1
|
Sambuceti G, Cossu V, Vitale F, Bianconi E, Carta S, Venturi C, Chiesa S, Lanfranchi F, Emionite L, Carlone S, Sofia L, D'Amico F, Di Raimondo T, Chiola S, Orengo AM, Morbelli S, Ameri P, Bauckneht M, Marini C. Mandatory role of endoplasmic reticulum and its pentose phosphate shunt in the myocardial defense mechanisms against the redox stress induced by anthracyclines. Mol Cell Biochem 2024; 479:2973-2987. [PMID: 38082185 PMCID: PMC11473616 DOI: 10.1007/s11010-023-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 10/15/2024]
Abstract
Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.
Collapse
Affiliation(s)
- Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Vanessa Cossu
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, 16132, Genoa, Italy.
| | | | - Eva Bianconi
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Sonia Carta
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Sabrina Chiesa
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Laura Emionite
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Luca Sofia
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Francesca D'Amico
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Tania Di Raimondo
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Cecilia Marini
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054, Milan, Italy
| |
Collapse
|
2
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
3
|
Salu P, Tuvin D, Reindl KM. AGR2 knockdown induces ER stress and mitochondria fission to facilitate pancreatic cancer cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119854. [PMID: 39353469 DOI: 10.1016/j.bbamcr.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.
Collapse
Affiliation(s)
- Philip Salu
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America
| | - Daniel Tuvin
- Roger Maris Cancer Center, Sanford Health, Fargo, ND, United States of America
| | - Katie M Reindl
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America.
| |
Collapse
|
4
|
Zhou XZ, Huang P, Wu YK, Yu JB, Sun J. Autophagy in benign prostatic hyperplasia: insights and therapeutic potential. BMC Urol 2024; 24:198. [PMID: 39261818 PMCID: PMC11391623 DOI: 10.1186/s12894-024-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Autophagy is a cellular homeostatic mechanism characterized by cyclic degradation. It plays an essential role in maintaining cellular quality and survival by eliminating dysfunctional cellular components. This process is pivotal in various pathophysiological processes. Benign prostatic hyperplasia (BPH) is a common urological disorder in middle-aged and elderly men. It frequently presents as lower urinary tract symptoms due to an increase in epithelial and stromal cells surrounding the prostatic urethra. The precise pathogenesis of BPH is complex. In recent years, research on autophagy in BPH has gained significant momentum, with accumulating evidence indicating its crucial role in the onset and progression of the disease. This review aims to outline the various roles of autophagy in BPH and elucidate potential therapeutic strategies targeting autophagy for managing BPH.
Collapse
Affiliation(s)
- Xian-Zhao Zhou
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Pei Huang
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Yao-Kan Wu
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Jin-Ben Yu
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Jie Sun
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
5
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Samodelov SL, Gai Z, De Luca F, Haldimann K, Hobbie SN, Müller D, Kullak-Ublick GA, Visentin M. L-carnitine co-administration prevents colistin-induced mitochondrial permeability transition and reduces the risk of acute kidney injury in mice. Sci Rep 2024; 14:16444. [PMID: 39013979 PMCID: PMC11252255 DOI: 10.1038/s41598-024-67171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Francesca De Luca
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zürich, 8006, Zürich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, 8006, Zürich, Switzerland
| | - Daniel Müller
- Institute of Clinical Chemistry, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland
- Laboratory Medicine, University of Basel, 4056, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland
- Mechanistic Safety, Patient Safety & Pharmacovigilance, Clinical Development and Medical Affairs, Novartis Pharma, 4056, Basel, Switzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, 8006, Zürich, Switzerland.
| |
Collapse
|
7
|
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D, Zhou G. Relationship between arginine methylation and vascular calcification. Cell Signal 2024; 119:111189. [PMID: 38670475 DOI: 10.1016/j.cellsig.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-‑phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital, China Medical University, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China.
