1
|
Jiang YH, Li T, Liu Y, Liu X, Jia S, Hou C, Chen G, Wang H, Ling S, Gao Q, Wang XR, Wang YF. Contribution of inwardly rectifying K + channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity. Glia 2023; 71:704-719. [PMID: 36408843 DOI: 10.1002/glia.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Collapse
Affiliation(s)
- Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2020; 46:2586-2600. [PMID: 33216313 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
3
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Liu XY, Li D, Li T, Liu H, Cui D, Liu Y, Jia S, Wang X, Jiao R, Zhu H, Zhang F, Qin D, Wang YF. Effects of Intranasal Oxytocin on Pup Deprivation-Evoked Aberrant Maternal Behavior and Hypogalactia in Rat Dams and the Underlying Mechanisms. Front Neurosci 2019; 13:122. [PMID: 30863276 PMCID: PMC6399306 DOI: 10.3389/fnins.2019.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Oxytocin (OT), a hypothalamic neuropeptide, applied through nasal approach (IAO), could improve maternal health during lactation that is disrupted by mother–baby separation; however, the regulation of IAO effects on maternal behaviors and lactation as well as the underlying mechanisms remain unclear. Using lactating rats, we observed effects of intermittent pup deprivation (PD) with and without IAO on maternal behaviors and lactation as well as the activity of OT neurons in the supraoptic nucleus (SON) and the activity of hypothalamic pituitary-adrenal axis, key factors determining the milk-letdown reflex during lactation and maternal behaviors. The results showed that PD reduced maternal behaviors and lactation efficiency of rat dams as indicated by significantly longer latency to retrieve their pups and low litter’s body weight gains during the observation, respectively. In addition, PD caused early involution of the mammary glands. IAO partially improved these changes in rat dams, which was not as significant as IAO effects on control dams. In the SON, PD decreased c-Fos and increased glial fibrillary acidic protein (GFAP) filaments significantly; IAO made PD-evoked c-Fos reduction insignificant while reduced GFAP filament significantly in PD dams. IAO tended to increase the levels of phosphorylated extracellular signal-regulated kinases (pERK) 1/2 in PD dams. Moreover, PD+IAO significantly increased plasma levels of dam adrenocorticotropic hormone and corticosterone but not OT levels. Lastly, PD+IAO tended to increase the level of corticotropin-releasing hormone in the SON. These results indicate that PD disrupts maternal behaviors and lactation by suppressing the activity of hypothalamic OT-secreting system through expansion of astrocytic processes, which are partially reversed by IAO through removing astrocytic inhibition of OT neuronal activity. However, the improving effect of IAO on the maternal health could be compromised by simultaneous activation of hypothalamic pituitary-adrenocortical axis.
Collapse
Affiliation(s)
- Xiao Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Pathogen, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
6
|
Liu XY, Cui D, Li D, Jiao R, Wang X, Jia S, Hou D, Li T, Liu H, Wang P, Wang YF. Oxytocin Removes Estrous Female vs. Male Preference of Virgin Male Rats: Mediation of the Supraoptic Nucleus Via Olfactory Bulbs. Front Cell Neurosci 2017; 11:327. [PMID: 29109676 PMCID: PMC5660071 DOI: 10.3389/fncel.2017.00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Social functions of oxytocin (OT) have been explored extensively; however, relationship between the effect of intranasally applied OT (nasal OT) on the social preference (SP) and intracerebral actions of endogenous OT remains unclear. To resolve this question, we first observed effects of nasal OT on the SP of virgin young adult male rats toward unfamiliar virgin estrous female (EF) vs. virgin male rats. The results showed that the test male rats exhibited significantly more times and longer duration accessing the female than the male, which were acutely eliminated by nasal OT. Then, we examined the approaches mediating nasal OT effects on the activity of potential brain targets in Western blots and found that nasal OT activated the olfactory bulbs (OBs) and the supraoptic nucleus (SON), but not the piriform cortex, amygdala and hippocampus as shown by significant changes in the expression of c-Fos and/or phosphorylated extracellular signal-regulated protein kinase (pERK) 1/2. Moreover, microinjection of TTX into the OBs blocked nasal OT-evoked increases in pERK1/2 levels as well as the molecular association between ERK1/2 and OT-neurophysin in the SON. Electrolytic lesions of the lateral olfactory tract did not significantly change the basal levels of pERK 1/2 in the SON; however, upon nasal OT, pERK 1/2 levels in the SON reduced significantly. Lastly, microinjection of L-aminoadipic acid (gliotoxin) into the SON to reduce OT levels reduced the duration of the test male’s accessing the EF and blocked the nasal OT-evoked increase in the duration of test male’s accessing the male while significantly increasing pERK1/2 levels in the amygdala. These findings reveal for the first time that nasal OT acutely eliminates virgin males’ SP to EFs via the OB-SON route and that OT neurons could mediate the social effects of nasal OT by suppressing social phobia generated in the amygdala.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wang P, Qin D, Wang YF. Oxytocin Rapidly Changes Astrocytic GFAP Plasticity by Differentially Modulating the Expressions of pERK 1/2 and Protein Kinase A. Front Mol Neurosci 2017; 10:262. [PMID: 28860967 PMCID: PMC5559427 DOI: 10.3389/fnmol.2017.00262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
