1
|
Sun K, Bhiman JN, Tempia S, Kleynhans J, Madzorera VS, Mkhize Q, Kaldine H, McMorrow ML, Wolter N, Moyes J, Carrim M, Martinson NA, Kahn K, Lebina L, du Toit JD, Mkhencele T, von Gottberg A, Viboud C, Moore PL, Cohen C. SARS-CoV-2 correlates of protection from infection against variants of concern. Nat Med 2024; 30:2805-2812. [PMID: 39060660 DOI: 10.1038/s41591-024-03131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Serum neutralizing antibodies (nAbs) induced by vaccination have been linked to protection against symptomatic and severe coronavirus disease 2019. However, much less is known about the efficacy of nAbs in preventing the acquisition of infection, especially in the context of natural immunity and against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune-escape variants. Here we conducted mediation analysis to assess serum nAbs induced by prior SARS-CoV-2 infections as potential correlates of protection against Delta and Omicron infections, in rural and urban household cohorts in South Africa. We find that, in the Delta wave, D614G nAbs mediate 37% (95% confidence interval: 34-40%) of the total protection against infection conferred by prior exposure to SARS-CoV-2, and that protection decreases with waning immunity. In contrast, Omicron BA.1 nAbs mediate 11% (95% confidence interval: 9-12%) of the total protection against Omicron BA.1 or BA.2 infections, due to Omicron's neutralization escape. These findings underscore that correlates of protection mediated through nAbs are variant specific, and that boosting of nAbs against circulating variants might restore or confer immune protection lost due to nAb waning and/or immune escape. However, the majority of immune protection against SARS-CoV-2 conferred by natural infection cannot be fully explained by serum nAbs alone. Measuring these and other immune markers including T cell responses, both in the serum and in other compartments such as the nasal mucosa, may be required to comprehensively understand and predict immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Jinal N Bhiman
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vimbai Sharon Madzorera
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Qiniso Mkhize
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Haajira Kaldine
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Meredith L McMorrow
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maimuna Carrim
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, MD, USA
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Jacques D du Toit
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulisa Mkhencele
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Penny L Moore
- SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Hu WH, Cai HL, Yan HC, Wang H, Sun HM, Wei YY, Hao YT. Protective effectiveness of previous infection against subsequent SARS-Cov-2 infection: systematic review and meta-analysis. Front Public Health 2024; 12:1353415. [PMID: 38966699 PMCID: PMC11222391 DOI: 10.3389/fpubh.2024.1353415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Background The protective effectiveness provided by naturally acquired immunity against SARS-CoV-2 reinfection remain controversial. Objective To systematically evaluate the protective effect of natural immunity against subsequent SARS-CoV-2 infection with different variants. Methods We searched for related studies published in seven databases before March 5, 2023. Eligible studies included in the analysis reported the risk of subsequent infection for groups with or without a prior SARS-CoV-2 infection. The primary outcome was the overall pooled incidence rate ratio (IRR) of SARS-CoV-2 reinfection/infection between the two groups. We also focused on the protective effectiveness of natural immunity against reinfection/infection with different SARS-CoV-2 variants. We used a random-effects model to pool the data, and obtained the bias-adjusted results using the trim-and-fill method. Meta-regression and subgroup analyses were conducted to explore the sources of heterogeneity. Sensitivity analysis was performed by excluding included studies one by one to evaluate the stability of the results. Results We identified 40 eligible articles including more than 20 million individuals without the history of SARS-CoV-2 vaccination. The bias-adjusted efficacy of naturally acquired antibodies against reinfection was estimated at 65% (pooled IRR = 0.35, 95% CI = 0.26-0.47), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.15, 95% CI = 0.08-0.26) than asymptomatic infection (pooled IRR = 0.40, 95% CI = 0.29-0.54). Meta-regression revealed that SARS-CoV-2 variant was a statistically significant effect modifier, which explaining 46.40% of the variation in IRRs. For different SARS-CoV-2 variant, the pooled IRRs for the Alpha (pooled IRR = 0.11, 95% CI = 0.06-0.19), Delta (pooled IRR = 0.19, 95% CI = 0.15-0.24) and Omicron (pooled IRR = 0.61, 95% CI = 0.42-0.87) variant were higher and higher. In other subgroup analyses, the pooled IRRs of SARS-CoV-2 infection were statistically various in different countries, publication year and the inclusion end time of population, with a significant difference (p = 0.02, p < 0.010 and p < 0.010), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. Despite the heterogeneity in included studies, sensitivity analyses showed stable results. Conclusion Previous SARS-CoV-2 infection provides protection against pre-omicron reinfection, but less against omicron. Ongoing viral mutation requires attention and prevention strategies, such as vaccine catch-up, in conjunction with multiple factors.
