1
|
Wang Q, Zhao G, Ding H, Wang Z, Wu J, Huang H, Cao L, Wang H, Gao Z, Feng J. Trpv1-lineage neuron-expressing Kcnq4 channel modulates itch sensation in mice. Pain 2024:00006396-990000000-00772. [PMID: 39560444 DOI: 10.1097/j.pain.0000000000003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Voltage-gated potassium channel subfamily q member 4 (Kcnq4) is predominantly expressed by hair cells and auditory neurons and regulates the neuronal excitability in the auditory pathway. Although it is further detected in myelinated large-diameter dorsal root ganglia (DRG) neurons in the periphery, the expression and function of Kcnq4 channel in nociceptors remains unknown. Here we showed that Kcnq4 is substantially expressed by unmyelinated small-diameter DRG neurons in both human and mouse. In spite of a dispensable role in acute pain and chronic skin inflammation, Kcnq4 is specifically involved in the regulation of scratching behavior through controlling action potential firing properties, evidenced by the increased neuronal excitability in small-diameter DRG neurons isolated from Kcnq4 deficient mice. Moreover, genetic ablation of Kcnq4 in Trpv1-positive neurons exacerbates both acute and chronic itch behavior in mice. Taken together, our results uncover a functional role of Trpv1-lineage neuron-expressing Kcnq4 channel in the modulation of itch-specific neuronal excitation in the periphery.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodun Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huijuan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Cao
- Department of Chinese Medicine, Tangdu Hospital, Xi'an, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaobing Gao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Chien DCC, Limjunyawong N, Cao C, Meixiong J, Peng Q, Ho CY, Fay JF, Roth BL, Dong X. MRGPRX4 mediates phospho-drug-associated pruritus in a humanized mouse model. Sci Transl Med 2024; 16:eadk8198. [PMID: 38718132 PMCID: PMC11645656 DOI: 10.1126/scitranslmed.adk8198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024]
Abstract
The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.
Collapse
Affiliation(s)
- Daphne Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathachit Limjunyawong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - James Meixiong
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Qi Peng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan F. Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Charbonneau JA, Santistevan AC, Raven EP, Bennett JL, Russ BE, Bliss-Moreau E. Evolutionarily conserved neural responses to affective touch in monkeys transcend consciousness and change with age. Proc Natl Acad Sci U S A 2024; 121:e2322157121. [PMID: 38648473 PMCID: PMC11067024 DOI: 10.1073/pnas.2322157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.
Collapse
Affiliation(s)
- Joey A. Charbonneau
- Neuroscience Graduate Program, University of California, Davis, CA95616
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
| | - Anthony C. Santistevan
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| | - Erika P. Raven
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY10016
| | - Jeffrey L. Bennett
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA95817
- The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Sacramento, CA95817
| | - Brian E. Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY10962
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry, New York University Langone, New York, NY10016
| | - Eliza Bliss-Moreau
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
5
|
Gautam M, Yamada A, Yamada AI, Wu Q, Kridsada K, Ling J, Yu H, Dong P, Ma M, Gu J, Luo W. Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception. Nat Commun 2024; 15:2911. [PMID: 38575590 PMCID: PMC10995180 DOI: 10.1038/s41467-024-47245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
The roles of Aβ low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of SplitCre labeled mouse Aβ-LTMRs in this regard. Genetic ablation of SplitCre-Aβ-LTMRs increased mechanical nociception but not thermosensation in both acute and chronic inflammatory pain conditions, indicating a modality-specific role in gating mechanical nociception. Local optogenetic activation of SplitCre-Aβ-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a model, in which Aβ-LTMRs play distinctive local and global roles in transmitting or alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a strategy of global activation plus local inhibition of Aβ-LTMRs for treating mechanical hyperalgesia.
Collapse
Affiliation(s)
- Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ayaka I Yamada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qinxue Wu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kim Kridsada
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianguo Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals (Basel) 2023; 16:1707. [PMID: 38139833 PMCID: PMC10748146 DOI: 10.3390/ph16121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Itch (pruritus) is a sensation in the skin that provokes the desire to scratch. The sensation of itch is mediated through a subclass of primary afferent sensory neurons, termed pruriceptors, which express molecular receptors that are activated by itch-evoking ligands. Also expressed in pruriceptors are several types of Transient Receptor Potential (TRP) channels. TRP channels are a diverse class of cation channels that are responsive to various somatosensory stimuli like touch, pain, itch, and temperature. In pruriceptors, TRP channels can be activated through intracellular signaling cascades initiated by pruritogen receptors and underly neuronal activation. In this review, we discuss the role of TRP channels TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPC3/4 in acute and chronic pruritus. Since these channels often mediate itch in association with pruritogen receptors, we also discuss Mas-related G-protein-coupled receptors (Mrgprs) and protease-activated receptors (PARs). Additionally, we cover the exciting therapeutic targets amongst the TRP family, as well as Mrgprs and PARs for the treatment of pruritus.
