Ramon Alemany
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| |
Collapse
|
12
|
Del Papa J, Clarkin RG, Parks RJ. Use of cell fusion proteins to enhance adenoviral vector efficacy as an anti-cancer therapeutic. Cancer Gene Ther 2020; 28:745-756. [DOI: 10.1038/s41417-020-0192-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/03/2023]
|
13
|
Nemunaitis J, Stanbery L, Senzer N. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virol 2020. [PMCID: PMC7249572 DOI: 10.2217/fvl-2020-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to SARS-CoV-2.
Collapse
|
14
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
15
|
Spindler MJ, Nelson AL, Wagner EK, Oppermans N, Bridgeman JS, Heather JM, Adler AS, Asensio MA, Edgar RC, Lim YW, Meyer EH, Hawkins RE, Cobbold M, Johnson DS. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat Biotechnol 2020; 38:609-619. [PMID: 32393905 PMCID: PMC7224336 DOI: 10.1038/s41587-020-0438-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
T cells engineered to express antigen-specific T cell receptors (TCRs) are potent therapies for viral infections and cancer. However, efficient identification of clinical candidate TCRs is complicated by the size and complexity of T cell repertoires and the challenges of working with primary T cells. Here, we present a high-throughput method to identify TCRs with high functional avidity from diverse human T cell repertoires. The approach uses massively parallel microfluidics to generate libraries of natively paired, full-length TCRαβ clones, from millions of primary T cells, which are then expressed in Jurkat cells. The TCRαβ-Jurkat libraries enable repeated screening and panning for antigen-reactive TCRs using peptide:MHC binding and cellular activation. We captured >2.9 million natively paired TCRαβ clonotypes from six healthy human donors and identified rare (<0.001% frequency) viral antigen–reactive TCRs. We also mined a tumor-infiltrating lymphocyte (TIL) sample from a melanoma patient and identified several tumor-specific TCRs, which, after expression in primary T cells, led to tumor cell killing.
Collapse
Affiliation(s)
| | | | | | - Natasha Oppermans
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - James M Heather
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Everett H Meyer
- Stanford Diabetes Research Center, Stanford University Medical Center, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University Medical Center, Stanford, CA, USA
| | - Robert E Hawkins
- Division of Cancer Sciences, University of Manchester, Manchester, UK.,Immetacyte Ltd, Manchester, UK
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.,AstraZeneca, Cambridge, MA, USA
| | | |
Collapse
|
16
|
Davola ME, Vito A, Wei J, El-Sayes N, Workenhe S, Mossman KL. Genetic modification of oncolytic viruses to enhance antitumor immunity. Methods Enzymol 2019; 635:231-250. [PMID: 32122548 DOI: 10.1016/bs.mie.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the many immunotherapies being developed and tested both preclinically and clinically, oncolytic viruses (OVs) are gaining traction as a forerunner in the search for potent new therapeutic agents, with a genetically engineered herpes simplex virus type 1 (HSV-1) recently approved by the FDA for the treatment of melanoma. The great potential of OVs to fight cancer is driving different approaches to improve OV-based therapy, with genetic modification of OVs to enhance host antitumor immunity being one of the most promising approaches. In this chapter we describe possible modifications in the OV genome that could increase its antitumor activity and immunostimulatory capacity, together with different methods to achieve these goals. Finally, we present different analyses to verify the desired genetic modification and evaluate its impact on host antitumor immunity in preliminary stages.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Samuel Workenhe
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
18
|
Sun H, Zhou N, Wang H, Huang D, Lang Z. Processing and targeting of proteins derived from polyprotein with 2A and LP4/2A as peptide linkers in a maize expression system. PLoS One 2017; 12:e0174804. [PMID: 28358924 PMCID: PMC5373624 DOI: 10.1371/journal.pone.0174804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/15/2017] [Indexed: 01/24/2023] Open
Abstract