Collapse
Affiliation(s)
- Wei-Hua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Huan-Le Cai
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan-Chang Yan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Min Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yong-Yue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Tao Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Hertz T, Levy S, Ostrovsky D, Oppenheimer H, Zismanov S, Kuzmina A, Friedman LM, Trifkovic S, Brice D, Chun-Yang L, Cohen-Lavi L, Shemer-Avni Y, Cohen-Lahav M, Amichay D, Keren-Naus A, Voloshin O, Weber G, Najjar-Debbiny R, Chazan B, McGargill MA, Webby R, Chowers M, Novack L, Novack V, Taube R, Nesher L, Weinstein O. Correlates of protection for booster doses of the SARS-CoV-2 vaccine BNT162b2. Nat Commun 2023; 14:4575. [PMID: 37516771 PMCID: PMC10387073 DOI: 10.1038/s41467-023-39816-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
Vaccination, especially with multiple doses, provides substantial population-level protection against COVID-19, but emerging variants of concern (VOC) and waning immunity represent significant risks at the individual level. Here we identify correlates of protection (COP) in a multicenter prospective study following 607 healthy individuals who received three doses of the Pfizer-BNT162b2 vaccine approximately six months prior to enrollment. We compared 242 individuals who received a fourth dose to 365 who did not. Within 90 days of enrollment, 239 individuals contracted COVID-19, 45% of the 3-dose group and 30% of the four-dose group. The fourth dose elicited a significant rise in antibody binding and neutralizing titers against multiple VOCs reducing the risk of symptomatic infection by 37% [95%CI, 15%-54%]. However, a group of individuals, characterized by low baseline titers of binding antibodies, remained susceptible to infection despite significantly increased neutralizing antibody titers upon boosting. A combination of reduced IgG levels to RBD mutants and reduced VOC-recognizing IgA antibodies represented the strongest COP in both the 3-dose group (HR = 6.34, p = 0.008) and four-dose group (HR = 8.14, p = 0.018). We validated our findings in an independent second cohort. In summary combination IgA and IgG baseline binding antibody levels may identify individuals most at risk from future infections.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, USA.
| | - Shlomia Levy
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Ostrovsky
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanna Oppenheimer
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shosh Zismanov
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alona Kuzmina
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M Friedman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sanja Trifkovic
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lin Chun-Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liel Cohen-Lavi
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonat Shemer-Avni
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Merav Cohen-Lahav
- Laboratory of Management, Soroka University Medical Center, Beer-Sheva, Israel
| | - Doron Amichay
- Central Laboratory, Clalit Health Services & Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Ayelet Keren-Naus
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Olga Voloshin
- Laboratory of Virology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Gabriel Weber
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronza Najjar-Debbiny
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bibiana Chazan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Infectious Diseases Unit, Emek Medical Center, Afula, Israel
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michal Chowers
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Kfar Saba, Israel
| | - Lena Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Novack
- Clinical Research Center, Soroka University Medical Center, and the faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Taube
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University, Beer Sheba, Israel.