The importance of astrocytes to normal brain functions and neurological diseases has been extensively recognized; however, cellular mechanisms underlying functional and structural plasticities of astrocytes remain poorly understood. Oxytocin (OT) is a neuropeptide that can rapidly change astrocytic plasticity in association with lactation, as indicated in the expression of glial fibrillary acidic protein (GFAP) in the supraoptic nucleus (SON). Here, we used OT-evoked changes in GFAP expression in astrocytes of male rat SON as a model to explore the cellular mechanisms underlying GFAP plasticity. The results showed that OT significantly reduced the expression of GFAP filaments and proteins in SON astrocytes in brain slices. In lysates of the SON, OT receptors (OTRs) were co-immunoprecipitated with GFAP; vasopressin (VP), a neuropeptide structurally similar to OT, did not significantly change GFAP protein level; OT-evoked depolarization of astrocyte membrane potential was sensitive to a selective OTR antagonist (OTRA) but not to tetanus toxin, a blocker of synaptic transmission. The effects of OT on GFAP expression and on astrocyte uptake of Bauer-Peptide, an astrocyte-specific dye, were mimicked by isoproterenol (IPT; β-adrenoceptor agonist), U0126 or PD98059, inhibitors of extracellular signal-regulated protein kinase (ERK) 1/2 kinase and blocked by the OTRA or KT5720, a protein kinase A (PKA) inhibitor. The effect of OT on GFAP expressions and its association with these kinases were simulated by mSIRK, an activator of Gβγ subunits. Finally, suckling increased astrocytic expression of the catalytic subunit of PKA (cPKA) at astrocytic processes while increasing the molecular associations of GFAP with cPKA and phosphorylated ERK (pERK) 1/2. Upon the occurrence of the milk-ejection reflex, spatial co-localization of the cPKA with GFAP filaments further increased, which was accompanied with increased molecular association of GFAP with pERK 1/2 but not with cPKA. Thus, OT-elicited GFAP plasticity is achieved by sequential activation of ERK 1/2 and PKA via OTR signaling pathway in an antagonistic but coordinated manner.
Collapse
Affiliation(s)
- Ping Wang
- School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Danian Qin
- Department of Physiology, Shantou UniversityShantou, China
| | - Yu-Feng Wang
- School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
8
|
Górski K, Misztal T, Marciniak E, Zielińska-Górska MK, Fülöp F, Romanowicz K. Involvement of salsolinol in the suckling-induced oxytocin surge in sheep. Domest Anim Endocrinol 2017; 59:75-80. [PMID: 28013044 DOI: 10.1016/j.domaniend.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
Abstract
During lactation, the main surge of oxytocin is induced by a suckling stimulus. Previous studies have shown that salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), a dopamine-derived compound, stimulates both the synthesis and the release of oxytocin in lactating sheep. The objective of the present study was to verify the hypothesis that salsolinol is involved in the mechanism that generates the oxytocin surge that occurs during suckling. Thus, a structural analogue of salsolinol, 1-methyl-3,4-dihydroisoquinoline (1MeDIQ), known to antagonize some of its actions, was infused into the third ventricle of the brain of lactating sheep nursing their offspring. Serial 30-min infusion of 1MeDIQ (4 × 60 μg/60 μL) or vehicle were administered at 30-min interval from 10 AM to 2 PM. The experimental period in every ewe consisted of a nonsuckling period (10 AM-12 PM) and a suckling period (12 PM-2 PM). Blood samples were collected every 10 min, to measure plasma oxytocin concentration by RIA. In control sheep, oxytocin surges of high amplitude were observed during the suckling period. The oxytocin surges induced by suckling were significantly (P < 0.01) diminished in sheep receiving 1MeDIQ infusions as compared to those that received control infusions. However, no significant effect of 1MeDIQ was observed on basal oxytocin release, before suckling. Furthermore, oxytocin release, as measured by the area under the hormone response curve (AUC), was significantly decreased by the administration of 1MeDIQ during the suckling period. This study shows that elimination of the effect of salsolinol within the central nervous system of lactating sheep attenuates the oxytocin surge induced by suckling. Therefore, salsolinol may be an important factor in the oxytocin-stimulating pathway in lactating mammals.