In the transformation of multiple genes, gene fusion is an attractive alternative to other methods, including sexual crossing, re-transformation, and co-transformation, among others. The 2A peptide from the foot-and-mouth disease virus (FMDV) causes the co-translational “cleavage” of polyprotein and operates in a wide variety of eukaryotic cells. LP4, a linker peptide that originates from a natural polyprotein occurring in the seed of Impatiens balsamina, can be split between the first and second amino acids in post-translational processing. LP4/2A is a hybrid linker peptide that contains the first nine amino acids of LP4 and 20 amino acids of 2A. The three linkers have been used as a suitable technique to link the expression of genes in some transgenic plants, but to date the cleavage efficiency of three linkers have not been comprehensively demonstrated in the same transformation system, especially in the staple crop. To verify the functions of 2A, LP4, and LP4/2A linker peptides in transgenic maize, six fusion protein vectors that each encoded a single open reading frame (ORF) incorporating two report genes, Green Fluorescent Protein (GFP) and β-glucuronidase (GUS), separated by 2A (or modified 2A), LP4 or LP4/2A were assembled to compare the cleavage efficiency of the three linkers in a maize transient expression system. The results demonstrated the more protein production and higher cleavage splicing efficiency with the polyprotein construct linked by the LP4/2A peptide than those of the polyprotein constructs linked by 2A or LP4 alone. Seven other fusion proteins that each encoded a single ORF incorporating two different genes GFP and Red Fluorecent Protein (RFP) with different signal peptides were assembled to study the subcellular localization of genes linked by LP4/2A. The subcellular localization experiments suggested that both types of signal peptide, co-translational and post-translational, could lead their proteins to the target localization in maize protoplast transformed by LP4/2A polyprotein construct and it implied the LP4/2A linker peptide could alleviate the inhibition of 2A processing by the carboxy-terminal region of upstream protein of 2A when translocated into the ER.
Collapse
Affiliation(s)
- He Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ni Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Mol Ther 2015; 24:251-260. [PMID: 26435408 DOI: 10.1038/mt.2015.181] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The transcription factor Pax4 plays a critical role in the determination of α- versus β-cell lineage during endocrine pancreas development. In this study, we explored whether Pax4 gene transfer into α-cells could convert them into functional β-cells and thus provide therapeutic benefits for insulin-deficient diabetes. We found that Pax4 delivered by adenoviral vector, Ad5.Pax4, induced insulin expression and reduced glucagon expression in αTC1.9 cells. More importantly, these cells exhibited glucose-stimulated insulin secretion, a key feature of functional β-cells. When injected into streptozotocin-induced diabetic mice, Pax4-treated αTC1.9 cells significantly reduced blood glucose, and the mice showed better glucose tolerance, supporting that Pax4 gene transfer into αTC1.9 cells resulted in the formation of functional β-cells. Furthermore, treatment of primary human islets with Ad5.Pax4 resulted in significantly improved β-cell function. Detection of glucagon(+)/Pax4(+)/Insulin(+) cells argued for Pax4-induced α-to-β cell transitioning. This was further supported by quantification of glucagon and insulin bi-hormonal cells, which was significantly higher in Pax4-treated islets than in controls. Finally, direct administration of Ad5.Pax4 into the pancreas of insulin-deficient mice ameliorated hyperglycemia. Taken together, our data demonstrate that manipulating Pax4 gene expression represents a viable therapeutic strategy for the treatment of insulin deficient diabetes.
Collapse
|
20
|
Gil-Hoyos R, Miguel-Camacho J, Alemany R. Oncolytic adenovirus characterization: activity and immune responses. Methods Mol Biol 2014; 1089:117-132. [PMID: 24132482 DOI: 10.1007/978-1-62703-679-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Virotherapy in one of the main current applications of recombinant adenoviruses. Oncolytic adenovirus are designed to target tumors, replicate selectively in tumor cells, and elicit immune responses against tumor antigens. Transgene expression in replication-competent oncolytic vectors allows to explore multiple strategies to enhance the potential of virotherapy. In this chapter we describe common in vivo and in vitro techniques used to evaluate the potency and biodistribution of oncolytic viruses. Monitoring immune responses against viral and tumor antigens is crucial as the immune system determines the outcome of virotherapy.
