1
|
Shankar SS, Suresh A, Satyanarayana PT. Vaccine hesitancy towards COVID vaccine among unvaccinated frontline health care workers working in a designated COVID care center: A cross-sectional study. J Family Med Prim Care 2022; 11:5077-5081. [PMID: 36505612 PMCID: PMC9730940 DOI: 10.4103/jfmpc.jfmpc_1314_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Background Frontline health care workers (FLHCW) like doctors and nurses are bound to treat COVID patients being themselves not immune to disease are at a greater risk of COVID infection than the general population. The study was started with objectives to find out the vaccine hesitancy towards the COVID vaccine and to find out the factors associated with vaccine hesitancy among FLHCW working in a designated COVID care center. Materials and Methods The present study was a cross-sectional study carried out for a period of 6 months from Jan 2021 to June 2021 at a designated COVID care center. FLHCWs who were part of treating COVID patients were our study participants. Among them, FLHCWs who had not received even one dose of COVID vaccine (Covishield) were included in the study. FLHCWs who had been part of the COVID vaccine trial were excluded from the study. The sample size calculated based on a previous study found to be 240. The data collected were entered into a Microsoft office excel sheet, analyzed using SPSS v 22(IBM Corp). Descriptive statistics were applied, and parametric tests were used to compare among the groups with statistically significant P value lesser than 0.05. Results A total of 121 (52.6%) of FLHCWs were aged more than 30 years, 118 (51.5%) were male participants, 100 (43.5%) were paramedics by occupation, 51 (22.1%) had contracted COVID infection, 202 (87.8%) had received information, education, and communication (IEC) regarding COVID vaccine. FLHCWs more than 30 years, male participants, currently not working in COVIDward, FLHCWs who had not received IEC about COVIDvaccination and paramedics had higher scores of Vaccine hesitancy, and the difference was statistically significant indicating vaccine hesitancy. Conclusion Vaccine hesitancy remains a persistent global threat. Awareness campaigns can be tailored to specific locales to address identified concerns regarding vaccines.
Collapse
Affiliation(s)
- S Sindhu Shankar
- Post Graduate, Department of Community Medicine, Sri Devaraj Urs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| | - Anandu Suresh
- Post Graduate, Department of Community Medicine, Sri Devaraj Urs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| | - Pradeep T. Satyanarayana
- Assistant Professor, Department of Community Medicine, Sri Devaraj Urs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| |
Collapse
|
2
|
Brandys P, Montagutelli X, Merenkova I, Barut GT, Thiel V, Schork NJ, Trüeb B, Conquet L, Deng A, Antanasijevic A, Lee HK, Valière M, Sindhu A, Singh G, Herold J. A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice. Front Immunol 2022; 13:912898. [PMID: 35874687 PMCID: PMC9299372 DOI: 10.3389/fimmu.2022.912898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | | | - Güliz T. Barut
- Institute of Virology and Immunology, University of Bern, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nicholas J. Schork
- Quantitative Medicine & Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Bettina Trüeb
- Institute of Virology and Immunology, University of Bern, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Aihua Deng
- BTS Research, San Diego, CA, United States
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | | | | | | | | | - Jens Herold
- Phylex BioSciences, Del Mar, CA, United States
| |
Collapse
|
3
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Isaeva AA, Nesmeyanova VS, Volkova NV, Aripov VS, Shanshin DV, Karpenko LI, Belenkaya SV, Kazachinskaia EI, Volosnikova EA, Esina TI, Sergeev AA, Titova KA, Konyakhina YV, Zaykovskaya AV, Pyankov OV, Kolosova EA, Viktorina OE, Shelemba AA, Rudometov AP, Ilyichev AA. Are Hamsters a Suitable Model for Evaluating the Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? Viruses 2022; 14:1060. [PMID: 35632800 PMCID: PMC9146860 DOI: 10.3390/v14051060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Natalia V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Vazirbek S. Aripov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexandr A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Kseniia A. Titova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Yulia V. Konyakhina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Olesya E. Viktorina