| | - Orly Weinstein
- Dept. of Health systems management, faculty of health sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Hospital division, Clalit Health Services, Tel Aviv, Israel
| |
Collapse
|
4
|
Naveca FG, Nascimento VA, Nascimento F, Ogrzewalska M, Pauvolid-Corrêa A, Araújo MF, Arantes I, Batista ÉR, Magalhães AÁ, Vinhal F, Mattos TP, Riediger I, Debur MDC, Grinsztejn B, Veloso VG, Brasil P, Rodrigues RR, Rovaris DB, Fernandes SB, Fernandes C, Santos JHA, Abdalla LF, Costa-Filho R, Silva M, Souza V, Costa ÁA, Mejía M, Brandão MJ, Gonçalves LF, Silva GA, de Jesus MS, Pessoa K, Corado ADLG, Duarte DCG, Machado AB, Zukeram KDA, Valente N, Lopes RS, Pereira EC, Appolinario LR, Rocha AS, Tort LFL, Sekizuka T, Itokawa K, Hashino M, Kuroda M, Dezordi FZ, Wallau GL, Delatorre E, Gräf T, Siqueira MM, Bello G, Resende PC. SARS-CoV-2 intra-host diversity, antibody response, and disease severity after reinfection by the variant of concern Gamma in Brazil. Sci Rep 2023; 13:7306. [PMID: 37147348 PMCID: PMC10160723 DOI: 10.1038/s41598-023-33443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma in Amazonas during early 2021 fueled a second large COVID-19 epidemic wave and raised concern about the potential role of reinfections. Very few cases of reinfection associated with the VOC Gamma have been reported to date, and their potential impact on clinical, immunological, and virological parameters remains largely unexplored. Here we describe 25 cases of SARS-CoV-2 reinfection in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected with distinct viral lineages between March and December 2020 (B.1.1, B.1.1.28, B.1.1.33, B.1.195, and P.2) and reinfected with the VOC Gamma between 3 to 12 months after primo-infection. We found a similar mean cycle threshold (Ct) value and limited intra-host viral diversity in both primo-infection and reinfection samples. Sera of 14 patients tested 10-75 days after reinfection displayed detectable neutralizing antibodies (NAb) titers against SARS-CoV-2 variants that circulated before (B.1.*), during (Gamma), and after (Delta and Omicron) the second epidemic wave in Brazil. All individuals had milder or no symptoms after reinfection, and none required hospitalization. These findings demonstrate that individuals reinfected with the VOC Gamma may display relatively high RNA viral loads at the upper respiratory tract after reinfection, thus contributing to onward viral transmissions. Despite this, our study points to a low overall risk of severe Gamma reinfections, supporting that the abrupt increase in hospital admissions and deaths observed in Amazonas and other Brazilian states during the Gamma wave was mostly driven by primary infections. Our findings also indicate that most individuals analyzed developed a high anti-SARS-CoV-2 NAb response after reinfection that may provide some protection against reinfection or disease by different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil.
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Valdinete Alves Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Fernanda Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Maria Ogrzewalska
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alex Pauvolid-Corrêa
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Mia Ferreira Araújo
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Tirza Peixoto Mattos
- Laboratório Central de Saúde Pública do Amazonas (LACEN-AM, Manaus, Amazonas, Brazil
| | - Irina Riediger
- Laboratório Central de Saúde Pública do Paraná (LACEN-PR) Curitiba, Paraná, Brazil
| | - Maria do Carmo Debur
- Laboratório Central de Saúde Pública do Paraná (LACEN-PR) Curitiba, Paraná, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Valdiléa G Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | | | - Darcita Buerger Rovaris
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Florianópolis, Santa Catarina, Brazil
| | - Sandra Bianchini Fernandes
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Florianópolis, Santa Catarina, Brazil
| | - Cristiano Fernandes
- Fundação de Vigilância em Saúde do Amazonas-Dra Rosemary Costa Pinto, Manaus, Amazonas, Brazil
| | | | | | | | - Marineide Silva
- Laboratório Central de Saúde Pública do Amazonas (LACEN-AM, Manaus, Amazonas, Brazil
| | - Victor Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Ágatha Araújo Costa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Matilde Mejía
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Maria Júlia Brandão
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Luciana Fé Gonçalves
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas-Dra Rosemary Costa Pinto, Manaus, Amazonas, Brazil
| | - George Allan Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Michele Silva de Jesus
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Karina Pessoa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Debora Camila Gomes Duarte
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Ana Beatriz Machado
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ketiuce de Azevedo Zukeram
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Natalia Valente
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Renata Serrano Lopes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Elisa Cavalcante Pereira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Luciana Reis Appolinario
