1
|
Ou Z, Yang L, Wu J, Xu M, Weng X, Xu G. Metabolic characteristics of ischaemic preconditioning induced performance improvement in Taekwondo athletes using LC‒MS/MS-based plasma metabolomics. Sci Rep 2024; 14:24609. [PMID: 39427043 PMCID: PMC11490506 DOI: 10.1038/s41598-024-76045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, ischemic preconditioning (IPC) has garnered significant attention in sports research. While IPC has demonstrated positive effects in high-intensity sports such as judo and swimming, its potential benefits for enhancing the performance of Taekwondo athletes have not been extensively studied. This study aimed to investigate the effects of IPC on taekwondo performance and to observe the metabolic characteristics associated with enhancing sports performance via LC‒MS/MS-based plasma metabolomics. Seventeen participants underwent the repeated frequency speed of kick test (FSKT) after IPC, along with pre- and post-exercise plasma metabolite analysis. Differential abundance metabolite analysis, enriched pathway analysis, and weighted gene coexpression network analysis (WGNCA) were employed to delve into metabolic characteristics. The findings highlighted a significant enhancement in FSKT performance in the experimental group. Metabolomic analysis revealed 109 differentially abundant metabolites, including Dl-lactate, hypoxanthine, acetylcarnitine, and acetylsalicylic acid. Enriched pathway analysis revealed pathways such as pentose and glucuronic acid interconversion, ascorbic acid and aldonic acid metabolism, the pentose phosphate pathway (PPP), and the Warburg effect. In conclusion, IPC can significantly increase the specific athletic abilities of Taekwondo athletes, with enhancements linked to anaerobic metabolism, PPP utilization, the Warburg effect for energy production, redox system stability, reduced muscle fatigue, and pain alleviation.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Jingyun Wu
- Department of Physical Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China.
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
2
|
Math HH, Kumar RS, Chakraborty B, Almansour AI, Perumal K, Kantli GB, Nayaka S. Antimicrobial Efficacy of 7-Hydroxyflavone Derived from Amycolatopsis sp. HSN-02 and Its Biocontrol Potential on Cercospora Leaf Spot Disease in Tomato Plants. Antibiotics (Basel) 2023; 12:1175. [PMID: 37508271 PMCID: PMC10376496 DOI: 10.3390/antibiotics12071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The actinomycete strain HSN-02 was isolated from the soil of a mining field in the Sandur region, Bellary, Karnataka, India. According to the morphological, cultural, physiological, and biochemical characteristics and the 16S rDNA sequence analysis, the strain HSN-02 was identified as Amycolatopsis sp. The antimicrobial activity strain HSN-02 presented stable and moderate inhibitory activity against human pathogens. In pot experiments in the greenhouse, the development of Cercospora leaf spot was markedly suppressed by treatment with the purified compound from the strain HSN-02, and the control efficacy was 45.04 ± 1.30% in Septoria lycopersici-infected tomato plants. A prominent compound was obtained from the fermentation broth of the strain HSN-02 using column chromatography and HPLC. The chemical structural analyses using UV, FTIR, HR-ESI-MS, and NMR confirmed that the compound produced by the strain HSN-02 is 7-hydroxyflavone. This investigation showed the role which the actinomycete strain can play in controlling leaf spots caused by S. lycopersici to reduce treatments with chemical fungicides.