Collapse
Affiliation(s)
- Merab G. Tsagareli
- Laboratory of Pain and Analgesia, Ivane Beritashvili Center for Experimental Biomedicine, 0160 Tbilisi, Georgia;
| | - Taylor Follansbee
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| |
Collapse
|
8
|
Bouchatta O, Brodzki M, Manouze H, Carballo GB, Kindström E, de-Faria FM, Yu H, Kao AR, Thorell O, Liljencrantz J, Ng KKW, Frangos E, Ragnemalm B, Saade D, Bharucha-Goebel D, Szczot I, Moore W, Terejko K, Cole J, Bonnemann C, Luo W, Mahns DA, Larsson M, Gerling GJ, Marshall AG, Chesler AT, Olausson H, Nagi SS, Szczot M. PIEZO2-dependent rapid pain system in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569650. [PMID: 38168273 PMCID: PMC10760115 DOI: 10.1101/2023.12.01.569650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction. Studies in control participants showed that hair-pull pain triggered a distinct nocifensive response, including a nociceptive reflex. Observations in rare Aβ deafferented individuals and nerve conduction block studies in control participants revealed that hair-pull pain perception is dependent on Aβ input. Single-unit axonal recordings revealed that a class of cooling-responsive myelinated nociceptors in human skin is selectively tuned to painful hair-pull stimuli. Further, we pharmacologically mapped these nociceptors to a specific transcriptomic class. Finally, using functional imaging in mice, we demonstrated that in a homologous nociceptor, Piezo2 is necessary for high-sensitivity, robust activation by hair-pull stimuli. Together, we have demonstrated that hair-pulling evokes a distinct type of pain with conserved behavioral, neural, and molecular features across humans and mice.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- These authors contributed equally
| | - Marek Brodzki
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- These authors contributed equally
| | - Houria Manouze
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Gabriela B. Carballo
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Emma Kindström
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Felipe M. de-Faria
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Anika R. Kao
- School of Engineering and Applied Science, University of Virginia, Charlottesville, USA
| | - Oumie Thorell
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Jaquette Liljencrantz
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kevin K. W. Ng
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Eleni Frangos
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
| | - Bengt Ragnemalm
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Diana Bharucha-Goebel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Ilona Szczot
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Warren Moore
- Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Katarzyna Terejko
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Biology of Astrocytes Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jonathan Cole
- University Hospitals, Dorset, and University of Bournemouth, UK
| | - Carsten Bonnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Wenquin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David A. Mahns
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Max Larsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Gregory J. Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, USA
| | - Andrew G. Marshall
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Saad S. Nagi
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Medicine, Western Sydney University, Sydney, Australia
- Senior author
| | - Marcin Szczot
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Senior author
| |
Collapse
|
9
|
Ezquerra-Romano I, Clements MF, di Costa S, Iannetti GD, Haggard P. Revisiting a classical theory of sensory specificity: assessing consistency and stability of thermosensitive spots. J Neurophysiol 2023; 130:1567-1577. [PMID: 37964756 PMCID: PMC11550896 DOI: 10.1152/jn.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Thermal sensitivity is not uniform across the skin, and is particularly high in small (∼1 mm2) regions termed "thermosensitive spots." These spots are thought to reflect the anatomical location of specialized thermosensitive nerve endings from single primary afferents. Thermosensitive spots provide foundational support for "labeled line" or specificity theory of sensory perception, which states that different sensory qualities are transmitted by separate and specific neural pathways. This theory predicts a highly stable relation between repetitions of a thermal stimulus and the resulting sensory quality, yet these predictions have rarely been tested systematically. Here, we present the qualitative, spatial, and repeatability properties of 334 thermosensitive spots on the dorsal forearm sampled across four separate sessions. In line with previous literature, we found that spots associated with cold sensations (112 cold spots, 34%) were more frequent than spots associated with warm sensations (41 warm spots, 12%). Still more frequent (165 spots, 49%) were spots that elicited inconsistent sensations when repeatedly stimulated by the same temperature. Remarkably, only 13 spots (4%) conserved their position between sessions. Overall, we show unexpected inconsistency of both the perceptual responses elicited by spot stimulation and of spot locations across time. These observations suggest reappraisals of the traditional view that thermosensitive spots reflect the location of individual thermosensitive, unimodal primary afferents serving as specific labeled lines for corresponding sensory qualities.NEW & NOTEWORTHY Thermosensitive spots are clustered rather than randomly distributed and have the highest density near the wrist. Surprisingly, we found that thermosensitive spots elicit inconsistent sensory qualities and are unstable over time. Our results question the widely believed notion that thermosensitive spots reflect the location of individual thermoreceptive, unimodal primary afferents that serve as labelled lines for corresponding sensory qualities.
