1
|
Bond NG, Fahlberg MD, Yu S, Rout N, Tran D, Fitzpatrick-Schmidt T, Sprehe LM, Scheef EA, Mudd JC, Schaub R, Kaur A. Immunomodulatory potential of in vivo natural killer T (NKT) activation by NKTT320 in Mauritian-origin cynomolgus macaques. iScience 2022; 25:103889. [PMID: 35243248 PMCID: PMC8866157 DOI: 10.1016/j.isci.2022.103889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T-lymphocytes (iNKT) are unique immunomodulatory innate T cells with an invariant TCRα recognizing glycolipids presented on MHC class-I-like CD1d molecules. Activated iNKT rapidly secrete pro-and anti-inflammatory cytokines, potentiate immunity, and modulate inflammation. Here, we report the effects of in vivo iNKT activation in Mauritian-origin cynomolgus macaques by a humanized monoclonal antibody, NKTT320, that binds to the invariant region of the iNKT TCR. NKTT320 led to rapid iNKT activation, increased polyfunctionality, and elevation of multiple plasma analytes within 24 hours. Flow cytometry and RNA-Seq confirmed downstream activation of multiple immune subsets, enrichment of JAK/STAT and PI3K/AKT pathway genes, and upregulation of inflammation-modulating genes. NKTT320 also increased iNKT frequency in adipose tissue and did not cause iNKT anergy. Our data indicate that NKTT320 has a sustained effect on in vivo iNKT activation, potentiation of innate and adaptive immunity, and resolution of inflammation, which supports its future use as an immunotherapeutic. NKTT320 rapidly activates iNKT in vivo, modulating downstream immune function In vivo NKTT320 treatment modulates pro- and anti-inflammatory genes NKTT320 treatment results in activation of innate and adaptive immune subsets NKTT320 has promise as an immunotherapeutic with translational potential
Collapse
|
2
|
Single-Cell RNA-Seq Reveals a Crosstalk between Hyaluronan Receptor LYVE-1-Expressing Macrophages and Vascular Smooth Muscle Cells. Cells 2022; 11:cells11030411. [PMID: 35159221 PMCID: PMC8834524 DOI: 10.3390/cells11030411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory disease where macrophages participate in the progression of the disease. However, the role of resident-like macrophages (res-like) in the atherosclerotic aorta is not completely understood. Methods: A single-cell RNA sequencing analysis of CD45+ leukocytes in the atherosclerotic aorta of apolipoprotein E–deficient (Apoe−/−) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the side-to-specific predisposition to atherosclerosis, was performed. A population of res-like macrophages expressing hyaluronan receptor LYVE-1 was investigated via flow cytometry, co-culture experiments, and immunofluorescence in human atherosclerotic plaques from carotid artery disease patients (CAD). Results: We identified 12 principal leukocyte clusters with distinct atherosclerosis disease-relevant gene expression signatures. LYVE-1+ res-like macrophages, expressing a high level of CC motif chemokine ligand 24 (CCL24, eotaxin-2), expanded under hypercholesteremia in Apoe−/− mice and promoted VSMC phenotypic modulation to osteoblast/chondrocyte-like cells, ex vivo, in a CCL24-dependent manner. Moreover, the abundance of LYVE-1+CCL24+ macrophages and elevated systemic levels of CCL24 were associated with vascular calcification and CAD events. Conclusions: LYVE-1 res-like macrophages, via the secretion of CCL24, promote the transdifferentiation of VSMC to osteogenic-like cells with a possible role in vascular calcification and likely a detrimental role in atherosclerotic plaque destabilization.