Collapse
Affiliation(s)
- Halaswamy Hire Math
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Girish Babu Kantli
- Department of Life Sciences, PIAS, Parul University, Vadodara 391760, Gujarat, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
3
|
Wu X, Zou K, Liu X, Fu S, Zhang S, Duan Z, Zhou J, Liang Y. The novel distribution of intracellular and extracellular flavonoids produced by Aspergillus sp. Gbtc 2, an endophytic fungus from Ginkgo biloba root. Front Microbiol 2022; 13:972294. [PMID: 36386636 PMCID: PMC9643780 DOI: 10.3389/fmicb.2022.972294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Here, we reported a Ginkgo endophyte, Aspergillus sp. Gbtc 2, isolated from the root tissue. Its flavonoid biosynthesis pathway was reconstructed, the effect of phenylalanine on the production of flavonoids was explored, and the flavonoid metabolites were identified with the high-resolution Liquid chromatography–mass spectrometry (LC–MS). Some essential genes were annotated to form the upstream of the complete biosynthesis pathway, indicating that Aspergillus sp. Gbtc 2 has the ability to synthesize the C6–C3–C6 flavonoid monomers. HPLC results showed that adding an appropriate amount of phenylalanine could promote the production of flavonoids by Aspergillus Gbtc 2. LC–MS results depicted a significant difference in many flavonoids between intracellularly and extracellularly. Most of the flavonoids gathered in the cell contained glycosylation groups, while almost all components with multiple hydroxyls showed much higher concentrations extracellularly than intracellularly; they likely have different biological functions. A variety of these substances can be mapped back to the pathway pattern of flavonoid biosynthesis and prove the ability of flavonoid production once again. This study expanded the information on flavonoid biosynthesis in Aspergillus and provided a solid theoretical basis for developing the fungi into genetically engineered strains undertaking flavonoid industrialized production.
Collapse
Affiliation(s)
- Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Kai Zou
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Zhenchun Duan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Jin Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan, China
- *Correspondence: Yili Liang,
| |
Collapse
|
4
|
Coumarin Derivatives Inhibit ADP-Induced Platelet Activation and Aggregation. Molecules 2022; 27:molecules27134054. [PMID: 35807298 PMCID: PMC9268609 DOI: 10.3390/molecules27134054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarin was first discovered in Tonka bean and then widely in other plants. Coumarin has an anticoagulant effect, and its derivative, warfarin, is a vitamin K analogue that inhibits the synthesis of clotting factors and is more widely used in the clinical treatment of endovascular embolism. At present, many artificial chemical synthesis methods can be used to modify the structure of coumarin to develop many effective drugs with low toxicity. In this study, we investigated the effects of six coumarin derivatives on the platelet aggregation induced by adenosine diphosphate (ADP). We found that the six coumarin derivatives inhibited the active form of GPIIb/IIIa on platelets and hence inhibit platelet aggregation. We found that 7-hydroxy-3-phenyl 4H-chromen-4-one (7-hydroxyflavone) had the most severe effect. In addition, we further analyzed the downstream signal transduction of the ADP receptor, including the release of calcium ions and the regulation of cAMP, which were inhibited by the six coumarin derivatives selected in this study. These results suggest that coumarin derivatives inhibit coagulation by inhibiting the synthesis of coagulation factors and they may also inhibit platelet aggregation.
Collapse
|
5
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
6
|
Aguiar LO, Silva EDO, David JM. Biotransformation of chalcones and flavanones: An update on their bio-based derivatizations. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2073226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
7
|
Parthiban A, Sachithanandam V, Lalitha P, Elumalai D, Asha RN, Jeyakumar TC, Muthukumaran J, Jain M, Jayabal K, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. Isolation and biological evaluation 7-hydroxy flavone from Avicennia officinalis L: insights from extensive in vitro, DFT, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 41:2848-2860. [PMID: 35193476 DOI: 10.1080/07391102.2022.2039771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The flavonoid based 7-hydroxy flavone (PubChem CID: 5281894; molecular formula: C15H10O3) molecule has been isolated for the first time from the methanolic extract from the leaves of Avicennia officinalis L. in the tropical mangrove ecosystem of Andaman and Nicobar Islands (ANI), India. The molecular structure of