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| |
Collapse
|
4
|
Novak H, Doering J, Ehrbar D, Donini O, Mantis NJ. Durable Immunity to Ricin Toxin Elicited by a Thermostable, Lyophilized Subunit Vaccine. mSphere 2021; 6:e0075021. [PMID: 34730377 PMCID: PMC8565519 DOI: 10.1128/msphere.00750-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
The development of vaccines against biothreat toxins like ricin (RT) is considered an integral component of the U.S. national security efforts. RiVax is a thermostable, lyophilized RT subunit vaccine adsorbed to aluminum salt adjuvant intended for use by military personnel and first responders. Phase 1 studies indicated that RiVax is safe and immunogenic, while a three-dose intramuscular vaccination regimen in nonhuman primates elicited protection against lethal dose RT challenge by aerosol. Here, we investigated, in a mouse model, the durability of RiVax-induced antibody responses and corresponding immunity to lethal dose RT challenge. Groups of mice were subcutaneously administered 3 or 1 μg of RiVax on days 0 and 21 and challenged with 10× 50% lethal dose (LD50) RT by injection at six different intervals over the course of 12 months. Serum antibody titers and epitope-specific competition assays were determined prior to each challenge. We report that the two-dose, 3-μg regimen conferred near-complete protection against RT challenge on day 35 and complete protection thereafter (challenge days 65, 95, 125, 245, and 365). The two-dose, 3-μg regimen was superior to the 1-μg regimen as revealed by slight differences in survival and morbidity scores (e.g., hypoglycemia, weight loss) on challenge days 35 and 365. In separate experiments, a single 3-μg RiVax vaccination proved only marginally effective at eliciting protective immunity to RT, underscoring the necessity of a prime-boost regimen to achieve full and long-lasting protection against RT. IMPORTANCE Ricin toxin (RT) is a notorious biothreat, as exposure to even trace amounts via injection or inhalation can induce organ failure and death within a matter of hours. In this study, we advance the preclinical testing of a candidate RT vaccine known as RiVax. RiVax is a recombinant nontoxic derivative of RT's enzymatic subunit that has been evaluated for safety in phase I clinical trials and efficacy in a variety of animal models. We demonstrate that two doses of RiVax are sufficient to protect mice from lethal dose RT challenge for up to 1 year. We describe kinetics and other immune parameters of the antibody response to RiVax and discuss how these immune factors may translate to humans.
Collapse
Affiliation(s)
- Hayley Novak
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
5
|
Rodrigues KA, Rodriguez-Aponte SA, Dalvie NC, Lee JH, Abraham W, Carnathan DG, Jimenez LE, Ngo JT, Chang JYH, Zhang Z, Yu J, Chang A, Nakao C, Goodwin B, Naranjo CA, Zhang L, Silva M, Barouch DH, Silvestri G, Crotty S, Love JC, Irvine DJ. Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. SCIENCE ADVANCES 2021; 7:eabj6538. [PMID: 34878851 PMCID: PMC8654298 DOI: 10.1126/sciadv.abj6538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
There is a need for additional rapidly scalable, low-cost vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to achieve global vaccination. Aluminum hydroxide (alum) adjuvant is the most widely available vaccine adjuvant but elicits modest humoral responses. We hypothesized that phosphate-mediated coanchoring of the receptor binding domain (RBD) of SARS-CoV-2 together with molecular adjuvants on alum particles could potentiate humoral immunity by promoting extended vaccine kinetics and codelivery of vaccine components to lymph nodes. Modification of RBD immunogens with phosphoserine (pSer) peptides enabled efficient alum binding and slowed antigen clearance, leading to notable increases in germinal center responses and neutralizing antibody titers in mice. Adding phosphate-containing CpG or saponin adjuvants to pSer-RBD:alum immunizations synergistically enhanced vaccine immunogenicity in mice and rhesus macaques, inducing neutralizing responses against SARS-CoV-2 variants. Thus, phosphate-mediated coanchoring of RBD and molecular adjuvants to alum is an effective strategy to enhance the efficacy of SARS-CoV-2 subunit vaccines.