| |
Collapse
|
8
|
Song J, Ham J, Song G, Lim W. Osthole Suppresses Cell Growth of Prostate Cancer by Disrupting Redox Homeostasis, Mitochondrial Function, and Regulation of tiRNA HisGTG. Antioxidants (Basel) 2024; 13:669. [PMID: 38929108 PMCID: PMC11201130 DOI: 10.3390/antiox13060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer remains a significant global health concern, posing a substantial threat to men's well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, inhibited cell viability in cancer cells but not in the normal prostate cell line. Moreover, osthole disrupted cell cycle progression. Furthermore, osthole reduces mitochondrial respiration with mitochondrial membrane potential (ΔΨm) depolarization and reactive oxygen species (ROS) generation, indicating mitochondrial dysfunction. In particular, osthole-induced ROS generation was reduced by N-acetyl-L-cysteine (NAC) in prostate cancer. In addition, using calcium inhibitors (2-APB and ruthenium red) and endoplasmic reticulum (ER) stress inhibitor (4-PBA), we confirmed that ER stress-induced calcium overload by osthole causes mitochondrial dysfunction. Moreover, we verified that the osthole-induced upregulation of tiRNAHisGTG expression is related to mechanisms that induce permeabilization of the mitochondrial membrane and calcium accumulation. Regarding intracellular signaling, osthole inactivated the PI3K and ERK pathways while activating the expression of the P38, JNK, ER stress, and autophagy-related proteins. In conclusion, the results suggest that osthole can be used as a therapeutic or adjuvant treatment for the management of prostate cancer.
Collapse
Affiliation(s)
- Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jiyeon Ham
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
9
|
Chen Y, McDonald JA. Collective cell migration relies on PPP1R15-mediated regulation of the endoplasmic reticulum stress response. Curr Biol 2024; 34:1390-1402.e4. [PMID: 38428416 PMCID: PMC11003853 DOI: 10.1016/j.cub.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
El-Emam MA, Sheta E, El-Abhar HS, Abdallah DM, El Kerdawy AM, Eldehna WM, Gowayed MA. Morin suppresses mTORc1/IRE-1α/JNK and IP3R-VDAC-1 pathways: Crucial mechanisms in apoptosis and mitophagy inhibition in experimental Huntington's disease, supported by in silico molecular docking simulations. Life Sci 2024; 338:122362. [PMID: 38141855 DOI: 10.1016/j.lfs.2023.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Wang J, Li YH, Liu RP, Wang XQ, Zhu MB, Cui XS, Dai Z, Kim NH, Xu YN. Supplementation with Eupatilin during In Vitro Maturation Improves Porcine Oocyte Developmental Competence by Regulating Oxidative Stress and Endoplasmic Reticulum Stress. Animals (Basel) 2024; 14:449. [PMID: 38338092 PMCID: PMC10854851 DOI: 10.3390/ani14030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a flavonoid derived from Artemisia plants that has beneficial biological activities, such as anti-apoptotic, anti-oxidant, and anti-inflammatory activities. However, the protective effects of eupatilin against oxidative stress and endoplasmic reticulum stress in porcine oocyte maturation are still unclear. To investigate the effect of eupatilin on the development of porcine oocytes after in vitro maturation and parthenogenetic activation, we added different concentrations of eupatilin in the process of porcine oocyte maturation in vitro, and finally selected the optimal concentration following multiple comparisons and analysis of test results using SPSS (version 17.0; IBM, Chicago, IL, USA) software. The results showed that 0.1 μM eupatilin supplementation did not affect the expansion of porcine cumulus cells, but significantly increased the extrusion rate of porcine oocyte polar bodies, the subsequent blastocyst formation rate, and the quality of parthenogenetically activated porcine embryos. Additionally, it reduced the level of reactive oxygen species in cells and increased glutathione production. Further analysis revealed that eupatilin supplementation could reduce apoptosis, DNA double-strand breaks, and endoplasmic reticulum stress. In conclusion, supplementation with 0.1 μM eupatilin during in vitro maturation improved oocyte maturation and subsequent embryo development by reducing oxidative stress and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Mao-Bi Zhu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| |