bioactive compound was characterized by spectroscopic analysis, including FT-IR, 1H, 13C NMR spectroscopy and ESI-HRMS and elucidated as 7-hydroxy flavone. An anticancer activity of isolated 7-hydroxy flavone was evaluated by in vitro study against two different human cancer cell lines namely, HeLa (cervical cells) and MDA-MB231 (breast cells) and they exhibited promising anticancer activity with IC50 values are 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL, respectively. The antioxidant property of 7-hydroxy flavone at a standard concentration of 50 µg, was found to be (IC50) 5.5486 ± 0.81 µg/mL. In summary, this investigation provides evidence that 7-hydroxy flavone exhibits both anticancer and antioxidant properties. Meanwhile, the antimicrobial activity ability of 7-hydroxy flavone were also evaluated using three Gram positive and two Gram negative strain exhibited no antimicrobial activities. Density-functional theory (DFT) studies confirm the structure is global minima in the PES, from the optimized geometry FMO and MESP map analyzed. Further, the molecular docking and molecular dynamics simulation studies result shows that 7-hydroxy flavone has the better binding ability with anti-apoptotic Bcl-2 protein with the estimated free energy of binding of -6.3 kcal/mol. This bioactive compound may be act as drug candidate for treating various kinds of cancers. HighlightsA 7-hydroxy flavone molecule has been isolated from Avicennia officinalis.The isolated pure compound was subjected to spectral analysis such as FT-IR, 1H NMR, 13C NMR spectral data and HRMS analysis for skeleton of the molecule.The anticancer activity of 7-hydroxy flavone studied against Cervical (HeLa) cancer cell lines and breast (MDA-MB231) cancer cell lines with the IC50 values of 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL), respectively.The antioxidant properties of 7-hydroxy flavone were found to be (IC50) 5.5486 ± 0.81 µg/mL at a standard concentration of 50 µg.DFT, molecular docking and MD simulation results explained that 7-hydroxy flavone could be the most promising candidate to inhibit the function of anti-apoptotic Bcl-2 protein in cancerous cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | | | - Radhakrishnan Nandini Asha
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, Pope's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Thayalaraj Christopher Jeyakumar
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, The American College, Madurai, Tamil Nadu, India
| | - J Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | | | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
9
|
Tronina T, Mrozowska M, Bartmańska A, Popłoński J, Sordon S, Huszcza E. Simple and Rapid Method for Wogonin Preparation and Its Biotransformation. Int J Mol Sci 2021; 22:ijms22168973. [PMID: 34445678 PMCID: PMC8396506 DOI: 10.3390/ijms22168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4′-hydroxywogonin—a rare flavonoid which exhibits anticancer activity—whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
- Correspondence: ; Tel.: +48-71320-5019
| | - Monika Mrozowska
- Department of Histology and Embryology, Wroclaw Medical University, T. Chałubinskiego 6a, 50-368 Wroclaw, Poland;
| | - Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| |
Collapse
|
10
|
Wang F, Chen L, Chen S, Chen H, Liu Y. Microbial biotransformation of Pericarpium Citri Reticulatae (PCR) by Aspergillus niger and effects on antioxidant activity. Food Sci Nutr 2021; 9:855-865. [PMID: 33598169 PMCID: PMC7866601 DOI: 10.1002/fsn3.2049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pericarpium Citri Reticulatae (PCR), the mature fruit peel of Citrus reticulata Blanco and its different cultivars, is an important citrus by-product with beneficial health and nutritive properties. However, due to the lack of value-added methods for its development and utilization, a large amount of PCR is discarded or wasted. To explore a possibly more effective method to utilize PCR, we compared the chemical and biological differences before (CK) and after (CP) microbial transformation of PCR by Aspergillus niger. UPLC-ESI-MS/MS, HPLC, and LC-MS methods were used to compare the chemical profiles of CK and CP. The results demonstrated that microbial biotransformation by A. niger could transform flavonoid compounds by utilizing the carbohydrate and amino acid nutrients in PCR. This could also promote the accumulation of polyhydroxyflavones compounds in CP. The antioxidant assay demonstrated that CP had significantly greater free radical-scavenging activity than CK. The higher antioxidant activity of CP may result from the high level of flavonoids with associated phenolic hydroxyl groups. Microbial biotransformation is an effective method for improving the antioxidant capacity of PCR and may be effective and useful in other natural product situations.
