1
|
Ozernov-Palchik O, O’Brien AM, Jiachen Lee E, Richardson H, Romeo R, Lipkin B, Small H, Capella J, Nieto-Castañón A, Saxe R, Gabrieli JDE, Fedorenko E. Precision fMRI reveals that the language network exhibits adult-like left-hemispheric lateralization by 4 years of age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594172. [PMID: 38798360 PMCID: PMC11118489 DOI: 10.1101/2024.05.15.594172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Left hemisphere damage in adulthood often leads to linguistic deficits, but many cases of early damage leave linguistic processing preserved, and a functional language system can develop in the right hemisphere. To explain this early apparent equipotentiality of the two hemispheres for language, some have proposed that the language system is bilateral during early development and only becomes left-lateralized with age. We examined language lateralization using functional magnetic resonance imaging with two large pediatric cohorts (total n=273 children ages 4-16; n=107 adults). Strong, adult-level left-hemispheric lateralization (in activation volume and response magnitude) was evident by age 4. Thus, although the right hemisphere can take over language function in some cases of early brain damage, and although some features of the language system do show protracted development (magnitude of language response and strength of inter-regional correlations in the language network), the left-hemisphere bias for language is robustly present by 4 years of age. These results call for alternative accounts of early equipotentiality of the two hemispheres for language.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Amanda M. O’Brien
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Elizabeth Jiachen Lee
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Rachel Romeo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742, United States
| | - Benjamin Lipkin
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jimmy Capella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Rebecca Saxe
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Evelina Fedorenko
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| |
Collapse
|
2
|
Wolna A, Szewczyk J, Diaz M, Domagalik A, Szwed M, Wodniecka Z. Domain-general and language-specific contributions to speech production in a second language: an fMRI study using functional localizers. Sci Rep 2024; 14:57. [PMID: 38168139 PMCID: PMC10761726 DOI: 10.1038/s41598-023-49375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
For bilinguals, speaking in a second language (L2) compared to the native language (L1) is usually more difficult. In this study we asked whether the difficulty in L2 production reflects increased demands imposed on domain-general or core language mechanisms. We compared the brain response to speech production in L1 and L2 within two functionally-defined networks in the brain: the Multiple Demand (MD) network and the language network. We found that speech production in L2 was linked to a widespread increase of brain activity in the domain-general MD network. The language network did not show a similarly robust differences in processing speech in the two languages, however, we found increased response to L2 production in the language-specific portion of the left inferior frontal gyrus (IFG). To further explore our results, we have looked at domain-general and language-specific response within the brain structures postulated to form a Bilingual Language Control (BLC) network. Within this network, we found a robust increase in response to L2 in the domain-general, but also in some language-specific voxels including in the left IFG. Our findings show that L2 production strongly engages domain-general mechanisms, but only affects language sensitive portions of the left IFG. These results put constraints on the current model of bilingual language control by precisely disentangling the domain-general and language-specific contributions to the difficulty in speech production in L2.
Collapse
Affiliation(s)
- Agata Wolna
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Michele Diaz
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, Pennsylvania, USA
| | | | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
| | - Zofia Wodniecka
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| |
Collapse
|
3
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537080. [PMID: 37090673 PMCID: PMC10120732 DOI: 10.1101/2023.04.16.537080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with each sentence. Then, we use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also noninvasively control neural activity in higher-level cortical areas, like the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- MIT-IBM Watson AI Lab, Cambridge, MA 02142, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
4
|
Malik-Moraleda S, Taliaferro M, Shannon S, Jhingan N, Swords S, Peterson DJ, Frommer P, Okrand M, Sams J, Cardwell R, Freeman C, Fedorenko E. Constructed languages are processed by the same brain mechanisms as natural languages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550667. [PMID: 37546901 PMCID: PMC10402139 DOI: 10.1101/2023.07.28.550667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
What constitutes a language? Natural languages share some features with other domains: from math, to music, to gesture. However, the brain mechanisms that process linguistic input are highly specialized, showing little or no response to diverse non-linguistic tasks. Here, we examine constructed languages (conlangs) to ask whether they draw on the same neural mechanisms as natural languages, or whether they instead pattern with domains like math and logic. Using individual-subject fMRI analyses, we show that understanding conlangs recruits the same brain areas as natural language comprehension. This result holds for Esperanto (n=19 speakers)- created to resemble natural languages-and fictional conlangs (Klingon (n=10), Na'vi (n=9), High Valyrian (n=3), and Dothraki (n=3)), created to differ from natural languages, and suggests that conlangs and natural languages share critical features and that the notable differences between conlangs and natural language are not consequential for the cognitive and neural mechanisms that they engage.
Collapse
Affiliation(s)
- Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Steve Shannon
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Niharika Jhingan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sara Swords
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Paul Frommer
- Marshall School of Business, University of Southern California, Los Angeles, CA 90089
| | | | | | | | | | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02114
| |
Collapse
|