Collapse
Affiliation(s)
- K Górski
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| | - T Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - E Marciniak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - M K Zielińska-Górska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - F Fülöp
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Hungary
| | - K Romanowicz
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
9
|
Zhan JS, Gao K, Chai RC, Jia XH, Luo DP, Ge G, Jiang YW, Fung YWW, Li L, Yu ACH. Astrocytes in Migration. Neurochem Res 2017; 42:272-282. [PMID: 27837318 DOI: 10.1007/s11064-016-2089-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.
Collapse
Affiliation(s)
- Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Dao Peng Luo
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Yu Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yin-Wan Wendy Fung
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
10
|
Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2014; 753:209-28. [PMID: 25088178 DOI: 10.1016/j.ejphar.2014.07.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a nonapeptide with an impressive variety of physiological functions. Among them, the 'prosocial' effects have been discussed in several recent reviews, but the direct effects on male and female sexual behavior did receive much less attention so far. As our contribution to honor the lifelong interest of Berend Olivier in the control mechanisms of sexual behavior, we decided to explore the role of OT in the present review. In the successive sections, some physiological mechanisms and the 'pair-bonding' effects of OT will be discussed, followed by sections about desire, female appetitive and copulatory behavior, including lordosis and orgasm. At the male side, the effects on erection and ejaculation are reviewed, followed by a section about 'premature ejaculation' and a possible role of OT in its treatment. In addition to OT, serotonin receives some attention as one of the main mechanisms controlling the effects of OT. In the succeeding sections, the importance of OT for 'the fruits of labor' is discussed, as it plays an important role in both maternal and paternal behavior. Finally, we pay attention to an intriguing brain area, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), apparently functioning in both sexual and aggressive behavior, which are at first view completely opposite behavioral systems.
Collapse
Affiliation(s)
- J G Veening
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands; Department of Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - T R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | - M D Waldinger
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - S M Korte
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - B Olivier
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wang YF, Sun MY, Hou Q, Hamilton KA. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 2013; 37:1260-9. [PMID: 23406012 DOI: 10.1111/ejn.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | |
Collapse
|
12
|
Florence CM, Baillie LD, Mulligan SJ. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 2012; 7:e51124. [PMID: 23226475 PMCID: PMC3511399 DOI: 10.1371/journal.pone.0051124] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+)](o)) and pH homeostasis. Pathological brain states that result in [K(+)](o) and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+)](o) (3 mM). Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3-)) ions as swelling was significantly decreased when the influx of HCO(3-) was reduced. We found: 1) in HCO(3-) free extracellular solution astrocytes swelled by 5.4±0.7%, 2) when the activity of the sodium-bicarbonate cotransporter (NBC) was blocked the astrocytes swelled by 8.3±0.7%, and 3) in the presence of an extracellular carbonic anhydrase (CA) inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3-) efflux is known to occur through the γ-amino-butyric acid (GABA) channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3-) mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A) channel agonist muscimol. Astrocyte shrinkage from GABA(A) channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ). These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.
Collapse
Affiliation(s)
- Clare M. Florence
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Landon D. Baillie
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sean J. Mulligan
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Changes in the content of GFAP in the rat brain during pregnancy and the beginning of lactation. Neurosci Lett 2010; 484:197-200. [DOI: 10.1016/j.neulet.2010.08.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/08/2010] [Accepted: 08/17/2010] [Indexed: 11/23/2022]
|