1
|
Petersen JD, Lu J, Fitzgerald W, Zhou F, Blank PS, Matthies D, Zimmerberg J. The Delta variant SARS-CoV-2 spike protein uniquely promotes aggregation of pseudotyped viral particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.07.487415. [PMID: 35441171 PMCID: PMC9016642 DOI: 10.1101/2022.04.07.487415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Individuals infected with the SARS-CoV-2 Delta variant, lineage B.1.617.2, exhibit faster initial infection with a higher viral load than prior variants, and pseudotyped particles bearing the SARS-CoV-2 Delta variant spike protein induce a faster initial infection rate of target cells compared to those bearing other SARS-CoV-2 variant spikes. Here, we show that pseudotyped particles bearing the Delta variant spike form unique aggregates, as evidenced by negative stain and cryogenic electron microscopy (EM), flow cytometry, and nanoparticle tracking analysis. Viral particles pseudotyped with other SARS-CoV-2 spike variants do not show aggregation by any of these criteria. The contribution to infection kinetics of the Delta spike’s unique property to aggregate is discussed with respect to recent evidence for collective infection by other viruses. Irrespective of this intriguing possibility, spike-dependent aggregation is a new functional parameter of spike-expressing viral particles to evaluate in future spike protein variants.
Collapse
Affiliation(s)
- Jennifer D Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 12358 Parklawn Dr., Suite 250, North Bethesda, MD, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Payne TD, Klawa SJ, Jian T, Kim S, Papanikolas MJ, Freeman R, Schultz ZD. Catching COVID: Engineering Peptide-Modified Surface-Enhanced Raman Spectroscopy Sensors for SARS-CoV-2. ACS Sens 2021; 6:3436-3444. [PMID: 34491043 PMCID: PMC8442610 DOI: 10.1021/acssensors.1c01344] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 remains an ongoing issue across the globe, highlighting the need for a rapid, selective, and accurate sensor for SARS-CoV-2 and its emerging variants. The chemical specificity and signal amplification of surface-enhanced Raman spectroscopy (SERS) could be advantageous for developing a quantitative assay for SARS-CoV-2 with improved speed and accuracy over current testing methods. Here, we have tackled the challenges associated with SERS detection of viruses. As viruses are large, multicomponent species, they can yield different SERS signals, but also other abundant biomolecules present in the sample can generate undesired signals. To improve selectivity in complex biological environments, we have employed peptides as capture probes for viral proteins and developed an angiotensin-converting enzyme 2 (ACE2) mimetic peptide-based SERS sensor for SARS-CoV-2. The unique vibrational signature of the spike protein bound to the peptide-modified surface is identified and used to construct a multivariate calibration model for quantification. The sensor demonstrates a 300 nM limit of detection and high selectivity in the presence of excess bovine serum albumin. This work provides the basis for designing a SERS-based assay for the detection of SARS-CoV-2 as well as engineering SERS biosensors for other viruses in the future.
Collapse
Affiliation(s)
- Taylor D. Payne
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephen J. Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sanghoon Kim
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Micah J. Papanikolas
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Payne TD, Klawa SJ, Jian T, Kim SH, Papanikolas MJ, Freeman R, Schultz ZD. Catching COVID: Engineering Peptide-Modified Surface-Enhanced Raman Spectroscopy Sensors for SARS-CoV-2. ACS Sens 2021. [PMID: 34491043 DOI: 10.1021/acssensors.1c0134410.1021/acssensors.1c01344.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
COVID-19 remains an ongoing issue across the globe, highlighting the need for a rapid, selective, and accurate sensor for SARS-CoV-2 and its emerging variants. The chemical specificity and signal amplification of surface-enhanced Raman spectroscopy (SERS) could be advantageous for developing a quantitative assay for SARS-CoV-2 with improved speed and accuracy over current testing methods. Here, we have tackled the challenges associated with SERS detection of viruses. As viruses are large, multicomponent species, they can yield different SERS signals, but also other abundant biomolecules present in the sample can generate undesired signals. To improve selectivity in complex biological environments, we have employed peptides as capture probes for viral proteins and developed an angiotensin-converting enzyme 2 (ACE2) mimetic peptide-based SERS sensor for SARS-CoV-2. The unique vibrational signature of the spike protein bound to the peptide-modified surface is identified and used to construct a multivariate calibration model for quantification. The sensor demonstrates a 300 nM limit of detection and high selectivity in the presence of excess bovine serum albumin. This work provides the basis for designing a SERS-based assay for the detection of SARS-CoV-2 as well as engineering SERS biosensors for other viruses in the future.