Collapse
Affiliation(s)
- Ivan Ezquerra-Romano
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Michael F Clements
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Steven di Costa
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
10
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion (DRG) generated from long read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564535. [PMID: 37961262 PMCID: PMC10634934 DOI: 10.1101/2023.10.28.564535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Splicing is a post-transcriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. Diversity in splicing in the mammalian nervous system is associated with neuronal development, synaptic function and plasticity, and is also associated with diseases of the nervous system ranging from neurodegeneration to chronic pain. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long read sequencing (LRS) to document isoform expression in the human dorsal root ganglia (hDRG) from 3 organ donors. Isoforms were validated in silico by confirming expression in hDRG short read sequencing (SRS) data from 3 independent organ donors. 19,547 isoforms of protein-coding genes were detected using LRS and validated with SRS and strict expression cutoffs. We identified 763 isoforms with at least one previously undescribed splice-junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3, MRGPRX1 and HNRNPK were identified. In the novel isoforms of ASIC3, a region comprising ~35% of the 5'UTR was excised. In contrast, a novel splice-junction was utilized in isoforms of MRGPRX1 to include an additional exon upstream of the start-codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified which utilized previously unannotated splice-sites to both excise exon 14 and include a sequence in the 5' end of exon 13. The insertion and deletion in the coding region was predicted to excise a serine-phosphorylation site favored by cdc2, and replace it with a tyrosine-phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the hDRG obtained using LRS. Using this work as a foundation, an important next step will be to use LRS on hDRG tissues recovered from people with a history of chronic pain. This should enable identification of new drug targets and a better understanding of chronic pain that may involve aberrant splicing events.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
11
|
Lee PR, Kim J, Rossi HL, Chung S, Han SY, Kim J, Oh SB. Transcriptional profiling of dental sensory and proprioceptive trigeminal neurons using single-cell RNA sequencing. Int J Oral Sci 2023; 15:45. [PMID: 37749100 PMCID: PMC10519964 DOI: 10.1038/s41368-023-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Dental primary afferent (DPA) neurons and proprioceptive mesencephalic trigeminal nucleus (MTN) neurons, located in the trigeminal ganglion and the brainstem, respectively, are essential for controlling masticatory functions. Despite extensive transcriptomic studies on various somatosensory neurons, there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation. Here, we employed high-depth single-cell RNA sequencing (scRNA-seq) in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons. Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment, some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth. Furthermore, we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles. Additionally, DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels, receptors, neuropeptides, and mechanoreceptors. Together, our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception.
Collapse
Affiliation(s)
- Pa Reum Lee
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jihoon Kim
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Lynn Rossi
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung Yub Han
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Xie K, Cheng X, Zhu T, Zhang D. Single-cell transcriptomic profiling of dorsal root ganglion: an overview. Front Neuroanat 2023; 17:1162049. [PMID: 37405309 PMCID: PMC10315536 DOI: 10.3389/fnana.2023.1162049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
The somatosensory neurons in the dorsal root ganglion (DRG) are responsible to detect peripheral physical and noxious stimuli, and then transmit these inputs into the central nervous system. DRG neurons are composed of various subpopulations, which are suggested to respond to different stimuli, such as mechanical, thermal, and cold perception. For a long time, DRG neurons were classified based on anatomical criteria. Recently, single-cell (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) has advanced our understanding of the composition and functional heterogeneity of both human and rodent DRG neurons at single-cell resolution. In this review, we summarized the current literature regarding single-cell transcriptomic profiling of DRG to provide an integral understanding in the molecular transcriptomes, cell types, and functional annotations of DRG neurons in humans and rodents.
Collapse
Affiliation(s)
- Keyu Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|