Collapse
Affiliation(s)
- Raul Gil-Hoyos
- Institut Catala d'Oncologia, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | |
Collapse
|
21
|
Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol 2013; 13:67. [PMID: 23968294 PMCID: PMC3765190 DOI: 10.1186/1472-6750-13-67] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
Background Many biomedical applications require the expression or production of therapeutic hetero-multimeric proteins/protein complexes: in most cases only accomplished by co-ordinated co-expression within the same cell. Foot-and-mouth disease virus 2A (F2A) and ‘2A-like’ sequences are now widely used for this purpose. Since 2A mediates a co-translational ‘cleavage’ at its own C-terminus, sequences encoding multiple proteins (linked via 2As) can be concatenated into a single ORF: a single transgene. It has been shown that in some cases, however, the cleavage efficiency of shorter versions of F2A may be inhibited by the C-terminus of certain gene sequences immediately upstream of F2A. This paper describes further work to optimise F2A for co-expression strategies. Results We have inserted F2A of various lengths in between GFP and CherryFP ‘reporter’ proteins (in reciprocal or tandem arrangements). The co-expression of these proteins and cleavage efficiencies of F2As of various lengths were studied by in vitro coupled transcription and translation in rabbit reticulocyte lysates, western blotting of HeLa cell lysates and fluorescence microscopy. Conclusions Optimal and suboptimal lengths of F2A sequences were identified as a result of detailed ‘fine-tuning’ of the F2A sequence. Based on our data and the model according to which 2A activity is a product of its interaction with the exit tunnel of the ribosome, we suggest the length of the F2A sequence which is not ‘sensitive’ to the C-terminus of the upstream protein that can be successfully used for co-expression of two proteins for biomedical applications.
Collapse
|
22
|
Expression analysis of combinatorial genes using a bi-cistronic T2A expression system in porcine fibroblasts. PLoS One 2013; 8:e70486. [PMID: 23922997 PMCID: PMC3726604 DOI: 10.1371/journal.pone.0070486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/20/2013] [Indexed: 01/16/2023] Open
Abstract
In pig-to-primate xenotransplantation, multiple transgenic pigs are required to overcome a series of transplant rejections. The generation of multiple transgenic pigs either by breeding or the introduction of several mono-cistronic vectors has been hampered by the differential expression patterns of the target genes. To achieve simultaneous expression of multiple genes, a poly-cistronic expression system using the 2A peptide derived from the Thosea asigna virus (T2A) can be considered an alternative choice. Before applying T2A expression system to pig generation, the expression patterns of multiple genes in this system should be precisely evaluated. In this study, we constructed several bi-cistronic T2A expression vectors, which combine target genes that are frequently used in the xenotransplantation field, and introduced them into porcine fibroblasts. The proteins targeted to the same or different subcellular regions were efficiently expressed without affecting the localization or expression levels of the other protein. However, when a gene with low expression efficiency was inserted into the upstream region of the T2A sequences, the expression level of the downstream gene was significantly decreased compared with the expression efficiency without the insertion. A small interfering RNA targeting one gene in this system resulted in the significant downregulation of both the target gene and the other gene, indicating that multiple genes combined into a T2A expression vector can be considered as a single gene in terms of transcription and translation. In summary, the efficient expression of a downstream gene can be achieved if the expression of the upstream gene is efficient.