Collapse
Affiliation(s)
- Fu Wang
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
- Food & Drugs Authority of NanchongNanchongChina
| | - Lin Chen
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| | - Shiwei Chen
- Food & Drugs Authority of NanchongNanchongChina
| | - Hongping Chen
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| | - Youping Liu
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| |
Collapse
|
11
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. The Callus of Phaseolus coccineus and Glycine max Biotransform Flavanones into the Corresponding Flavones. Molecules 2020; 25:E5767. [PMID: 33297500 PMCID: PMC7730475 DOI: 10.3390/molecules25235767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (T.J.); (E.K.-S.)
| | | | | |
Collapse
|
12
|
Kim BR, Han AR, Lee IS. Microbial Transformation of Flavonoids in Cultures of Mucor hiemalis. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are plant secondary metabolites that are well known for their health-promoting properties as nutraceuticals in diets. Bioavailability and biological activities of flavonoids vary among the individual subclasses with different patterns of substitution, inclusive of glycosylation, to their basic structures. Many flavonoids exist as glycosides in plants. This study investigated the possibility of glycosylation of flavonoids through biotransformation using filamentous fungi as whole-cell biocatalysts. Microbial transformations of ten flavonoids (four flavones, four flavonols, a flavanone, and an aurone) were performed in cultures of Mucor hiemalis KCTC 26779. As a result, a flavonoid glycoside was obtained which has not been described previously. The chemical structure of this product was elucidated as 6,2′-dimethoxyflavonol-3- O-β-d-glucopyranoside by analyzing 1-dimensional and 2-dimensional-nuclear magnetic resonance spectral and high-resolution electrospray ionization mass spectral data. This compound could be useful for further biological and bioavailability studies, as well as expanding the library of flavonoid derivatives.
Collapse
Affiliation(s)
- Bo-Ram Kim
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Ah-Reum Han
- Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Naturally Occurring Flavonoids and Isoflavonoids and Their Microbial Transformation: A Review. Molecules 2020; 25:molecules25215112. [PMID: 33153224 PMCID: PMC7663748 DOI: 10.3390/molecules25215112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Flavonoids and isoflavonoids are polyphenolic secondary metabolites usually produced by plants adapting to changing ecological environments over a long period of time. Therefore, their biosynthesis pathways are considered as the most distinctive natural product pathway in plants. Seemingly, the flavonoids and isoflavones from fungi and actinomycetes have been relatively overlooked. In this review, we summarized and classified the isoflavones and flavonoids derived from fungi and actinomycetes and described their biological activities. Increasing attention has been paid to bioactive substances derived from microorganism whole-cell biotransformation. Additionally, we described the utilization of isoflavones and flavonoids as substrates by fungi and actinomycetes for biotransformation through hydroxylation, methylation, halogenation, glycosylation, dehydrogenation, cyclisation, and hydrogenation reactions to obtain rare and highly active biofunctional derivatives. Overall, among all microorganisms, actinomycetes are the main producers of flavonoids. In our review, we also summarized the functional genes involved in flavonoid biosynthesis.
Collapse
|
14
|
Kostrzewa-Susłow E, Dymarska M, Guzik U, Wojcieszyńska D, Janeczko T. Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone. Molecules 2017; 22:molecules22111830. [PMID: 29077064 PMCID: PMC6150369 DOI: 10.3390/molecules22111830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and transformation type. The tested strain transformed flavanones and chalcones. The main type of transformation of compounds with a flavanone moiety was central heterocyclic C ring cleavage, leading to chalcone and dihydrochalcone structures, whereas chalcones underwent reduction to dihydrochalcones and cyclisation to a benzo-γ-pyrone moiety. Substrates with a C-2–C-3 double bond (flavones and isoflavones) were not transformed by Stenotrophomonas maltophilia KB2.
