1
|
Chamberlin JT, Lee Y, Marth GT, Quinlan AR. Differences in molecular sampling and data processing explain variation among single-cell and single-nucleus RNA-seq experiments. Genome Res 2024; 34:179-188. [PMID: 38355308 PMCID: PMC10984380 DOI: 10.1101/gr.278253.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
A mechanistic understanding of the biological and technical factors that impact transcript measurements is essential to designing and analyzing single-cell and single-nucleus RNA sequencing experiments. Nuclei contain the same pre-mRNA population as cells, but they contain a small subset of the mRNAs. Nonetheless, early studies argued that single-nucleus analysis yielded results comparable to cellular samples if pre-mRNA measurements were included. However, typical workflows do not distinguish between pre-mRNA and mRNA when estimating gene expression, and variation in their relative abundances across cell types has received limited attention. These gaps are especially important given that incorporating pre-mRNA has become commonplace for both assays, despite known gene length bias in pre-mRNA capture. Here, we reanalyze public data sets from mouse and human to describe the mechanisms and contrasting effects of mRNA and pre-mRNA sampling on gene expression and marker gene selection in single-cell and single-nucleus RNA-seq. We show that pre-mRNA levels vary considerably among cell types, which mediates the degree of gene length bias and limits the generalizability of a recently published normalization method intended to correct for this bias. As an alternative, we repurpose an existing post hoc gene length-based correction method from conventional RNA-seq gene set enrichment analysis. Finally, we show that inclusion of pre-mRNA in bioinformatic processing can impart a larger effect than assay choice itself, which is pivotal to the effective reuse of existing data. These analyses advance our understanding of the sources of variation in single-cell and single-nucleus RNA-seq experiments and provide useful guidance for future studies.
Collapse
Affiliation(s)
- John T Chamberlin
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84108, USA
- Seoul National University, College of Veterinary Medicine, Seoul, 08826, South Korea
| | - Gabor T Marth
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Aaron R Quinlan
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
He D, Gao Y, Chan SS, Quintana-Parrilla N, Patro R. Forseti: A mechanistic and predictive model of the splicing status of scRNA-seq reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577813. [PMID: 38370848 PMCID: PMC10871212 DOI: 10.1101/2024.02.01.577813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motivation Short-read single-cell RNA-sequencing (scRNA-seq) has been used to study cellular heterogeneity, cellular fate, and transcriptional dynamics. Modeling splicing dynamics in scRNA-seq data is challenging, with inherent difficulty in even the seemingly straightforward task of elucidating the splicing status of the molecules from which sequenced fragments are drawn. This difficulty arises, in part, from the limited read length and positional biases, which substantially reduce the specificity of the sequenced fragments. As a result, the splicing status of many reads in scRNA-seq is ambiguous because of a lack of definitive evidence. We are therefore in need of methods that can recover the splicing status of ambiguous reads which, in turn, can lead to more accuracy and confidence in downstream analyses. Results We develop Forseti, a predictive model to probabilistically assign a splicing status to scRNA-seq reads. Our model has two key components. First, we train a binding affinity model to assign a probability that a given transcriptomic site is used in fragment generation. Second, we fit a robust fragment length distribution model that generalizes well across datasets deriving from different species and tissue types. Forseti combines these two trained models to predict the splicing status of the molecule of origin of reads by scoring putative fragments that associate each alignment of sequenced reads with proximate potential priming sites. Using both simulated and experimental data, we show that our model can precisely predict the splicing status of reads and identify the true gene origin of multi-gene mapped reads. Availability Forseti and the code used for producing the results are available at https://github.com/COMBINE-lab/forseti under a BSD 3-clause license.
Collapse
Affiliation(s)
- Dongze He
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Program in Computational Biology, Bioinformatics and Genomices, University of Maryland, College Park, MD 20742, USA
| | - Yuan Gao
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Program in Computational Biology, Bioinformatics and Genomices, University of Maryland, College Park, MD 20742, USA
| | - Spencer Skylar Chan
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | | | - Rob Patro
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
He D, Mount SM, Patro R. scCensus: Off-target scRNA-seq reads reveal meaningful biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577807. [PMID: 38352549 PMCID: PMC10862729 DOI: 10.1101/2024.01.29.577807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Single-cell RNA-sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity. Although scRNA-seq reads from most prevalent and popular tagged-end protocols are expected to arise from the 3' end of polyadenylated RNAs, recent studies have shown that "off-target" reads can constitute a substantial portion of the read population. In this work, we introduced scCensus, a comprehensive analysis workflow for systematically evaluating and categorizing off-target reads in scRNA-seq. We applied scCensus to seven scRNA-seq datasets. Our analysis of intergenic reads shows that these off-target reads contain information about chromatin structure and can be used to identify similar cells across modalities. Our analysis of antisense reads suggests that these reads can be used to improve gene detection and capture interesting transcriptional activities like antisense transcription. Furthermore, using splice-aware quantification, we find that spliced and unspliced reads provide distinct information about cell clusters and biomarkers, suggesting the utility of integrating signals from reads with different splicing statuses. Overall, our results suggest that off-target scRNA-seq reads contain underappreciated information about various transcriptional activities. These observations about yet-unexploited information in existing scRNA-seq data will help guide and motivate the community to improve current algorithms and analysis methods, and to develop novel approaches that utilize off-target reads to extend the reach and accuracy of single-cell data analysis pipelines.
Collapse
Affiliation(s)
- Dongze He
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Program in Computational Biology, Bioinformatics and Genomices, University of Maryland, College Park, MD 20742, USA
| | - Stephen M. Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Rob Patro
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Gorin G, Vastola JJ, Pachter L. Studying stochastic systems biology of the cell with single-cell genomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541250. [PMID: 37292934 PMCID: PMC10245677 DOI: 10.1101/2023.05.17.541250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - John J. Vastola
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125
| |
Collapse
|
5
|
He D, Patro R. simpleaf: A simple, flexible, and scalable framework for single-cell transcriptomics data processing using alevin-fry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534653. [PMID: 37034702 PMCID: PMC10081176 DOI: 10.1101/2023.03.28.534653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Summary The alevin-fry ecosystem provides a robust and growing suite of programs for single-cell data processing. However, as new single-cell technologies are introduced, as the community continues to adjust best practices for data processing, and as the alevin-fry ecosystem itself expands and grows, it is becoming increasingly important to manage the complexity of alevin-fry ’s single-cell preprocessing workflows while retaining the performance and flexibility that make these tools enticing. We introduce simpleaf , a program that simplifies the processing of single-cell data using tools from the alevin-fry ecosystem, and adds new functionality and capabilities, while retaining the flexibility and performance of the underlying tools. Availability and implementation Simpleaf is written in Rust and released under a BSD 3-Clause license. It is freely available from its GitHub repository https://github.com/COMBINE-lab/simpleaf , and via bioconda. Documentation for simpleaf is available at https://simpleaf.readthedocs.io/en/latest/ and tutorials for simpleaf are being developed that can be accessed at https://combine-lab.github.io/alevin-fry-tutorials .
Collapse
Affiliation(s)
- Dongze He
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Rob Patro
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|