Collapse
|
3
|
Gao R, Li X, Gao H, Zhao K, Liu X, Liu J, Wang Q, Zhu Y, Chen H, Xiang S, Zhan Y, Yin R, Yu M, Ning H, Yang X, Li C. Protein phosphatase 2A catalytic subunit β suppresses PMA/ionomycin-induced T-cell activation by negatively regulating PI3K/Akt signaling. FEBS J 2022; 289:4518-4535. [PMID: 35068054 DOI: 10.1111/febs.16370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit β isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xin Li
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Qi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaxin Zhu
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| |
Collapse
|
4
|
Prado DS, Cattley RT, Shipman CW, Happe C, Lee M, Boggess WC, MacDonald ML, Hawse WF. Synergistic and additive interactions between receptor signaling networks drive the regulatory T cell versus T helper 17 cell fate choice. J Biol Chem 2021; 297:101330. [PMID: 34688667 PMCID: PMC8645459 DOI: 10.1016/j.jbc.2021.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.
Collapse
Affiliation(s)
- Douglas S Prado
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard T Cattley
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corey W Shipman
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cassandra Happe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William F Hawse
- Department of Immunology and Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8 + T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021; 26:951-967. [PMID: 33450394 PMCID: PMC8131230 DOI: 10.1016/j.drudis.2021.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Host immunity has an essential role in the clinical management of cancers. Therefore, it is advantageous to choose therapies that can promote tumor cell death and concurrently boost host immunity. The dynamic tumor microenvironment (TME) determines whether an antineoplastic drug will elicit favorable or disparaging immune responses from tumor-infiltrating lymphocytes (TILs). CD8+ T cells are one of the primary tumor-infiltrating immune cells that deliver antitumor responses. Here, we review the influence of various factors in the TME on CD8+ T cell exhaustion and survival, and possible strategies for restoring CD8+ T cell effector function through immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Westerhof LM, McGuire K, MacLellan L, Flynn A, Gray JI, Thomas M, Goodyear CS, MacLeod MK. Multifunctional cytokine production reveals functional superiority of memory CD4 T cells. Eur J Immunol 2019; 49:2019-2029. [PMID: 31177549 PMCID: PMC6900100 DOI: 10.1002/eji.201848026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 06/06/2019] [Indexed: 11/20/2022]
Abstract
T cell protective immunity is associated with multifunctional memory cells that produce several different cytokines. Currently, our understanding of when and how these cells are generated is limited. We have used an influenza virus mouse infection model to investigate whether the cytokine profile of memory T cells is reflective of primary responding cells or skewed toward a distinct profile. We found that, in comparison to primary cells, memory T cells tended to make multiple cytokines simultaneously. Analysis of the timings of release of cytokine by influenza virus‐specific T cells, demonstrated that primary responding CD4 T cells from lymphoid organs were unable to produce a sustained cytokine response. In contrast CD8 T cells, memory CD4 T cells, and primary responding CD4 T cells from the lung produced a sustained cytokine response throughout the restimulation period. Moreover, memory CD4 T cells were more resistant than primary responding CD4 T cells to inhibitors that suppress T cell receptor signaling. Together, these data suggest that memory CD4 T cells display superior cytokine responses compared to primary responding cells. These data are key to our ability to identify the cues that drive the generation of protective memory CD4 T cells following infection.