Collapse
Affiliation(s)
- Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
15
|
Dymarska M, Grzeszczuk J, Urbaniak M, Janeczko T, Pląskowska E, Stępień Ł, Kostrzewa-Susłow E. Glycosylation of 6-methylflavone by the strain Isaria fumosorosea KCH J2. PLoS One 2017; 12:e0184885. [PMID: 28981527 PMCID: PMC5628805 DOI: 10.1371/journal.pone.0184885] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/03/2017] [Indexed: 11/18/2022] Open
Abstract
Entomopathogenic fungi are known for their ability to carry out glycosylation of flavonoids, which usually results in the improvement of their stability and bioavailability. In this study we used a newly isolated strain of the entomopathogenic filamentous fungus Isaria fumosorosea KCH J2 as a biocatalyst. Our aim was to evaluate its ability to carry out the biotransformation of flavonoids and to obtain new flavonoid derivatives. The fungus was isolated from a spider's carcass and molecularly identified using analysis of the ITS1-ITS2 rDNA sequence. As a result of biotransformation of 6-methylflavone two new products were obtained: 6-methylflavone 8-O-β-D-(4"-O-methyl)-glucopyranoside and 6-methylflavone 4'-O-β-D-(4"-O-methyl)-glucopyranoside. Chemical structures of the products were determined based on spectroscopic methods (1H NMR, 13C NMR, COSY, HMBC, HSQC). Our research allowed us to discover a new species of filamentous fungus capable of carrying out glycosylation reactions and proved that I. fumosorosea KCH J2 is an effective biocatalyst for glycosylation of flavonoid compounds. For the first time we describe biotransformations of 6-methylflavone and the attachment of the sugar unit to the flavonoid substrate having no hydroxyl group. The possibility of using flavonoid aglycones is often limited by their low bioavailability due to poor solubility in water. The incorporation of a sugar unit improves the physical properties of tested compounds and thus increases the chance of using them as pharmaceuticals.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Plant Pathology and Mycology Division, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Urbaniak
- Plant-Microorganism Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Plant Pathology and Mycology Division, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Łukasz Stępień
- Plant-Microorganism Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Novel Structurally Related Flavones Augment Cell Death Induced by rhsTRAIL. Int J Mol Sci 2017; 18:ijms18061211. [PMID: 28587286 PMCID: PMC5486034 DOI: 10.3390/ijms18061211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) was identified as a powerful activator of apoptosis in tumor cells and one of the most promising candidates for cancer therapy with no toxicity against normal tissues. However, many tumor cells are resistant to TRAIL-induced apoptosis. The aim of this work was to analyze the improvement of the anticancer effect of rhsTRAIL (recombinant human soluble TRAIL) by nine flavones: 5-Hydroxyflavone, 6-Hydroxyflavone, 7-Hydroxyflavone and their new synthetic derivatives 5-acetoxyflavone, 5-butyryloxyflavone, 6-acetoxyflavone, 6-butyryloxyflavone, 7-acetoxyflavone and 7-butyryloxyflavone. We examined the cytotoxic and apoptotic effects of rhsTRAIL enhanced by novel structurally-related flavones on SW480 and SW620 colon cancer cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, the lactate dehydrogenase assay and annexin V-FITC fluorescence staining. We observed a slight difference in the activities of the flavones that was dependent on their chemical structure. Our study indicates that all nine flavones significantly augment cell death by rhsTRAIL (cytotoxicity range 36.8 ± 1.7%–91.4 ± 1.7%; apoptosis increase of 33.0 ± 0.7%–78.5 ± 0.9%). Our study demonstrates the potential use of tested flavones in TRAIL-based anticancer therapy and prevention.
Collapse
|
17
|
Zafar S, Ahmed R, Khan R. Biotransformation: a green and efficient way of antioxidant synthesis. Free Radic Res 2016; 50:939-48. [PMID: 27383446 DOI: 10.1080/10715762.2016.1209745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antioxidant compounds play a vital role in human physiology. They prevent the oxidation of biomolecules by scavenging free radicals produced during physiochemical processes and/or as a result of several pathological states. A balance between the reactive oxygen species (free radicals) and antioxidants is essential for proper physiological conditions. Excessive free radicals cause oxidative stress which can lead to several human diseases. Therefore, synthesis of the effective antioxidants is crucial in managing the oxidative stress. Biotransformation has evolved as an effective technique for the production of structurally diverse molecules with a wide range of biological activities. This methodology surpasses the conventional chemical synthesis due to the fact that enzymes, being specific in nature, catalyze reactions affording products with excellent regio- and stereoselectivities. Structural transformation of various classes of compounds such as alkaloids, steroids, flavonoids, and terpenes has been carried out through this technique. Several bioactive molecules, especially those having antioxidant potential have also been synthesized by using different biotransformation techniques and enzymes. Hydroxylated, glycosylated, and acylated derivatives of phenols, flavonoids, cinnamates, and other molecules have proven abilities as potential antioxidants. A critical review of the biotransformation of these compounds into potent antioxidant metabolites is presented here.