Collapse
|
12
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Huang PY, Shih IA, Liao YC, You HL, Lee MJ. FT895 Impairs Mitochondrial Function in Malignant Peripheral Nerve Sheath Tumor Cells. Int J Mol Sci 2023; 25:277. [PMID: 38203448 PMCID: PMC10779378 DOI: 10.3390/ijms25010277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) stands as a prevalent neurocutaneous disorder. Approximately a quarter of NF1 patients experience the development of plexiform neurofibromas, potentially progressing into malignant peripheral nerve sheath tumors (MPNST). FT895, an HDAC11 inhibitor, exhibits potent anti-tumor effects on MPNST cells and enhances the cytotoxicity of cordycepin against MPNST. The study aims to investigate the molecular mechanism underlying FT895's efficacy against MPNST cells. Initially, our study unveiled that FT895 disrupts mitochondrial biogenesis and function. Post-FT895 treatment, reactive oxygen species (ROS) in MPNST notably increased, while mitochondrial DNA copy numbers decreased significantly. Seahorse analysis indicated a considerable decrease in basal, maximal, and ATP-production-coupled respiration following FT895 treatment. Immunostaining highlighted FT895's role in promoting mitochondrial aggregation without triggering mitophagy, possibly due to reduced levels of XBP1, Parkin, and PINK1 proteins. Moreover, the study using CHIP-qPCR analysis revealed a significant reduction in the copy numbers of promoters of the MPV17L2, POLG, TFAM, PINK1, and Parkin genes. The RNA-seq analysis underscored the prominent role of the HIF-1α signaling pathway post-FT895 treatment, aligning with the observed impairment in mitochondrial respiration. In summary, the study pioneers the revelation that FT895 induces mitochondrial respiratory damage in MPNST cells.
Collapse
Affiliation(s)
- Po-Yuan Huang
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - I-An Shih
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ying-Chih Liao
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Huey-Ling You
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| |
Collapse
|
14
|
Seo J, Kwon D, Kim SH, Byun MR, Lee YH, Jung YS. Role of autophagy in betaine-promoted hepatoprotection against non-alcoholic fatty liver disease in mice. Curr Res Food Sci 2023; 8:100663. [PMID: 38222825 PMCID: PMC10787235 DOI: 10.1016/j.crfs.2023.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Betaine, a compound found in plants and sea foods, is known to be beneficial against non-alcoholic fatty liver disease (NAFLD), but its hepatoprotective and anti-steatogenic mechanisms have been not fully understood. In the present study, we investigated the mechanisms underlying betaine-mediated alleviation of NAFLD induced by a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) in mice, with special focus on the contribution of betaine-stimulated autophagy to NAFLD prevention. Male ICR mice were fed a CDAHFD with or without betaine (0.2-1% in drinking water) for 1 week. Betaine ameliorated the CDAHFD-induced fatty liver by restoring sulfur amino acid (SAA)-related metabolites, such as S-adenosylmethionine and homocysteine, and the phosphorylation of AMPK and ACC. In addition, it reduced the CDAHFD-induced ER stress (BiP, ATF6, and CHOP) and apoptosis (Bax, cleaved caspase-3, and cleaved PARP); however, it induced autophagy (LC3II/I and p62) which was downregulated by CDAHFD. To determine the role of autophagy in the improvement of NAFLD, chloroquine (CQ), an autophagy inhibitor, was injected into the mice fed a CDAHFD and betaine (0.5 % in drinking water). CQ did not affect SAA metabolism but reduced the beneficial effects of betaine as shown by the increases of hepatic lipids, ER stress, and apoptosis. Notably, the betaine-induced improvements in lipid metabolism determined by protein levels of p-AMPK, p-ACC, PPARα, and ACS1, were reversed by CQ. Thus, the results of this study suggest that the activation of autophagy is an important upstream mechanism for the inhibition of steatosis, ER stress, and apoptosis by betaine in NAFLD.
