1
|
Willet AH, Park JS, Snider CE, Huang JJ, Chen JS, Gould KL. Fission yeast Duc1 links to ER-PM contact sites and influences PM lipid composition and cytokinetic ring anchoring. J Cell Sci 2024; 137:jcs262347. [PMID: 39239853 PMCID: PMC11449445 DOI: 10.1242/jcs.262347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Joshua S. Park
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jingdian Jamie Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Jaillais Y, Bayer E, Bergmann DC, Botella MA, Boutté Y, Bozkurt TO, Caillaud MC, Germain V, Grossmann G, Heilmann I, Hemsley PA, Kirchhelle C, Martinière A, Miao Y, Mongrand S, Müller S, Noack LC, Oda Y, Ott T, Pan X, Pleskot R, Potocky M, Robert S, Rodriguez CS, Simon-Plas F, Russinova E, Van Damme D, Van Norman JM, Weijers D, Yalovsky S, Yang Z, Zelazny E, Gronnier J. Guidelines for naming and studying plasma membrane domains in plants. NATURE PLANTS 2024; 10:1172-1183. [PMID: 39134664 DOI: 10.1038/s41477-024-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.
Collapse
Affiliation(s)
- Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Emmanuelle Bayer
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Yohann Boutté
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | | | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Véronique Germain
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology, Department of Plant Biochemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Charlotte Kirchhelle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexandre Martinière
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sebastien Mongrand
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Sabine Müller
- Department of Biology, Friedrich Alexander Universität Erlangen Nuremberg, Erlangen, Germany
| | - Lise C Noack
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocky
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clara Sanchez Rodriguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo UPM, Pozuelo de Alarcón, Spain
| | | | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enric Zelazny
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Julien Gronnier
- NanoSignaling Lab, Zentrum für Molekularbiologie der Pflanzen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|