Collapse
Affiliation(s)
- Lotus M Westerhof
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, UK.,GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kris McGuire
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Lindsay MacLellan
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ashley Flynn
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, UK
| | - Joshua I Gray
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, UK
| | - Matthew Thomas
- Respiratory, Inflammation and Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Carl S Goodyear
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, UK.,GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Megan Kl MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation. Immunol Rev 2015; 261:157-68. [PMID: 25123283 DOI: 10.1111/imr.12205] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunity to many intracellular pathogens requires the proliferation, differentiation, and function of CD8(+) cytotoxic T lymphocytes (CTLs). While the majority of effector CTLs die upon clearance of the pathogen, a small proportion of them survive to become long-lived memory CTLs. Memory CTLs can provide protective immunity against re-exposure to the same pathogen and are the principle motivation behind T-cell- based vaccine design. While a large body of cellular immunologic research has proven invaluable to define effector and memory CTLs by their different phenotypes and functions, an emerging focus in the field has been to understand how environmental cues regulate CTL differentiation on a genomic level. Genome-wide studies to profile transcriptional and epigenetic changes during infection have revealed that dynamic changes in DNA methylation patterns and histone modifications accompany transcriptional signatures that define and regulate CTL differentiation states. In this review, we emphasize the importance of epigenetic regulation of CD8(+) T-cell differentiation and the likely role that transcription factors play in this process.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
8
|
Jang SH, Jun CD, Park ZY. Label-free quantitative phosphorylation analysis of human transgelin2 in Jurkat T cells reveals distinct phosphorylation patterns under PKA and PKC activation conditions. Proteome Sci 2015; 13:14. [PMID: 25844069 PMCID: PMC4384351 DOI: 10.1186/s12953-015-0070-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background Transgelin2, one of cytoskeletal actin binding proteins has recently been suggested to be involved in the formation of immune synapses. Although detailed function of transgelin2 is largely unknown, interactions between transgelin2 and actin appear to be important in regulating cellular functions of transgelin2. Because protein phosphorylation can change ability to interact with other proteins, comprehensive phosphorylation analysis of transgelin2 will be helpful in understanding its functional mechanisms. Results Here, a specific protein label-free quantitative phosphorylation analysis method combining immuno-precipitation, IMAC phosphopeptide enrichment technique and label-free relative quantification analysis was used to monitor the phosphorylation changes of transgelin2 overexpressed in Jurkat T cells under protein kinase C (PKC) and protein kinase A (PKA) activation conditions, two representative intracellular signalling pathways of immune cell activation and homeostasis. A total of six serine/threonine phosphorylation sites were identified including threonine-84, a novel phosphorylation site. Notably, distinct phosphorylation patterns of transgelin2 under the two kinase activation conditions were observed. Most phosphorylation sites showing specific kinase-dependent phosphorylation changes were discretely located in two previously characterized actin-binding regions: actin-binding site (ABS) and calponin repeat domain (CNR). PKC activation increased phosphorylation of threonine-180 and serine-185 in the CNR, and PKA activation increased phosphorylation of serine-163 in the ABS. Conclusions Multiple actin-binding regions of transgelin2 participate to accomplish its full actin-binding capability, and the actin-binding affinity of each actin-binding region appears to be modulated by specific kinase-dependent phosphorylation changes. Accordingly, different actin-binding properties or cellular functions of transgelin2 may result from distinct intracellular signalling events under immune response activation or homeostasis conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0070-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| |
Collapse
|
9
|
Ruperez P, Gago-Martinez A, Burlingame AL, Oses-Prieto JA. Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells. Mol Cell Proteomics 2012; 11:171-86. [PMID: 22499768 DOI: 10.1074/mcp.m112.017863] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation-dephosphorylation events play a primary role in regulation of almost all aspects of cell function including signal transduction, cell cycle, or apoptosis. Thus far, T cell phosphoproteomics have focused on analysis of phosphotyrosine residues, and little is known about the role of serine/threonine phosphorylation in early activation of the T cell receptor (TCR). Therefore, we performed a quantitative mass spectrometry-based analysis of the global phosphoproteome of human primary T cells in response to 5 min of TCR activation with anti-CD3 antibody. Combining immunoprecipitation with an antiphosphotyrosine antibody, titanium dioxide phosphopeptide enrichment, isobaric tag for the relative and absolute quantitation methodology, and strong cation exchange separation, we were able to identify 2814 phosphopeptides. These unique sites were employed to investigate the site-specific phosphorylation dynamics. Five hundred and seventeen phosphorylation sites showed TCR-responsive changes. We found that upon 5 min of stimulation of the TCR, specific serine and threonine kinase motifs are overrepresented in the set of responsive phosphorylation sites. These phosphorylation events targeted proteins with many different activities and are present in different subcellular locations. Many of these proteins are involved in intracellular signaling cascades related mainly to cytoskeletal reorganization and regulation of small GTPase-mediated signal transduction, probably involved in the formation of the immune synapse.
Collapse
Affiliation(s)
- Patricia Ruperez
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|