1
|
Gattuso HC, van Hassel KA, Freed JD, Nuñez KM, de la Rea B, May CE, Ermentrout GB, Victor JD, Nagel KI. Inhibitory control of locomotor statistics in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589655. [PMID: 38659800 PMCID: PMC11042290 DOI: 10.1101/2024.04.15.589655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In order to forage for food, many animals regulate not only specific limb movements but the statistics of locomotor behavior over time, switching between long-range dispersal and localized search depending on resource availability. How pre-motor circuits regulate such locomotor statistics is not clear. Here we analyze and model locomotor statistics in walking Drosophila, and their modulation by attractive food odor. Odor evokes three motor regimes in flies: baseline walking, upwind running during odor, and search behavior following odor loss. During search behavior, we find that flies adopt higher angular velocities and slower ground speeds, and tend to turn for longer periods of time in one direction. We further find that flies spontaneously adopt periods of different mean ground speed, and that these changes in state influence the length of odor-evoked runs. We next developed a simple model of neural locomotor control that suggests that contralateral inhibition plays a key role in regulating the statistical features of locomotion. As the fly connectome predicts decussating inhibitory neurons in the lateral accessory lobe (LAL), a pre-motor structure, we gained genetic access to a subset of these neurons and tested their effects on behavior. We identified one population of neurons whose activation induces all three signature of search and that bi-directionally regulates angular velocity at odor offset. We identified a second group of neurons, including a single LAL neuron pair, that bi-directionally regulate ground speed. Together, our work develops a biologically plausible computational architecture that captures the statistical features of fly locomotion across behavioral states and identifies potential neural substrates of these computations.
Collapse
Affiliation(s)
- Hannah C. Gattuso
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Karin A. van Hassel
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Jacob D. Freed
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Kavin M. Nuñez
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Beatriz de la Rea
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - Christina E. May
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh,
PA, USA
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell
Medicine, New York, NY, USA
| | - Katherine I. Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E
30 St. New York, NY 10016, USA
| |
Collapse
|
2
|
Stürner T, Brooks P, Capdevila LS, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Schlegel P, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung S, Murthy M, Tuthill J, Lee WCA, Card GM, Costa M, Jefferis GS, Eichler K. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596633. [PMID: 38895426 PMCID: PMC11185702 DOI: 10.1101/2024.06.04.596633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J. Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew S. Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S.J. Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Alexander S. Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Mala Murthy
- Computer Science Department, Princeton University, USA
| | - John Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung A. Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Genetics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Braun J, Hurtak F, Wang-Chen S, Ramdya P. Descending networks transform command signals into population motor control. Nature 2024; 630:686-694. [PMID: 38839968 PMCID: PMC11186778 DOI: 10.1038/s41586-024-07523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.
Collapse
Affiliation(s)
- Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Femke Hurtak
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Sibo Wang-Chen
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
4
|
Babski H, Codianni M, Bhandawat V. Octopaminergic descending neurons in Drosophila: Connectivity, tonic activity and relation to locomotion. Heliyon 2024; 10:e29952. [PMID: 38698992 PMCID: PMC11064449 DOI: 10.1016/j.heliyon.2024.e29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Projection neurons that communicate between different brain regions and local neurons that shape computation within a brain region form the majority of all neurons in the brain. Another important class of neurons is neuromodulatory neurons; these neurons are in much smaller numbers than projection/local neurons but have a large influence on computations in the brain. Neuromodulatory neurons are classified by the neurotransmitters they carry, such as dopamine and serotonin. Much of our knowledge of the effect of neuromodulators comes from experiments in which either a large population of neuromodulatory neurons or the entire population is perturbed. Alternatively, a given neuromodulator is exogenously applied. While these experiments are informative of the general role of the neurotransmitter, one limitation of these experiments is that the role of individual neuromodulatory neurons remains unknown. In this study, we investigate the role of a class of octopaminergic (octopamine is the invertebrate equivalent of norepinephrine) neurons in Drosophila or fruit fly. Neuromodulation in Drosophila work along similar principles as humans; and the smaller number of neuromodulatory neurons allow us to assess the role of individual neurons. This study focuses on a subpopulation of octopaminergic descending neurons (OA-DNs) whose cell bodies are in the brain and project to the thoracic ganglia. Using in-vivo whole-cell patch-clamp recordings and anatomical analyses that allow us to compare light microscopy data to the electron microscopic volumes available in the fly, we find that neurons within each cluster have similar physiological properties, including their relation to locomotion. However, neurons in the same cluster with similar anatomy have very different connectivity. Our data is consistent with the hypothesis that each OA-DN is recruited individually and has a unique function within the fly's brain.
Collapse
Affiliation(s)
- Helene Babski
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Marcello Codianni
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| |
Collapse
|
5
|
Dallmann CJ, Luo Y, Agrawal S, Chou GM, Cook A, Brunton BW, Tuthill JC. Presynaptic inhibition selectively suppresses leg proprioception in behaving Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563322. [PMID: 37961558 PMCID: PMC10634730 DOI: 10.1101/2023.10.20.563322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Controlling arms and legs requires feedback from proprioceptive sensory neurons that detect joint position and movement. Proprioceptive feedback must be tuned for different behavioral contexts, but the underlying circuit mechanisms remain poorly understood. Using calcium imaging in behaving Drosophila, we find that the axons of position-encoding leg proprioceptors are active across behaviors, whereas the axons of movement-encoding leg proprioceptors are suppressed during walking and grooming. Using connectomics, we identify a specific class of interneurons that provide GABAergic presynaptic inhibition to the axons of movement-encoding proprioceptors. The predominant synaptic inputs to these interneurons are descending neurons, suggesting they are driven by predictions of leg movement originating in the brain. Calcium imaging from both the interneurons and their descending inputs confirmed that their activity is correlated with self-generated but not passive leg movements. Overall, our findings elucidate a neural circuit for suppressing specific proprioceptive feedback signals during self-generated movements.
Collapse
Affiliation(s)
- Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Present address: Department of Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Yichen Luo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Present address: School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Grant M. Chou
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Lead contact
| |
Collapse
|
6
|
Pang MM, Chen F, Xie M, Druckmann S, Clandinin TR, Yang HH. A recurrent neural circuit in Drosophila deblurs visual inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590352. [PMID: 38712245 PMCID: PMC11071408 DOI: 10.1101/2024.04.19.590352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts in order to deblur images. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.
Collapse
Affiliation(s)
- Michelle M. Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Current affiliation: School for the Future of Innovation of Society, Arizona State University, Tempe, AZ 85281, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Helen H. Yang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
7
|
Schretter CE, Sten TH, Klapoetke N, Shao M, Nern A, Dreher M, Bushey D, Robie AA, Taylor AL, Branson KM, Otopalik A, Ruta V, Rubin GM. Social state gates vision using three circuit mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585289. [PMID: 38559111 PMCID: PMC10979952 DOI: 10.1101/2024.03.15.585289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.
Collapse
Affiliation(s)
| | - Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Nathan Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mei Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam L Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adriane Otopalik
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|