1
|
Cai J, Ma W, Wang X, Chang H, Wei Z, Li J, Zeng M. The spike protein of SARS-CoV-2 induces inflammation and EMT of lung epithelial cells and fibroblasts through the upregulation of GADD45A. Open Med (Wars) 2023; 18:20230779. [PMID: 38025528 PMCID: PMC10656760 DOI: 10.1515/med-2023-0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 12/01/2023] Open
Abstract
Lung epithelial cells and fibroblasts poorly express angiotensin-converting enzyme 2, and the study aimed to investigate the role of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on inflammation and epithelial-mesenchymal transition (EMT) in two lung cell lines and to understand the potential mechanism. Lung epithelial cells (BEAS-2B) and fibroblasts (MRC-5) were treated with the spike protein, then inflammatory and EMT phenotypes were detected by enzyme-linked immunosorbent assay, Transwell, and western blot assays. RNA-sequence and bioinformatic analyses were performed to identify dysregulated genes. The roles of the candidate genes were further investigated. The results showed that treatment with 1,000 ng/mL of spike protein in two lung cell lines caused increased levels of IL-6, TNF-α, CXCL1, and CXCL3, and the occurrence of EMT. RNA-sequence identified 4,238 dysregulated genes in the spike group, and 18 candidate genes were involved in both inflammation- and EMT-related processes. GADD45A had the highest verified fold change (abs), and overexpression of GADD45A promoted the secretion of cytokines and EMT in the two lung cell lines. In conclusion, the spike protein induces inflammation and EMT in lung epithelial cells and fibroblasts by upregulating GADD45A, providing a new target to inhibit inflammation and EMT.
Collapse
Affiliation(s)
- Jiehao Cai
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Wenjie Ma
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Xiangshi Wang
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Hailing Chang
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Zhongqiu Wei
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Jingjing Li
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| | - Mei Zeng
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai201102, China
| |
Collapse
|
2
|
Verdiguel-Fernández L, Arredondo-Hernández R, Mejía-Estrada JA, Ortiz A, Verdugo-Rodríguez A, Orduña P, Ponce de León-Rosales S, Calva JJ, López-Vidal Y. Differential expression of biomarkers in saliva related to SARS-CoV-2 infection in patients with mild, moderate and severe COVID-19. BMC Infect Dis 2023; 23:602. [PMID: 37715121 PMCID: PMC10502992 DOI: 10.1186/s12879-023-08573-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe COVID-19 is a disease characterized by profound dysregulation of the innate immune system. There is a need to identify highly reliable prognostic biomarkers that can be rapidly assessed in body fluids for early identification of patients at higher risk for hospitalization and/or death. This study aimed to assess whether differential gene expression of immune response molecules and cellular enzymes, detected in saliva samples of COVID-19 patients, occurs according to disease severity staging. METHODS In this cross-sectional study, subjects with a COVID-19 diagnosis were classified as having mild, moderate, or severe disease based on clinical features. Transcripts of genes encoding 6 biomarkers, IL-1β, IL-6, IL-10, C-reactive protein, IDO1 and ACE2, were measured by RT‒qPCR in saliva samples of patients and COVID-19-free individuals. RESULTS The gene expression levels of all 6 biomarkers in saliva were significantly increased in severe disease patients compared to mild/moderate disease patients and healthy controls. A significant strong inverse relationship between oxemia and the level of expression of the 6 biomarkers (Spearman's correlation coefficient between -0.692 and -0.757; p < 0.001) was found. CONCLUSIONS Biomarker gene expression determined in saliva samples still needs to be validated as a potentially valuable predictor of severe clinical outcomes early at the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Lázaro Verdiguel-Fernández
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | | | - Jesús Andrés Mejía-Estrada
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | - Adolfo Ortiz
- Departamento de Microbiología E Inmunología, Unidad de Bioseguridad de Brucella, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Antonio Verdugo-Rodríguez
- Departamento de Microbiología E Inmunología, Laboratorio de Microbiología Molecular, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, UNAM, CDMX, México
| | | | - Juan José Calva
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", CDMX, México.
| | - Yolanda López-Vidal
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México.
| |
Collapse
|
3
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 2022; 39:279-290. [PMID: 34993766 DOI: 10.1007/s10585-021-10139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.,UG Programme, Indian Institute of Science, Bangalore, 560012, India
| | - Bazella Ashraf
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int J Gen Med 2021; 14:2807-2816. [PMID: 34194240 PMCID: PMC8238537 DOI: 10.2147/ijgm.s318949] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing global pandemic known as COVID-19. Based on the potential antiviral role of quercetin, and on its described anti-blood clotting, anti-inflammatory and antioxidant properties, we hypothesize that subjects with mild COVID-19 treated with Quercetin Phytosome® (QP), a novel bioavailable form of quercetin, may have a shorter time to virus clearance, a milder symptomatology, and higher probabilities of a benign earlier resolution of the disease. Methods In our 2-week, randomized, open-label, and controlled clinical study, we have enrolled 42 COVID-19 outpatients. Twenty-one have been treated with the standard of care (SC), and 21 with QP as add-on supplementation to the SC. Our main aims were to check virus clearance and symptoms. Results The interim results reveal that after 1 week of treatment, 16 patients of the QP group were tested negative for SARS-CoV-2 and 12 patients had all their symptoms diminished; in the SC group, 2 patients were tested SARS-CoV-2 negative and 4 patients had their symptoms partially improved. By 2 weeks, the remaining 5 patients of the QP group tested negative for SARS-CoV-2, whereas in the SC group out of 19 remaining patients, 17 tested negatives by week 2, one tested negative by week 3 and one patient, still positive, expired by day 20. Concerning blood parameters, the add on therapy with QP, reduced LDH (−35.5%), Ferritin (−40%), CRP (−54.8%) and D-dimer (−11.9%). Conclusion QP statistically shortens the timing of molecular test conversion from positive to negative, reducing at the same time symptoms severity and negative predictors of COVID-19.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milan, Italy.,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.,University of Health Sciences, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
The role of chemical biology in the fight against SARS-CoV-2. Biochem J 2021; 478:157-177. [PMID: 33439990 DOI: 10.1042/bcj20200514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023]
Abstract
Since late 2019, biomedical labs all over the world have been struggling to cope with the 'new normal' and to find ways in which they can contribute to the fight against COVID-19. In this unique situation where a biomedical issue dominates people's lives and the news cycle, chemical biology has a great deal to contribute. This review will describe the importance of science at the chemistry/biology interface to both understand and combat the SARS-CoV-2 pandemic.
Collapse
|
7
|
DePaul A. How to shift into COVID-19 research. Nature 2020:10.1038/d41586-020-03298-x. [PMID: 33219349 DOI: 10.1038/d41586-020-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|