Collapse
|
23
|
Samsonov A, Zenser N, Zhang F, Zhang H, Fetter J, Malkov D. Tagging of genomic STAT3 and STAT1 with fluorescent proteins and insertion of a luciferase reporter in the cyclin D1 gene provides a modified A549 cell line to screen for selective STAT3 inhibitors. PLoS One 2013; 8:e68391. [PMID: 23950841 PMCID: PMC3732202 DOI: 10.1371/journal.pone.0068391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/29/2013] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic protein that is constitutively activated in numerous cancer cell lines and human cancers. Another STAT family member, STAT1, possesses cancer-inhibitory properties and can promote apoptosis in tumor cells upon activation. To better characterize these important cancer related genes, we tagged STAT3 and STAT1 loci with fluorescent protein (FP) sequences (RFP and GFP respectively) by targeted integration via zinc finger nuclease (ZFN)--mediated homologous recombination in A549 cells that express aberrantly activated STAT3. We inserted the FP transgenes at the N-terminus of the STAT3 locus and at the C-terminus of the STAT1 locus. The integration resulted in endogenous expression of fluorescent STAT3 and STAT1 chimeric fusion proteins. When stimulated with IL-6 or IFN-γ, the cells showed robust nuclear translocation of RFP-STAT3 or STAT1-GFP, respectively. Pre-incubation of cells with a known specific STAT3 inhibitor showed that IFN-γ-induced translocation of STAT1-GFP was not impaired. STAT3 activates multiple downstream targets such as genes involved in cell cycle progression - e.g. cyclin D1. To detect changes in expression of endogenous cyclin D1, we used ZFN technology to insert a secreted luciferase reporter behind the cyclin D1 promoter and separated the luciferase and cyclin D1 coding regions by a 2A sequence to induce a translational skip. The luciferase insertion was made in the RFP-STAT3/STAT1-GFP cell line to have all three reporters in a single cell line. Addition of a STAT3 inhibitor led to suppression of cyclin D1 promoter activity and cell growth arrest. The triple-modified cell line provides a simple and convenient method for high-content screening and pre-clinical testing of potential STAT3 inhibitors in live cells while ensuring that the STAT1 pathway is not affected. This approach of reporting endogenous gene activities using ZFN technology could be applied to other cancer targets.
Collapse
Affiliation(s)
- Andrey Samsonov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Nathan Zenser
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Fan Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Hongyi Zhang
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - John Fetter
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| | - Dmitry Malkov
- Cell-Based Assays/Reporter Cell Lines, Sigma-Aldrich, St. Louis, Missouri, United States of America
| |
Collapse
|
24
|
Protein coexpression using FMDV 2A: effect of "linker" residues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:291730. [PMID: 23878801 PMCID: PMC3710640 DOI: 10.1155/2013/291730] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022]
Abstract
Many biomedical applications absolutely require, or are substantially enhanced by, coexpression of multiple proteins from a single vector. Foot-and-mouth disease virus 2A (F2A) and “2A-like” sequences (e.g., Thosea asigna virus 2A; T2A) are used widely for this purpose since multiple proteins can be coexpressed by linking open reading frames (ORFs) to form a single cistron. The activity of F2A “cleavage” may, however, be compromised by both the use of shorter versions of F2A and the sequences (derived from multiple-purpose cloning sites) used to link F2A to the upstream protein. To characterise these effects, different lengths of F2A and T2A were inserted between green and cherry fluorescent proteins. Mutations were introduced in the linker region immediately upstream of both F2A- and T2A-based constructs and activities determined using both cell-free translation systems and transfected cells. In shorter versions of F2A, activity may be affected by both the C-terminal sequence of the protein upstream and, equally strikingly, the residues immediately upstream introduced during cloning. Mutations significantly improved activity for shorter versions of F2A but could decrease activity in the case of T2A. These data will aid the design of cloning strategies for the co-expression of multiple proteins in biomedical/biotechnological applications.