Collapse
Affiliation(s)
- Salman Zafar
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Rida Ahmed
- b Department of Basic Sciences , DHA Suffa University, DG-78, Off Khayaban-e-Tufail, Phase VII Ext. Defence Housing Authority , Karachi , Pakistan
| | - Rasool Khan
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| |
Collapse
|
18
|
Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:912484. [PMID: 26819623 PMCID: PMC4706877 DOI: 10.1155/2015/912484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.
Collapse
|
19
|
Mikell JR, Herath W, Khan IA. Eleven Microbial Metabolites of 6-Hydroxyflavanone. Chem Pharm Bull (Tokyo) 2015; 63:579-83. [PMID: 26235165 DOI: 10.1248/cpb.c15-00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
6-Hydroxyflavanone (1) when fermented with fungal culture Cunninghamella blakesleeana (ATCC 8688a) yielded flavanone 6-O-β-D-glucopyranoside (2), flavanone 6-sulfate (3), and 6-hydroxyflavanone 7-sulfate (4). Aspergillus alliaceus (ATCC 10060) also transformed 1 to metabolite 3 as well as 4'-hydroxyflavanone 6-sulfate (5) and 6,4'-dihydroxyflavanone (6). Beauveria bassiana (ATCC 7159) metabolized 1 to 6 and flavanone 6-O-β-D-4-O-methyglucopyranoside (7). Mucor ramannianus (ATCC 9628) transformed 1 to 2,4-cis-6-hydroxyflavan-4-ol (8), 2,4-trans-6-hydroxyflavan-4-ol (9), 2,4-trans-6,4'-dihydroxyflavan-4-ol 5-sulfate (10), 1,3-cis-1-methoxy-1-(2,5-dihydroxyphenyl)-3-phenylpropane (11) and 2,4-trans-flavan-4-ol 6-sulfate (12). Structures of the metabolic products were elucidated by means of spectroscopic data. None of the metabolites tested showed antibacterial, antifungal and antimalarial activities against selected organisms. However, weak antileishmanial activity was observed for metabolite 11 when tested against Leishmania donovani.
Collapse
Affiliation(s)
- Julie Rakel Mikell
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi
| | | | | |
Collapse
|
20
|
Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger. Appl Biochem Biotechnol 2015; 176:903-23. [DOI: 10.1007/s12010-015-1619-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
21
|
Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 2015; 33:214-223. [PMID: 25447420 DOI: 10.1016/j.biotechadv.2014.10.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/21/2014] [Accepted: 10/29/2014] [Indexed: 02/08/2023]
|
22
|
Huynh NT, Van Camp J, Smagghe G, Raes K. Improved release and metabolism of flavonoids by steered fermentation processes: a review. Int J Mol Sci 2014; 15:19369-88. [PMID: 25347275 PMCID: PMC4264116 DOI: 10.3390/ijms151119369] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023] Open
Abstract
This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| |
Collapse
|
23
|
Kostrzewa-Susłow E, Janeczko T. Microbial transformations of 7-methoxyflavanone. Molecules 2012; 17:14810-20. [PMID: 23519254 PMCID: PMC6269061 DOI: 10.3390/molecules171214810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022] Open
Abstract
Microbial transformations of racemic 7-methoxyflavanone using strains of the genus Aspergillus (A. niger KB, A. ochraceus 456) and the strain Penicillium chermesinum 113 were described. The strain A. niger KB catalysed carbonyl group reduction, leading to (±)-2,4-cis-7-methoxyflavan-4-ol. Biotransformation with the help of A. ochraceus 456 gave two products: (+)-2,4-trans-7-methoxyflavan-4-ol and 4'-hydroxy-7-methoxyflavone. Transformation by means of P. chermesinum 113 resulted in a dihydrochalcone product, 4,2'-dihydroxy-4'-methoxydihydrochalcone. DPPH scavenging activity test proved that all the biotransformations products have higher antioxidant activity that the substrate.
Collapse
Affiliation(s)
- Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland.
| | | |
Collapse
|