1
|
Bobrowicz M, Kusowska A, Krawczyk M, Zhylko A, Forcados C, Slusarczyk A, Barankiewicz J, Domagala J, Kubacz M, Šmída M, Dostalova L, Marhelava K, Fidyt K, Pepek M, Baranowska I, Szumera-Cieckiewicz A, Inderberg EM, Wälchli S, Granica M, Graczyk-Jarzynka A, Majchrzak M, Poreba M, Gehlert CL, Peipp M, Firczuk M, Prochorec-Sobieszek M, Winiarska M. CD20 expression regulates CD37 levels in B-cell lymphoma - implications for immunotherapies. Oncoimmunology 2024; 13:2362454. [PMID: 38846084 PMCID: PMC11155707 DOI: 10.1080/2162402x.2024.2362454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, CD20/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cyclophosphamide/pharmacology
- Cyclophosphamide/therapeutic use
- Doxorubicin/pharmacology
- Doxorubicin/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Immunotherapy/methods
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/drug therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Vincristine/pharmacology
- Vincristine/therapeutic use
Collapse
Affiliation(s)
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Christopher Forcados
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Barankiewicz
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Lenka Dostalova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Pepek
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Baranowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Biobank, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Monika Granica
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Majchrzak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marcin Poreba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Malgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|