1
|
Hanson WA, Romero Agosto GA, Rouskin S. Viral RNA Interactome: The Ultimate Researcher's Guide to RNA-Protein Interactions. Viruses 2024; 16:1702. [PMID: 39599817 PMCID: PMC11599142 DOI: 10.3390/v16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA molecules in the cell are bound by a multitude of RNA-binding proteins (RBPs) with a variety of regulatory consequences. Often, interactions with these RNA-binding proteins are facilitated by the complex secondary and tertiary structures of RNA molecules. Viral RNAs especially are known to be heavily structured and interact with many RBPs, with roles including genome packaging, immune evasion, enhancing replication and transcription, and increasing translation efficiency. As such, the RNA-protein interactome represents a critical facet of the viral replication cycle. Characterization of these interactions is necessary for the development of novel therapeutics targeted at the disruption of essential replication cycle events. In this review, we aim to summarize the various roles of RNA structures in shaping the RNA-protein interactome, the regulatory roles of these interactions, as well as up-to-date methods developed for the characterization of the interactome and directions for novel, RNA-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (W.A.H.); (G.A.R.A.)
| |
Collapse
|
2
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2024:10.1038/s41581-024-00894-2. [PMID: 39406927 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Qi Z, Xue S, Chen J, Zhao W, Johnson K, Wen X, Richard JLC, Zhong S. Genome-Wide Mapping of RNA-Protein Associations via Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611288. [PMID: 39282297 PMCID: PMC11398515 DOI: 10.1101/2024.09.04.611288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
RNA-protein interactions are crucial for regulating gene expression and cellular functions, with their dysregulation potentially impacting disease progression. Systematically mapping these interactions is resource-intensive due to the vast number of potential RNA and protein interactions. Here, we introduce PRIM-seq (Protein-RNA Interaction Mapping by sequencing), a method for the concurrent de novo identification of RNA-binding proteins (RBPs) and the elucidation of their associated RNAs. PRIM-seq works by converting each RNA-protein pair into a unique chimeric DNA sequence, which is then decoded through DNA sequencing. Applied to two human cell types, PRIM-seq generated a comprehensive human RNA-protein association network (HuRPA), consisting of more than 350,000 RNA-proteins pairs involving approximately 7,000 RNAs and 11,000 proteins. The data revealed an enrichment of previously reported RBPs and RNA-protein interactions within HuRPA. We also identified LINC00339 as a protein-associating non-coding RNA and PHGDH as an RNA-associating protein. Notably, PHGDH interacts with BECN1 and ATF4 mRNAs, suppressing their protein expression and consequently inhibiting autophagy, apoptosis, and neurite outgrowth while promoting cell proliferation. PRIM-seq offers a powerful tool for discovering RBPs and RNA-protein associations, contributing to more comprehensive functional genome annotations.
Collapse
Affiliation(s)
- Zhijie Qi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shuanghong Xue
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junchen Chen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kara Johnson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Liu Y, McGann CD, Krebs M, Perkins TA, Fields R, Camplisson CK, Nwizugbo DZ, Hsu C, Avanessian SC, Tsue AF, Kania EE, Shechner DM, Beliveau BJ, Schweppe DK. DNA O-MAP uncovers the molecular neighborhoods associated with specific genomic loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604987. [PMID: 39091817 PMCID: PMC11291153 DOI: 10.1101/2024.07.24.604987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The accuracy of crucial nuclear processes such as transcription, replication, and repair, depends on the local composition of chromatin and the regulatory proteins that reside there. Understanding these DNA-protein interactions at the level of specific genomic loci has remained challenging due to technical limitations. Here, we introduce a method termed "DNA O-MAP", which uses programmable peroxidase-conjugated oligonucleotide probes to biotinylate nearby proteins. We show that DNA O-MAP can be coupled with sample multiplexed quantitative proteomics and next-generation sequencing to quantify DNA-protein and DNA-DNA interactions at specific genomic loci.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Christopher D. McGann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Thomas A. Perkins
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Conor K. Camplisson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - David Z. Nwizugbo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Chris Hsu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Shayan C. Avanessian
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Ashley F. Tsue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Evan E. Kania
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - David M. Shechner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Brian J. Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| |
Collapse
|
5
|
Pani S, Qiu T, Kentala K, Azizi SA, Dickinson BC. Bioorthogonal masked acylating agents for proximity-dependent RNA labelling. Nat Chem 2024; 16:717-726. [PMID: 38594368 PMCID: PMC11613155 DOI: 10.1038/s41557-024-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
RNA localization is highly regulated, with subcellular organization driving context-dependent cell physiology. Although proximity-based labelling technologies that use highly reactive radicals or carbenes provide a powerful method for unbiased mapping of protein organization within a cell, methods for unbiased RNA mapping are scarce and comparably less robust. Here we develop α-alkoxy thioenol and chloroenol esters that function as potent acylating agents upon controlled ester unmasking. We pair these probes with subcellular-localized expression of a bioorthogonal esterase to establish a platform for spatial analysis of RNA: bioorthogonal acylating agents for proximity labelling and sequencing (BAP-seq). We demonstrate that, by selectively unmasking the enol probe in a locale of interest, we can map RNA distribution in membrane-bound and membrane-less organelles. The controlled-release acylating agent chemistry and corresponding BAP-seq method expand the scope of proximity labelling technologies and provide a powerful approach to interrogate the cellular organization of RNAs.
Collapse
Affiliation(s)
- Shubhashree Pani
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Tian Qiu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kaitlin Kentala
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Dodel M, Guiducci G, Dermit M, Krishnamurthy S, Alard EL, Capraro F, Rekad Z, Stojic L, Mardakheh FK. TREX reveals proteins that bind to specific RNA regions in living cells. Nat Methods 2024; 21:423-434. [PMID: 38374261 PMCID: PMC10927567 DOI: 10.1038/s41592-024-02181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Different regions of RNA molecules can often engage in specific interactions with distinct RNA-binding proteins (RBPs), giving rise to diverse modalities of RNA regulation and function. However, there are currently no methods for unbiased identification of RBPs that interact with specific RNA regions in living cells and under endogenous settings. Here we introduce TREX (targeted RNase H-mediated extraction of crosslinked RBPs)-a highly sensitive approach for identifying proteins that directly bind to specific RNA regions in living cells. We demonstrate that TREX outperforms existing methods in identifying known interactors of U1 snRNA, and reveals endogenous region-specific interactors of NORAD long noncoding RNA. Using TREX, we generated a comprehensive region-by-region interactome for 45S rRNA, uncovering both established and previously unknown interactions that regulate ribosome biogenesis. With its applicability to different cell types, TREX is an RNA-centric tool for unbiased positional mapping of endogenous RNA-protein interactions in living cells.
Collapse
Affiliation(s)
- Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giulia Guiducci
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sneha Krishnamurthy
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Emilie L Alard
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Federica Capraro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Zeinab Rekad
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lovorka Stojic
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|