Collapse
Affiliation(s)
- Kristen A. Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong Hyun Lee
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G. Carnathan
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis E. Jimenez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julia T. Ngo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason Y. H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Zeli Zhang
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Catherine Nakao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Libin Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan H. Barouch
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Kongsuphol P, Jia H, Cheng HL, Gu Y, Shunmuganathan BD, Chen MW, Lim SM, Ng SY, Tambyah PA, Nasir H, Gao X, Tay D, Kim S, Gupta R, Qian X, Kozma MM, Purushotorman K, McBee ME, MacAry PA, Sikes HD, Preiser PR. A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. COMMUNICATIONS MEDICINE 2021; 1:46. [PMID: 35602218 PMCID: PMC9053278 DOI: 10.1038/s43856-021-00045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Background Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor-RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.
Collapse
Affiliation(s)
- Patthara Kongsuphol
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Huan Jia
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Hoi Lok Cheng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Yue Gu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Bhuvaneshwari D/O Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Ming Wei Chen
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| | - Sing Mei Lim
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Paul Ananth Tambyah
- Department of Medicine, National University Hospital (NUH), 5 Lower Kent Ridge Rd, Singapore, 119074 Singapore
- The Infectious Diseases Translational Research Programme (ID TRP), NUS Yong Loo Lin School of Medicine, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Haziq Nasir
- Department of Medicine, National University Hospital (NUH), 5 Lower Kent Ridge Rd, Singapore, 119074 Singapore
| | - Xiaohong Gao
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| | - Dousabel Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Xinlei Qian
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Mary M. Kozma
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Megan E. McBee
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Paul A. MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Hadley D. Sikes
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Peter R. Preiser
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| |
Collapse
|
7
|
Dalvie NC, Tostanoski LH, Rodriguez-Aponte SA, Kaur K, Bajoria S, Kumru OS, Martinot AJ, Chandrashekar A, McMahan K, Mercado NB, Yu J, Chang A, Giffin VM, Nampanya F, Patel S, Bowman L, Naranjo CA, Yun D, Flinchbaugh Z, Pessaint L, Brown R, Velasco J, Teow E, Cook A, Andersen H, Lewis MG, Camp DL, Silverman JM, Kleanthous H, Joshi SB, Volkin DB, Biswas S, Love JC, Barouch DH. A modular protein subunit vaccine candidate produced in yeast confers protection against SARS-CoV-2 in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.13.452251. [PMID: 34282417 PMCID: PMC8288147 DOI: 10.1101/2021.07.13.452251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Departments of Infectious Diseases and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victoria M Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lesley Bowman
- SpyBiotech Limited, Oxford Business Park North, Oxford, OX4 2JZ, United Kingdom
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dongsoo Yun
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | - Danielle L Camp
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Sumi Biswas
- Bill&Melinda Gates Foundation, Seattle, WA 98109, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, Harvard, Cambridge, MA 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
8
|
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt KL, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front Immunol 2021; 12:710263. [PMID: 34267764 PMCID: PMC8276696 DOI: 10.3389/fimmu.2021.710263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States
| | - Natalie Brunette
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Minh N. Pham
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - Karla-Luise Herpoldt
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Brooke Fiala
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John C. Kraft
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Keara D. Malone
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Cassandra Ogohara
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Max Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Alyssa Blackstone
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Tyler N. Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allison J. Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Brook B, Chen J, Diray-Arce J, Doss-Gollin S, Leon MD, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031655 DOI: 10.1101/2021.05.20.444848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (∼80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence Summary Alum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.
Collapse
|
10
|
Dalvie NC, Biedermann AM, Rodriguez-Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor binding domain in engineered Komagataella phaffii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.15.440035. [PMID: 33880471 PMCID: PMC8057236 DOI: 10.1101/2021.04.15.440035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply on-going demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii ( Pichia pastoris ). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol-induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5x by alleviating protein folding stress. Removal of methanol from the production process enabled scale up to a 1,200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Andrew M. Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Sergio A. Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | | | | | | | | | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Laura E. Crowell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Seraphin Castelino
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mary Kate Tracey
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|