1
|
Kim DW, Kim S, Han J, Belday K, Li E, Mahoney N, Blackshaw S, Rajaii F. Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway. JCI Insight 2024; 9:e182352. [PMID: 39704170 DOI: 10.1172/jci.insight.182352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, and
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soohyun Kim
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong Han
- Baylor College of Medicine, Houston, Texas, USA
| | - Karan Belday
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Li
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Mahoney
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology
- Institute for Cell Engineering, and
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, Ergen C, Rybkina K, Bradley MC, Matsumoto R, Pethe K, Kubota M, Teichmann S, Jones J, Yosef N, Atkinson M, Brusko M, Brusko TM, Connors TJ, Sims PA, Farber DL. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol 2024; 9:eadn3954. [PMID: 38848342 PMCID: PMC11425769 DOI: 10.1126/sciimmunol.adn3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults. In early life, clonally diverse Vδ1 subsets predominate across blood and tissues, comprising naïve and differentiated effector and tissue repair functions, whereas cytolytic Vδ2 subsets populate blood, spleen, and lungs. With age, Vδ1 and Vδ2 subsets exhibit clonal expansions and elevated cytolytic signatures, which are disseminated across sites. In adults, Vδ2 cells predominate in blood, whereas Vδ1 cells are enriched across tissues and express residency profiles. Thus, antigenic exposures over childhood drive the functional evolution and tissue compartmentalization of γδ T cells, leading to age-dependent roles in immunity.
Collapse
Affiliation(s)
- Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Steven B. Wells
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Peter Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Can Ergen
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Marissa C. Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton; Cambridge, UK
| | - Joanne Jones
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
- Department of Systems Immunology, Weizmann institute; Rehovot, Israel
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center; New York, NY 10032
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| |
Collapse
|
3
|
Wells SB, Rainbow DB, Mark M, Szabo PA, Ergen C, Maceiras AR, Caron DP, Rahmani E, Benuck E, Amiri VVP, Chen D, Wagner A, Howlett SK, Jarvis LB, Ellis KL, Kubota M, Matsumoto R, Mahbubani K, Saeb-Parsy K, Dominguez-Conde C, Richardson L, Xu C, Li S, Mamanova L, Bolt L, Wilk A, Teichmann SA, Farber DL, Sims PA, Jones JL, Yosef N. Multimodal profiling reveals tissue-directed signatures of human immune cells altered with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573877. [PMID: 38260588 PMCID: PMC10802388 DOI: 10.1101/2024.01.03.573877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.
Collapse
|