Collapse
|
25
|
Liu XQ, Liu HY, Chen QJ, Yang MM, Xin HY, Bai L, Peng JY, Zhao HB, Cao BY. Construction of Foot-and-mouth disease virus 2A-based bicistronic expression vector and coexpression of two genes in goat mammary epithelial cells. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an12235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using animal mammary glands as bioreactors for producing commercially important proteins is a cutting-edge direction in the field of biotechnology development and application. Dairy goats are an important dairy livestock, with roughage-resistance, fast propagation, long lactation periods and high milk production per bodyweight; these characteristics make dairy goats ideal for use as mammary gland bioreactors. Foot-and-mouth disease virus 2A (FMDV 2A) is an efficient viral cleavage element that mediates proteolytic cleavage independent of the presence of other FMDV sequences. It is often incorporated into recombinant vectors to generate cleavage in the presence of heterologous sequences. To achieve specific co-expression of two heterologous genes in goat mammary gland epithelial (GMGE) cells, a mammary gland-specific bicistronic expression vector, pFIEβ, containing the β-casein 5′ flanking sequence and FMDV 2A, was successfully constructed and the specific expression of human interleukin 2 (hIL-2) and enhanced green fluorescent protein (EGFP) was conducted in primary GMGE cells. Another bicistronic expression vector, pFIEC, driven by the cytomegalovirus promoter, was constructed as a positive control. In cells transfected with pFIEβ and pFIEC, RT-PCR verified the existence of recombinant fusion mRNA of hIL-2 upstream of EGFP within the FMDV 2A cassette fragment and western blot analysis showed the existence of the fusion between hIL-2 and EGFP. It is concluded that FMDV 2A generated specific co-expression of multiple genes for the first time in primary GMGE cells driven by the β-casein promoter.
Collapse
|
26
|
Poirier JT, Reddy PS, Idamakanti N, Li SS, Stump KL, Burroughs KD, Hallenbeck PL, Rudin CM. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001. J Gen Virol 2012; 93:2606-2613. [DOI: 10.1099/vir.0.046011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV–GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV–GFP were indistinguishable. The SVV–GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV–GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×1011 viral particles kg−1, a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.
Collapse
Affiliation(s)
- John T. Poirier
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | - Shawn S. Li
- Neotropix, Inc., 351 Phoenixville Pike, Malvern, PA 19355, USA
| | | | | | | | - Charles M. Rudin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Sun H, Lang Z, Zhu L, Huang D. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. PLANT CELL REPORTS 2012; 31:1877-87. [PMID: 22777591 DOI: 10.1007/s00299-012-1301-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/19/2012] [Accepted: 06/08/2012] [Indexed: 05/27/2023]
Abstract
The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.
Collapse
Affiliation(s)
- He Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Rojas JJ, Thorne SH. Theranostic potential of oncolytic vaccinia virus. Theranostics 2012; 2:363-73. [PMID: 22509200 PMCID: PMC3326721 DOI: 10.7150/thno.3724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed.
Collapse
|
29
|
Off-the-shelf adenoviral-mediated immunotherapy via bicistronic expression of tumor antigen and iMyD88/CD40 adjuvant. Mol Ther 2012; 20:1462-71. [PMID: 22434138 DOI: 10.1038/mt.2012.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent modest successes in ex vivo dendritic cell (DC) immunotherapy have motivated continued innovation in the area of DC manipulation and activation. Although ex vivo vaccine approaches continue to be proving grounds for new DC manipulation techniques, the intrinsic limits of ex vivo therapy, including high cost, minimal standardization, cumbersome delivery, and poor accessibility, incentivizes the development of vaccines compatible with in vivo DC targeting. We describe here a method to co-deliver both tumor-specific antigen (TSA) and an iMyD88/CD40 adjuvant (iMC), to DCs that combines toll-like receptor (TLR) and CD40 signaling. In this study, we demonstrate that simple TSA delivery via adenoviral vectors results in strong antitumor immunity. Addition of iMC delivered in a separate vector is insufficient to enhance this effect. However, when delivered simultaneously with TSA in a single bicistronic vector (BV), iMC is able to significantly enhance antigen-specific cytotoxic T-cell (CTL) responses and inhibit established tumor growth. This study demonstrates the spatial-temporal importance of concurrent DC activation and TSA presentation. Further, it demonstrates the feasibility of in vivo molecular enhancement of DCs necessary for effective antitumor immune responses.
