1
|
Espinosa O, Mora L, Sanabria C, Ramos A, Rincón D, Bejarano V, Rodríguez J, Barrera N, Álvarez-Moreno C, Cortés J, Saavedra C, Robayo A, Franco OH. Predictive models for health outcomes due to SARS-CoV-2, including the effect of vaccination: a systematic review. Syst Rev 2024; 13:30. [PMID: 38229123 PMCID: PMC10790449 DOI: 10.1186/s13643-023-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The interaction between modelers and policymakers is becoming more common due to the increase in computing speed seen in recent decades. The recent pandemic caused by the SARS-CoV-2 virus was no exception. Thus, this study aims to identify and assess epidemiological mathematical models of SARS-CoV-2 applied to real-world data, including immunization for coronavirus 2019 (COVID-19). METHODOLOGY PubMed, JSTOR, medRxiv, LILACS, EconLit, and other databases were searched for studies employing epidemiological mathematical models of SARS-CoV-2 applied to real-world data. We summarized the information qualitatively, and each article included was assessed for bias risk using the Joanna Briggs Institute (JBI) and PROBAST checklist tool. The PROSPERO registration number is CRD42022344542. FINDINGS In total, 5646 articles were retrieved, of which 411 were included. Most of the information was published in 2021. The countries with the highest number of studies were the United States, Canada, China, and the United Kingdom; no studies were found in low-income countries. The SEIR model (susceptible, exposed, infectious, and recovered) was the most frequently used approach, followed by agent-based modeling. Moreover, the most commonly used software were R, Matlab, and Python, with the most recurring health outcomes being death and recovery. According to the JBI assessment, 61.4% of articles were considered to have a low risk of bias. INTERPRETATION The utilization of mathematical models increased following the onset of the SARS-CoV-2 pandemic. Stakeholders have begun to incorporate these analytical tools more extensively into public policy, enabling the construction of various scenarios for public health. This contribution adds value to informed decision-making. Therefore, understanding their advancements, strengths, and limitations is essential.
Collapse
Affiliation(s)
- Oscar Espinosa
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Laura Mora
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Cristian Sanabria
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Antonio Ramos
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Duván Rincón
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Valeria Bejarano
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jhonathan Rodríguez
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Nicolás Barrera
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | | | - Jorge Cortés
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Carlos Saavedra
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Adriana Robayo
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Oscar H Franco
- University Medical Center Utrecht, Utrecht University & Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA
| |
Collapse
|
2
|
Sharmin M, Manivannan M, Woo D, Sorel O, Auclair JR, Gandhi M, Mujawar I. Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities. Front Public Health 2023; 11:1185720. [PMID: 37841738 PMCID: PMC10570742 DOI: 10.3389/fpubh.2023.1185720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Background SARS-CoV-2 PCR testing data has been widely used for COVID-19 surveillance. Existing COVID-19 forecasting models mainly rely on case counts obtained from qPCR results, even though the binary PCR results provide a limited picture of the pandemic trajectory. Most forecasting models have failed to accurately predict the COVID-19 waves before they occur. Recently a model utilizing cross-sectional population cycle threshold (Ct-the number of cycles required for the fluorescent signal to cross the background threshold) values obtained from PCR tests (Ct-based model) was developed to overcome the limitations of using only binary PCR results. In this study, we aimed to improve on COVID-19 forecasting models using features derived from the Ct-based model, to detect epidemic waves earlier than case-based trajectories. Methods PCR data was collected weekly at Northeastern University (NU) between August 2020 and January 2022. Campus and county epidemic trajectories were generated from case counts. A novel forecasting approach was developed by enhancing a recent deep learning model with Ct-based features and applied in Suffolk County and NU campus. For this, cross-sectional Ct values from PCR data were used to generate Ct-based epidemic trajectories, including effective reproductive rate (Rt) and incidence. The improvement in forecasting performance was compared using absolute errors and residual squared errors with respect to actual observed cases at the 7-day and 14-day forecasting horizons. The model was also tested prospectively over the period January 2022 to April 2022. Results Rt curves estimated from the Ct-based model indicated epidemic waves 12 to 14 days earlier than Rt curves from NU campus and Suffolk County cases, with a correlation of 0.57. Enhancing the forecasting models with Ct-based information significantly decreased absolute error (decrease of 49.4 and 221.5 for the 7 and 14-day forecasting horizons) and residual squared error (40.6 and 217.1 for the 7 and 14-day forecasting horizons) compared to the original model without Ct features. Conclusion Ct-based epidemic trajectories can herald an earlier signal for impending epidemic waves in the community and forecast transmission peaks. Moreover, COVID-19 forecasting models can be enhanced using these Ct features to improve their forecasting accuracy. In this study, we make the case that public health agencies should publish Ct values along with the binary positive/negative PCR results. Early and accurate forecasting of epidemic waves can inform public health policies and countermeasures which can mitigate spread.
Collapse
Affiliation(s)
- Mahfuza Sharmin
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Mani Manivannan
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - David Woo
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Océane Sorel
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, Northeastern University, Burlington, MA, United States
| | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Imran Mujawar
- Thermo Fisher Scientific, South San Francisco, CA, United States
| |
Collapse
|
3
|
Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep 2022; 12:9950. [PMID: 35739136 PMCID: PMC9226045 DOI: 10.1038/s41598-022-13495-5] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
The objective of this systematic review and meta-analyses is to estimate the prevalence of long-COVID in children and adolescents and to present the full spectrum of symptoms present after acute COVID-19. We have used PubMed and Embase to identify observational studies published before February 10th, 2022 that included a minimum of 30 patients with ages ranging from 0 to 18 years that met the National Institute for Healthcare Excellence (NICE) definition of long-COVID, which consists of both ongoing (4 to 12 weeks) and post-COVID-19 (≥ 12 weeks) symptoms. Random-effects meta-analyses were performed using the MetaXL software to estimate the pooled prevalence with a 95% confidence interval (CI). Heterogeneity was assessed using I2 statistics. The Preferred Reporting Items for Systematic Reviewers and Meta-analysis (PRISMA) reporting guideline was followed (registration PROSPERO CRD42021275408). The literature search yielded 8373 publications, of which 21 studies met the inclusion criteria, and a total of 80,071 children and adolescents were included. The prevalence of long-COVID was 25.24%, and the most prevalent clinical manifestations were mood symptoms (16.50%), fatigue (9.66%), and sleep disorders (8.42%). Children infected by SARS-CoV-2 had a higher risk of persistent dyspnea, anosmia/ageusia, and/or fever compared to controls. Limitations of the studies analyzed include lack of standardized definitions, recall, selection, misclassification, nonresponse and/or loss of follow-up, and a high level of heterogeneity.
Collapse
Affiliation(s)
- Sandra Lopez-Leon
- Quantitative Safety & Epidemiology, Novartis Pharmaceuticals, East Hanover, NJ, USA
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, NJ, USA
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación básica, Instituto Nacional de Cancerología, Mexico, Mexico
| | | | - Carol Perelman
- Universidad Nacional Autónoma de México (UNAM), SOMEDICyT, RedMPC, Mexico City, Mexico
| | | | - Paulina A Rebolledo
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sonia Villapol
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, R10-117, Houston, TX, 77030, USA.
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, USA.
| |
Collapse
|