Collapse
Affiliation(s)
- Taylor D Payne
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Micah J Papanikolas
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Lobo VR, Warwicker J. Predicted pH-dependent stability of SARS-CoV-2 spike protein trimer from interfacial acidic groups. Comput Struct Biotechnol J 2021; 19:5140-5148. [PMID: 34490059 PMCID: PMC8410215 DOI: 10.1016/j.csbj.2021.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Transition between receptor binding domain (RBD) up and down forms of the SARS-CoV-2 spike protein trimer is coupled to receptor binding and is one route by which variants can alter viral properties. It is becoming apparent that key roles in the transition are played by pH and a more compact closed form, termed locked. Calculations of pH-dependence are made for a large set of spike trimers, including locked form trimer structures that have recently become available. Several acidic sidechains become sufficiently buried in the locked form to give a predicted pH-dependence in the mild acidic range, with stabilisation of the locked form as pH reduces from 7.5 to 5, consistent with emerging characterisation by cryo-electron microscopy. The calculated pH effects in pre-fusion spike trimers are modulated mainly by aspartic acid residues, rather than the more familiar histidine role at mild acidic pH. These acidic sidechains are generally surface located and weakly interacting when not in a locked conformation. According to this model, their replacement (perhaps with asparagine) would remove the pH-dependent destabilisation of locked spike trimer conformations, and increase their recovery at neutral pH. This would provide an alternative or supplement to the insertion of disulphide linkages for stabilising spike protein trimers, with potential relevance for vaccine design.
Collapse
Affiliation(s)
- Vanessa R. Lobo
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, M1 7DN, UK
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, M1 7DN, UK
| |
Collapse
|
5
|
Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021; 102:001584. [PMID: 33855951 PMCID: PMC8290271 DOI: 10.1099/jgv.0.001584] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral 'genetic drift' or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
Collapse
Affiliation(s)
- Thomas P. Peacock
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wendy S. Barclay
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| |
Collapse
|
6
|
Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021; 11:3318. [PMID: 33558635 PMCID: PMC7870875 DOI: 10.1038/s41598-021-82833-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
Collapse
Affiliation(s)
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Teresa Pinto
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Yago Margolles
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | | | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexei Cuevas
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Camila Deride
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Héctor Mancilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Andreas Langer
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Juan Pablo Toledo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Department of Pediatrics and Children's Surgery Oriente, Universidad de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, 28938, Madrid, Spain
| | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science, Universidad de Santiago de Chile, Santiago, Chile
| | - German Rehren
- Technology Transfer and Licensing Office, Universidad Austral de Chile, Valdivia, Chile
| | - David Schwefel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Luis Ángel Fernandez
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Berking Biotechnology, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile.
- Institute of Philosophy and Complexity Sciences, Santiago, Chile.
| |
Collapse
|
7
|
Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 2021; 538:108-115. [PMID: 33220921 PMCID: PMC7664360 DOI: 10.1016/j.bbrc.2020.11.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| | - Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
8
|
Yazhini A, Sidhanta DSP, Srinivasan N. D614G substitution at the hinge region enhances the stability of trimeric SARS-CoV-2 spike protein. Bioinformation 2021; 17:439-445. [PMID: 34092964 DOI: 10.1101/2020.11.02.364273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 05/21/2023] Open
Abstract
Mutations in the spike protein of SARS-CoV-2 are the major causes for the modulation of ongoing COVID-19 infection. Currently, the D614G substitution in the spike protein has become dominant worldwide. It is associated with higher infectivity than the ancestral (D614)variant. We demonstrate using Gaussian network model-based normal mode analysis that the D614G substitution occurs at the hinge region that facilitates domain-domain motions between receptor binding domain and S2 region of the spike protein. Computer-aided mutagenesis and inter-residue energy calculations reveal that contacts involving D614 are energetically frustrated. However, contacts involving G614 are energetically favourable, implying the substitution strengthens residue contacts that are formed within as well as between protomers. We also find that the free energy difference (ΔΔG) between two variants is -2.6 kcal/mol for closed and -2.0 kcal/mol for 1-RBD up conformation. Thus, the thermodynamic stability has increased upon D614G substitution. Whereas the reverse mutation in spike protein structures having G614 substitution has resulted in the free energy differences of 6.6 kcal/mol and 6.3 kcal/mol for closed and 1-RBD up conformations, respectively, indicating that the overall thermodynamic stability has decreased. These results suggest that the D614G substitution modulates the flexibility of spike protein and confers enhanced thermodynamic stability irrespective of conformational states. This data concurs with the known information demonstrating increased availability of the functional form of spikeprotein trimer upon D614G substitution.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore, Karnataka, 560012, India
| | | | | |
Collapse
|
9
|
Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, Pohlmann A, King J, Portmann J, Halwe NJ, Ulrich L, Trüeb BS, Kelly JN, Fan X, Hoffmann B, Steiner S, Wang L, Thomann L, Lin X, Stalder H, Pozzi B, de Brot S, Jiang N, Cui D, Hossain J, Wilson M, Keller M, Stark TJ, Barnes JR, Dijkman R, Jores J, Benarafa C, Wentworth DE, Thiel V, Beer M. SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.27.357558. [PMID: 33140052 PMCID: PMC7605563 DOI: 10.1101/2020.10.27.357558] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic 1 . However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro , it provides a real competitive advantage in vivo , particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating.
Collapse
Affiliation(s)
- Bin Zhou
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Adriano Taddeo
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jasmine Portmann
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bettina Salome Trüeb
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N. Kelly
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Xiaoyu Fan
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Silvio Steiner
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Li Wang
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lisa Thomann
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Xudong Lin
- Battelle Memorial Institute, Atlanta, Georgia, United States of America
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Berta Pozzi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nannan Jiang
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Dan Cui
- Battelle Memorial Institute, Atlanta, Georgia, United States of America
| | - Jaber Hossain
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Malania Wilson
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew Keller
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Stark
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barnes
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - David E. Wentworth
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|