1
|
Hörberg J, Carlesso A, Reymer A. Mechanistic insights into ASO-RNA complexation: Advancing antisense oligonucleotide design strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102351. [PMID: 39494149 PMCID: PMC11530825 DOI: 10.1016/j.omtn.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Oligonucleotide drugs, an emerging modulator class, hold promise for targeting previously undruggable biomacromolecules. To date, only 18 oligonucleotide drugs, including sought-after antisense oligonucleotides (ASOs) and splice-switching oligonucleotides, have approval from the U.S. Food and Drug Administration. These agents effectively bind mRNA, inducing degradation or modulating splicing. Current oligonucleotide drug design strategies prioritize full Watson-Crick base pair (bp) complementarity, overlooking mRNA target three-dimensional shapes. Given that mRNA conformational diversity can impact hybridization, incorporating mRNA key structural properties into the design may expedite ASO lead discovery. Using atomistic molecular dynamics simulations inspired by experimental data, we demonstrate the advantages of incorporating common triple bps into the design of ASOs targeting RNA hairpin motifs, which are highly accessible regions for interactions. By using an RNA pseudoknot modified into an ASO-hairpin complex, we investigate the effects of ASO length and hairpin loop mutations. Our findings suggest that ASO-mRNA complex stability is influenced by ASO length, number of common triple bps, and the dynamic accessibility of bases in the hairpin loop. Our study offers new mechanistic insights into ASO-mRNA complexation and underscores the value of pseudoknots in constructing training datasets for machine learning models aimed at designing novel ASO leads.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Antonio Carlesso
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Jayasinghe M, Gao C, Yap G, Yeo BZJ, Vu LT, Tay DJW, Loh WX, Aw ZQ, Chen H, Phung DC, Hoang DV, Prajogo RC, Hooi L, Lim FQ, Pirisinu M, Mok CK, Lim KW, Tang SJ, Tan KS, Chow EKH, Chen L, Phan AT, Chu JJH, Le MTN. Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS NANO 2023; 17:21639-21661. [PMID: 37852618 PMCID: PMC10655171 DOI: 10.1021/acsnano.3c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.
Collapse
Affiliation(s)
- Migara
K. Jayasinghe
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Chang Gao
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Gracemary Yap
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Brendon Zhi Jie Yeo
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Luyen Tien Vu
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Douglas Jie Wen Tay
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen Xiu Loh
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Zhen Qin Aw
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Huixin Chen
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Dai Cao Phung
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Dong Van Hoang
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Rebecca Carissa Prajogo
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Lissa Hooi
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Fang Qing Lim
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Marco Pirisinu
- Department
of Biomedical Sciences, Jockey Club College of Veterinary Medicine
and Life Sciences, City University of Hong
Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Chee Keng Mok
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Kah Wai Lim
- Division
of Physics & Applied Physics, School of Physical & Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sze Jing Tang
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Kai Sen Tan
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Edward Kai-Hua Chow
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
- Department
of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117594, Singapore
| | - Anh Tuan Phan
- Division
of Physics & Applied Physics, School of Physical & Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Justin Jang Hann Chu
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Institute
of Molecular and Cell Biology, Agency for
Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Minh TN Le
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Institute
of Molecular and Cell Biology, Agency for
Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| |
Collapse
|
3
|
Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, Adewumagun IA, Adetobi TE. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomed Pharmacother 2023; 165:115099. [PMID: 37406505 DOI: 10.1016/j.biopha.2023.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.
Collapse
Affiliation(s)
| | | | | | - Folakemi Olujimi
- Department of Biochemistry, Mountain Top University, Prayer-City, Ogun State, Nigeria
| | | | - Bruno Chikere
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
4
|
Stincarelli MA, Rocca A, Antonelli A, Rossolini GM, Giannecchini S. Antiviral Activity of Oligonucleotides Targeting the SARS-CoV-2 Genomic RNA Stem-Loop Sequences within the 3'-End of the ORF1b. Pathogens 2022; 11:1286. [PMID: 36365037 PMCID: PMC9696570 DOI: 10.3390/pathogens11111286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023] Open
Abstract
Increased evidence shows vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited no long-term efficacy and limited worldwide availability, while existing antivirals and treatment options have only limited efficacy. In this study, the main objective was the development of antiviral strategies using nucleic acid-based molecules. To this purpose, partially overlapped 6-19-mer phosphorothioate deoxyoligonucleotides (S-ONs) designed on the SARS-CoV-2 genomic RNA stem-loop packaging sequences within the 3' end of the ORF1b were synthetized using the direct and complementary sequence. Among the S-ONs tested, several oligonucleotides exhibited a fifty percent inhibitory concentration antiviral activity ranging from 0.27 to 34 μM, in the absence of cytotoxicity. The S-ON with a scrambled sequence used in the same conditions was not active. Moreover, selected 10-mer S-ONs were tested using different infectious doses and against different SARS-CoV-2 variants, showing comparable antiviral activity that was abrogated when the central sequence was mutated. Experiments to evaluate the intracellular functional target localization of the S-ON inhibitory activity were also performed. Collectively the data indicate that the SARS-CoV-2 packaging region in the 3' end of the ORF1b may be a promising target candidate for further investigation to develop innovative nucleic-acid-based antiviral therapy.