Collapse
|
30
|
Comparison of IRES and F2A-based locus-specific multicistronic expression in stable mouse lines. PLoS One 2011; 6:e28885. [PMID: 22216134 PMCID: PMC3244433 DOI: 10.1371/journal.pone.0028885] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/16/2011] [Indexed: 12/24/2022] Open
Abstract
Efficient and stoichiometric expression of genes concatenated by bi- or multi-cistronic vectors has become an invaluable tool not only in basic biology to track and visualize proteins in vivo, but also for vaccine development and in the clinics for gene therapy. To adequately compare, in vivo, the effectiveness of two of the currently popular co-expression strategies - the internal ribosome entry site (IRES) derived from the picornavirus and the 2A peptide from the foot-and-mouth disease virus (FDMV) (F2A), we analyzed two locus-specific knock-in mouse lines co-expressing SRY-box containing gene 9 (Sox9) and enhanced green fluorescent protein (EGFP) linked by the IRES (Sox9IRES-EGFP) or the F2A (Sox9F2A-EGFP) sequence. Both the constructs expressed Sox9 and EGFP proteins in the appropriate Sox9 expression domains, with the IRES construct expressing reduced levels of EGFP compared to that of the F2A. The latter, on the other hand, produced about 42.2% Sox9-EGFP fusion protein, reflecting an inefficient ribosome ‘skipping’ mechanism. To investigate if the discrepancy in the ‘skipping’ process was locus-dependent, we further analyzed the FLAG3-Bapx1F2A-EGFP mouse line and found similar levels of fusion protein being produced. To assess if EGFP was hindering the ‘skipping’ mechanism, we examined another mouse line co-expressing Bagpipe homeobox gene 1 homolog (Bapx1), Cre recombinase and EGFP (Bapx1F2A-Cre-F2A-EGFP). While the ‘skipping’ was highly efficient between Bapx1 and Cre, the ‘skipping’ between Cre and EGFP was highly inefficient. We have thus demonstrated in our comparison study that the efficient and close to equivalent expression of genes linked by F2A is achievable in stable mouse lines, but the EGFP reporter may cause undesirable inhibition of the ‘skipping’ at the F2A sequence. Hence, the use of other reporter genes should be explored when utilizing F2A peptides.
Collapse
|
31
|
Stable expression of native Coagulation factor VIII using the 2A self-processing sequence and furin cleavage site. Thromb Res 2011; 128:e148-53. [DOI: 10.1016/j.thromres.2011.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/24/2011] [Accepted: 07/12/2011] [Indexed: 01/22/2023]
|
32
|
Fan ZC, Bird RC. An alternative -1/+2 open reading frame exists within viral N(pro)(1-19) region of bovine viral diarrhea virus SD-1. Virus Res 2011; 163:341-51. [PMID: 22079882 PMCID: PMC7172404 DOI: 10.1016/j.virusres.2011.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 12/26/2022]
Abstract
We previously reported the engineering of an N(pro)-disrupted bovine viral diarrhea virus (BVDV), BSD1-N(pro)/eGFP2A (Fan and Bird, 2008a). Here, we report that BSD1-N(pro)/eGFP2A survives a single nucleotide missing in its C-terminal eGFP region. By using our established reverse genetics system for BVDV, we confirm that the viral mutant is rescued through a -1/+2 ORF initiated in the N(pro)(1-19)/eGFP region of the mutant viral genome. We furthermore uncover that this event occurs in the N(pro)(1-19) region of BVDV strain SD-1. The rescued viral mutant showed dramatic reductions in levels of both viral RNA and viral protein in host cells. Although the mutant is similar to the native strain in viral kinetics, the peak yield of the mutant is decreased dramatically. These findings reveal the existence of an alternative -1/+2 ORF in the N(pro)(1-19) region during the replication of BVDV and open a new avenue to understand the life cycle and pathogenesis of pestiviruses.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA.