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alice Sampaio Rocha
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Luis Fernando Lopez Tort
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8640, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8640, Japan
| | | | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Stoddard M, Yuan L, Sarkar S, Mangalaganesh S, Nolan RP, Bottino D, Hather G, Hochberg NS, White LF, Chakravarty A. Heterogeneity in Vaccinal Immunity to SARS-CoV-2 Can Be Addressed by a Personalized Booster Strategy. Vaccines (Basel) 2023; 11:806. [PMID: 37112718 PMCID: PMC10140995 DOI: 10.3390/vaccines11040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
SARS-CoV-2 vaccinations were initially shown to substantially reduce risk of severe disease and death. However, pharmacokinetic (PK) waning and rapid viral evolution degrade neutralizing antibody (nAb) binding titers, causing loss of vaccinal protection. Additionally, there is inter-individual heterogeneity in the strength and durability of the vaccinal nAb response. Here, we propose a personalized booster strategy as a potential solution to this problem. Our model-based approach incorporates inter-individual heterogeneity in nAb response to primary SARS-CoV-2 vaccination into a pharmacokinetic/pharmacodynamic (PK/PD) model to project population-level heterogeneity in vaccinal protection. We further examine the impact of evolutionary immune evasion on vaccinal protection over time based on variant fold reduction in nAb potency. Our findings suggest viral evolution will decrease the effectiveness of vaccinal protection against severe disease, especially for individuals with a less durable immune response. More frequent boosting may restore vaccinal protection for individuals with a weaker immune response. Our analysis shows that the ECLIA RBD binding assay strongly predicts neutralization of sequence-matched pseudoviruses. This may be a useful tool for rapidly assessing individual immune protection. Our work suggests vaccinal protection against severe disease is not assured and identifies a potential path forward for reducing risk to immunologically vulnerable individuals.
Collapse
Affiliation(s)
| | - Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | | | - Dean Bottino
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA
| | | | - Natasha S. Hochberg
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02215, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
- Boston Medical Center, Boston, MA 02118, USA
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
6
|
Kubale J, Balmaseda A, Frutos AM, Sanchez N, Plazaola M, Ojeda S, Saborio S, Lopez R, Barilla C, Vasquez G, Moreira H, Gajewski A, Campredon L, Maier HE, Chowdhury M, Cerpas C, Harris E, Kuan G, Gordon A. Association of SARS-CoV-2 Seropositivity and Symptomatic Reinfection in Children in Nicaragua. JAMA Netw Open 2022; 5:e2218794. [PMID: 35759261 PMCID: PMC9237791 DOI: 10.1001/jamanetworkopen.2022.18794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
Importance The impact of the SARS-CoV-2 pandemic on children remains unclear. Better understanding of the burden of COVID-19 among children and their risk of reinfection is crucial, as they will be among the last groups vaccinated. Objective To characterize the burden of COVID-19 and assess how risk of symptomatic reinfection may vary by age among children. Design, Setting, and Participants In this prospective, community-based pediatric cohort study conducted from March 1, 2020, to October 15, 2021, 1964 nonimmunocompromised children aged 0 to 14 years were enrolled by random selection from the Nicaraguan Pediatric Influenza Cohort, a community-based cohort in District 2 of Managua, Nicaragua. Additional newborn infants aged 4 weeks or younger were randomly selected and enrolled monthly via home visits. Exposures Prior COVID-19 infection as confirmed by positive anti-SARS-CoV-2 antibodies (receptor binding domain and spike protein) or real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 infection at least 60 days before current COVID-19 infection. Main Outcomes and Measures Symptomatic COVID-19 cases confirmed by real-time RT-PCR and hospitalization within 28 days of symptom onset of a confirmed COVID-19 case. Results This cohort study assessed 1964 children (mean [SD] age, 6.9 [4.4] years; 985 [50.2%] male). Of 1824 children who were tested, 908 (49.8%; 95% CI, 47.5%-52.1%) were seropositive during the study. There were also 207 PCR-confirmed COVID-19 cases, 12 (5.8%) of which were severe enough to require hospitalization. Incidence of COVID-19 was highest among children younger than 2 years (16.1 cases per 100 person-years; 95% CI, 12.5-20.5 cases per 100 person-years), which was approximately 3 times the incidence rate in any other child age group assessed. In addition, 41 symptomatic SARS-CoV-2 episodes (19.8%; 95% CI, 14.4%-25.2%) were reinfections. Conclusions and Relevance In this prospective, community-based pediatric cohort study, rates of symptomatic and severe COVID-19 were highest among the youngest participants, with rates stabilizing at approximately 5 years of age. In addition, symptomatic reinfections represented a large proportion of symptomatic COVID-19 cases.