Collapse
Affiliation(s)
| | - Arianna Rocca
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, I-50134 Florence, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
5
|
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022; 9:1044126. [PMID: 36387283 PMCID: PMC9649582 DOI: 10.3389/fmolb.2022.1044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
RNAs provide considerable opportunities as therapeutic agent to expand the plethora of classical therapeutic targets, from extracellular and surface proteins to intracellular nucleic acids and its regulators, in a wide range of diseases. RNA versatility can be exploited to recognize cell types, perform cell therapy, and develop new vaccine classes. Therapeutic RNAs (aptamers, antisense nucleotides, siRNA, miRNA, mRNA and CRISPR-Cas9) can modulate or induce protein expression, inhibit molecular interactions, achieve genome editing as well as exon-skipping. A common RNA thread, which makes it very promising for therapeutic applications, is its structure, flexibility, and binding specificity. Moreover, RNA displays peculiar structural plasticity compared to proteins as well as to DNA. Here we summarize the recent advances and applications of therapeutic RNAs, and the experimental and computational methods to analyze their structure, by biophysical techniques (liquid-state NMR, scattering, reactivity, and computational simulations), with a focus on dynamic and flexibility aspects and to binding analysis. This will provide insights on the currently available RNA therapeutic applications and on the best techniques to evaluate its dynamics and reactivity.
Collapse
Affiliation(s)
- Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, L.I.T.A/University of Milan, Milan, Italy
| | | | | | - Federica Chiappori
- National Research Council—Institute for Biomedical Technologies, Milan, Italy
| |
Collapse
|
6
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
7
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
9
|
Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021; 9:802766. [PMID: 35004621 PMCID: PMC8733332 DOI: 10.3389/fchem.2021.802766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing COVID-19/Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) pandemic has become a significant threat to public health and has hugely impacted societies globally. Targeting conserved SARS-CoV-2 RNA structures and sequences essential for viral genome translation is a novel approach to inhibit viral infection and progression. This new pharmacological modality compasses two classes of RNA-targeting molecules: 1) synthetic small molecules that recognize secondary or tertiary RNA structures and 2) antisense oligonucleotides (ASOs) that recognize the RNA primary sequence. These molecules can also serve as a "bait" fragment in RNA degrading chimeras to eliminate the viral RNA genome. This new type of chimeric RNA degrader is recently named ribonuclease targeting chimera or RIBOTAC. This review paper summarizes the sequence conservation in SARS-CoV-2 and the current development of RNA-targeting molecules to combat this virus. These RNA-binding molecules will also serve as an emerging class of antiviral drug candidates that might pivot to address future viral outbreaks.
Collapse
Affiliation(s)
| | | | | | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
10
|
Blanchard JW, Victor MB, Tsai LH. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol 2021; 18:25-39. [PMID: 34750588 DOI: 10.1038/s41582-021-00578-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is the most prevalent type of dementia. It is marked by severe memory loss and cognitive decline, and currently has limited effective treatment options. Although individuals with AD have common neuropathological hallmarks, emerging data suggest that the disease has a complex polygenic aetiology, and more than 25 genetic loci have been linked to an elevated risk of AD and dementia. Nevertheless, our ability to decipher the cellular and molecular mechanisms that underlie genetic susceptibility to AD, and its progression and severity, remains limited. Here, we discuss ongoing efforts to leverage genomic data from patients using cellular reprogramming technologies to recapitulate complex brain systems and build in vitro discovery platforms. Much attention has already been given to methodologies to derive major brain cell types from pluripotent stem cells. We therefore focus on technologies that combine multiple cell types to recreate anatomical and physiological properties of human brain tissue in vitro. We discuss the advances in the field for modelling four domains that have come into view as key contributors to the pathogenesis of AD: the blood-brain barrier, myelination, neuroinflammation and neuronal circuits. We also highlight opportunities for the field to further interrogate the complex genetic and environmental factors of AD using in vitro models.
Collapse
Affiliation(s)
- Joel W Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neuroscience, Black Family Stem Cell Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zhang C, Forsdyke DR. Potential Achilles heels of SARS-CoV-2 are best displayed by the base order-dependent component of RNA folding energy. Comput Biol Chem 2021; 94:107570. [PMID: 34500325 PMCID: PMC8410225 DOI: 10.1016/j.compbiolchem.2021.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
The base order-dependent component of folding energy has revealed a highly conserved region in HIV-1 genomes that associates with RNA structure. This corresponds to a packaging signal that is recognized by the nucleocapsid domain of the Gag polyprotein. Long viewed as a potential HIV-1 "Achilles heel," the signal can be targeted by a new antiviral compound. Although SARS-CoV-2 differs in many respects from HIV-1, the same technology displays regions with a high base order-dependent folding energy component, which are also highly conserved. This indicates structural invariance (SI) sustained by natural selection. While the regions are often also protein-encoding (e. g. NSP3, ORF3a), we suggest that their nucleic acid level functions can be considered potential "Achilles heels" for SARS-CoV-2, perhaps susceptible to therapies like those envisaged for AIDS. The ribosomal frameshifting element scored well, but higher SI scores were obtained in other regions, including those encoding NSP13 and the nucleocapsid (N) protein.
Collapse
Affiliation(s)
- Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|