| | | |
Collapse
|
33
|
Fisicaro N, Londrigan SL, Brady JL, Salvaris E, Nottle MB, O'Connell PJ, Robson SC, d'Apice AJF, Lew AM, Cowan PJ. Versatile co-expression of graft-protective proteins using 2A-linked cassettes. Xenotransplantation 2011; 18:121-30. [PMID: 21496119 DOI: 10.1111/j.1399-3089.2011.00631.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Expression of multiple graft-protective proteins targeted to different locations (i.e., intracellular, cell surface, and secreted) has become an increasingly important goal in xenotransplantation. The 2A "ribosome skip" signal is used as a linker to enable transgene co-expression, but some studies have shown that post-translational modification and trafficking of 2A-linked proteins may be adversely affected depending on their position relative to 2A. We tested whether several relevant proteins, subject to a range of processing and localization mechanisms, could be efficiently co-expressed using the 2A system. METHODS Six expression cassettes were constructed, each containing up to four 2A-linked open reading frames, encoding combinations of human CD55, thrombomodulin (TBM), CD39, CTLA4-Ig and hygromycin resistance. Each linker incorporated a furin cleavage site to remove the carboxy-terminal extension that remains on upstream proteins after 2A processing. The cassettes were used to produce vectors for transfection, adenoviral transduction and transgenesis. Expression was detected by flow cytometry and/or Western blotting. RESULTS All proteins were expressed in the appropriate location following transient transfection of COS-7 cells, irrespective of the number of linked genes. The percentage of stable transfectants expressing a linked gene was increased 10-fold (from 4-5% to 58-67%) by incorporating the hygromycin resistance gene into the cassette. Stable transfection of transgenic GalT KO pig fibroblasts with a hygromycin- TBM-CD39 construct resulted in surface expression of both TBM and CD39 by the majority of hygromycin-resistant cells. Expression was maintained after flow cytometric sorting and expansion. Adenoviral transduction of NIT-1 mouse insulinoma cells with a TBM-CD39 construct resulted in strong expression of both genes on the cell surface. Mice transgenic for 3-gene (CD55- TBM-CD39) or 4-gene (CD55- TBM-CTLA4Ig-CD39) constructs expressed all genes except CD55. CONCLUSIONS These results confirm the versatility of the 2A system, and demonstrate that careful construct design can minimize potential problems with post-translational modification and trafficking. In addition, incorporation of a selection marker into the 2A-linked chain can dramatically increase the proportion of stable transfectants expressing proteins of interest. This provides a powerful method for the rapid modification of existing genetically modified pigs.
Collapse
Affiliation(s)
- Nella Fisicaro
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ochi T, Fujiwara H, Yasukawa M. Requisite considerations for successful adoptive immunotherapy with engineered T-lymphocytes using tumor antigen-specific T-cell receptor gene transfer. Expert Opin Biol Ther 2011; 11:699-713. [PMID: 21413911 DOI: 10.1517/14712598.2011.566853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although engineered T-cell-based antitumor immunotherapy using tumor-antigen-specific T-cell receptor (TCR) gene transfer is undoubtedly a promising strategy, a number of studies have revealed that it has several drawbacks. AREAS COVERED This review covers selected articles detailing recent progress in this field, not only for solid tumors, but also for leukemias. In terms of achieving uniform therapeutic quality of TCR gene-modified T cells as an 'off-the-shelf' product, the authors abstract and discuss the requisite conditions for successful outcome, including: i) the optimal target choice reflecting the specificity of the introduced TCR, ii) the quality and quantity of expressed TCRs in gene-modified T cells, and additional genetic modification reflecting enhanced antitumor functionality, and iii) 'on-' and 'off-target' adverse events caused by the quality of the introduced TCRs and other adverse events related to genetic modification itself. Readers will be able to readily abstract recent advances in TCR gene-transferred T-cell therapy, centering notably on efforts to obtain uniformity in the therapeutic functionality of engineered T cells. EXPERT OPINION Harmonizing the functionality and target specificity of TCR will allow the establishment of clinically useful adoptive immunotherapy in the near future.