Collapse
Affiliation(s)
- John Kubale
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Aaron M. Frutos
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | | | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Saira Saborio
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Roger Lopez
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Carlos Barilla
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gerald Vasquez
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Hanny Moreira
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | | | - Lora Campredon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Hannah E. Maier
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Mahboob Chowdhury
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Cristhiam Cerpas
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
7
|
Kubale J, Balmaseda A, Frutos AM, Sanchez N, Plazaola M, Ojeda S, Saborio S, Lopez R, Barilla C, Vasquez G, Moreira H, Gajewski A, Campredon L, Maier H, Chowdhury M, Cerpas C, Harris E, Kuan G, Gordon A. Burden of SARS-CoV-2 and protection from symptomatic second infection in children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.03.22268684. [PMID: 35018380 PMCID: PMC8750653 DOI: 10.1101/2022.01.03.22268684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE The impact of the SARS-CoV-2 pandemic on children remains unclear. Better understanding of the burden of COVID-19 among children and their protection against re-infection is crucial as they will be among the last groups vaccinated. OBJECTIVE To characterize the burden of COVID-19 and assess how protection from symptomatic re-infection among children may vary by age. DESIGN A prospective, community-based pediatric cohort study conducted from March 1, 2020 through October 15, 2021. SETTING The Nicaraguan Pediatric Influenza Cohort is a community-based cohort in District 2 of Managua, Nicaragua. PARTICIPANTS A total of 1964 children aged 0-14 years participated in the cohort. Non-immunocompromised children were enrolled by random selection from a previous pediatric influenza cohort. Additional newborn infants aged ≤4 weeks were randomly selected and enrolled monthly, via home visits. EXPOSURES Prior COVID-19 infection as confirmed by positive anti SARS-CoV-2 antibodies (receptor binding domain [RBD] and spike protein) or real time RT-PCR confirmed COVID-19 infection ≥60 days prior to current COVID-19. MAIN OUTCOMES AND MEASURES Symptomatic COVID-19 cases confirmed by real time RT-PCR and hospitalization within 28 days of symptom onset of confirmed COVID-19 case. RESULTS Overall, 49.8% of children tested were seropositive over the course of the study. There were also 207 PCR-confirmed COVID-19 cases, 12 (6.4%) of which were severe enough to require hospitalization. Incidence of COVID-19 was highest among children aged <2 years-16.1 per 100 person-years (95% Confidence Interval [CI]: 12.5, 20.5)-approximately three times that of children in any other age group assessed. Additionally, 41 (19.8%) symptomatic SARS-CoV-2 episodes were re-infections, with younger children slightly more protected against symptomatic reinfection. Among children aged 6-59 months, protection was 61% (Rate Ratio [RR]:0.39, 95% CI:0.2,0.8), while protection among children aged 5-9 and 10-14 years was 64% (RR:0.36,0.2,0.7), and 49% (RR:0.51,0.3-0.9), respectively. CONCLUSIONS AND RELEVANCE In this prospective community-based pediatric cohort rates of symptomatic and severe COVID-19 were highest among the youngest participants, with rates stabilizing around age 5. Reinfections represent a large proportion of PCR-positive cases, with children <10 years displaying greater protection from symptomatic reinfection. A vaccine for children <5 years is urgently needed. KEY POINTS Question: What is the burden of COVID-19 among young children and how does protection from re-infection vary with age?Findings: In this study of 1964 children aged 0-14 years children <5 years had the highest rates of symptomatic and severe COVID-19 while also displaying greater protection against re-infection compared to children ≥10 years.Meaning: Given their greater risk of infection and severe disease compared to older children, effective vaccines against COVID-19 are urgently needed for children under 5.
Collapse
Affiliation(s)
- John Kubale
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Angel Balmaseda
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Aaron M Frutos
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | | | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Saira Saborio
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Roger Lopez
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Carlos Barilla
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gerald Vasquez
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Hanny Moreira
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | | | - Lora Campredon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hannah Maier
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mahboob Chowdhury
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristhiam Cerpas
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|