Collapse
Affiliation(s)
- Toshiki Ochi
- Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791 0295, Japan.
| | | | | |
Collapse
|
35
|
Quirin C, Rohmer S, Fernández-Ulibarri I, Behr M, Hesse A, Engelhardt S, Erbs P, Enk AH, Nettelbeck DM. Selectivity and efficiency of late transgene expression by transcriptionally targeted oncolytic adenoviruses are dependent on the transgene insertion strategy. Hum Gene Ther 2011; 22:389-404. [PMID: 20939692 DOI: 10.1089/hum.2010.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase-uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies.
Collapse
Affiliation(s)
- Christina Quirin
- Helmholtz-University Group Oncolytic Adenoviruses @ DKFZ, German Cancer Research Center, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wohlgensinger V, Seger R, Ryan MD, Reichenbach J, Siler U. Signed outside: a surface marker system for transgenic cytoplasmic proteins. Gene Ther 2010; 17:1193-9. [PMID: 20445581 DOI: 10.1038/gt.2010.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic granulomatous disease is a primary immunodeficiency, comprising five molecular defects, characterized by an impaired respiratory burst activity of myeloid cells. We are currently developing a gene therapy vector for the p47phox-deficient form of chronic granulomatous disease. Classic intracellular immunostaining of the cytoplasmic p47phox transgene product, however, interferes with respiratory burst activity. In this study we report a new system for measuring p47phox expression: A single open reading frame encoding the surface marker protein ΔLNGFR (truncated low-affinity nerve growth factor receptor) linked to the p47phox transgene by the 2A oligopeptide coexpression technology. Translation generates two discrete products: p47phox localizing to the cytoplasm and 'ΔLNGFR-2A' localizing to the cell surface. Six weeks after transplantation of transduced autologous hematopoietic stem cells into p47-/- mice, the intracellular p47phox fluorescence-activated cell sorting (FACS) signal intensities corresponded to surface ΔLNGFR staining in monocytes, B cells, T cells and Sca I+ bone marrow cells in vivo. The p47phox cleavage product restored nicotinamide adenine dinucleotide phosphate-oxidase activity in granulocytes differentiated from transduced p47phox-/- murine hematopoietic stem cells ex vivo, in murine granulocytes/monocytes in vivo, and in transduced human monocyte derived macrophages from p47phox-deficient chronic granulomatous disease patients. In conclusion, this new marker system allows highly efficient, indirect detection of cytoplasmic transgene products by FACS surface staining.
Collapse
Affiliation(s)
- V Wohlgensinger
- Division of Immunology/Hematology/BMT, University Children's Hospital Zürich, Steinwiesstrasse 75, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 2009; 10:715-24. [PMID: 19763154 DOI: 10.1038/nrg2662] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Errors in protein synthesis disrupt cellular fitness, cause disease phenotypes and shape gene and genome evolution. Experimental and theoretical results on this topic have accumulated rapidly in disparate fields, such as neurobiology, protein biosynthesis and degradation and molecular evolution, but with limited communication among disciplines. Here, we review studies of error frequencies, the cellular and organismal consequences of errors and the attendant long-range evolutionary responses to errors. We emphasize major areas in which little is known, such as the failure rates of protein folding, in addition to areas in which technological innovations may enable imminent gains, such as the elucidation of translational missense error frequencies. Evolutionary responses to errors fall into two broad categories: adaptations that minimize errors and their attendant costs and adaptations that exploit errors for the organism's benefit.
Collapse
Affiliation(s)
- D Allan Drummond
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
38
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|