Collapse
Affiliation(s)
- Jinuk Seo
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Park JH, Kim MS, Yun DH, Kim YC. Apoptosis/Necroptosis Inducing Thiazole-Containing Artificial Polypeptide for Immunogenic Cell Death of Cancer. ACS APPLIED BIO MATERIALS 2023; 6:5290-5300. [PMID: 38044569 DOI: 10.1021/acsabm.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Immunogenic cell death (ICD) has emerged as a promising approach to cancer immunotherapy. During ICD, cancer cell death and the release of damage-associated molecular pattern (DAMP) signals occur simultaneously. Increased production of reactive oxygen species (ROS) and severe endoplasmic reticulum stress are necessary for enhanced ICD. Furthermore, the levels of ROS and reduced glutathione (GSH) are involved in various cell death mechanisms. The thiazole ring structure has gained considerable interest as a functional moiety for anticancer agents. This study designed and synthesized a positively charged cell-penetrating polypeptide with a thiazole functional moiety (NS). The NS internalizes into the cancer cells through direct penetration and endo-lysosomal escape. The NS induces mitochondrial depolarization and ER stress in a concentration-dependent manner, leading to a significant ROS production and GSH depletion. Consequently, the ICD of cancer cells is activated, resulting in the release of DAMP signals. Furthermore, NS causes a shift in the cell death pathway from apoptosis to necroptosis as the concentration increases. In this study, we confirmed the possibility of NS as a promising ICD inducer that can be used while varying the concentration according to the cancer type.
Collapse
Affiliation(s)
- Jeong Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mun Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Do Hyun Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Pham TNM, Perumal N, Manicam C, Basoglu M, Eimer S, Fuhrmann DC, Pietrzik CU, Clement AM, Körschgen H, Schepers J, Behl C. Adaptive responses of neuronal cells to chronic endoplasmic reticulum (ER) stress. Redox Biol 2023; 67:102943. [PMID: 37883843 PMCID: PMC10618786 DOI: 10.1016/j.redox.2023.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Accumulation of misfolded proteins or perturbation of calcium homeostasis leads to endoplasmic reticulum (ER) stress and is linked to the pathogenesis of neurodegenerative diseases. Hence, understanding the ability of neuronal cells to cope with chronic ER stress is of fundamental interest. Interestingly, several brain areas uphold functions that enable them to resist challenges associated with neurodegeneration. Here, we established novel clonal mouse hippocampal (HT22) cell lines that are resistant to prolonged (chronic) ER stress induced by thapsigargin (TgR) or tunicamycin (TmR) as in vitro models to study the adaption to ER stress. Morphologically, we observed a significant increase in vesicular und autophagosomal structures in both resistant lines and 'giant lysosomes', especially striking in TgR cells. While autophagic activity increased under ER stress, lysosomal function appeared slightly impaired; in both cell lines, we observed enhanced ER-phagy. However, proteomic analyses revealed that various protein clusters and signaling pathways were differentially regulated in TgR versus TmR cells in response to chronic ER stress. Additionally, bioenergetic analyses in both resistant cell lines showed a shift toward aerobic glycolysis ('Warburg effect') and a defective complex I of the oxidative phosphorylation (OXPHOS) machinery. Furthermore, ER stress-resistant cells differentially activated the unfolded protein response (UPR) comprising IRE1α and ATF6 pathways. These findings display the wide portfolio of adaptive responses of neuronal cells to chronic ER stress. ER stress-resistant neuronal cells could be the basis to uncover molecular modulators of adaptation, resistance, and neuroprotection as potential pharmacological targets for preventing neurodegeneration.
Collapse
Affiliation(s)
- Thu Nguyen Minh Pham
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marion Basoglu
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Albrecht M Clement
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Lee EJ, Diaz-Aguilar MS, Min H, Choi J, Valdez Duran DA, Grandjean JM, Wiseman RL, Kroeger H, Lin JH. Mitochondria and Endoplasmic Reticulum Stress in Retinal Organoids from Patients with Vision Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1721-1739. [PMID: 36535406 PMCID: PMC10616714 DOI: 10.1016/j.ajpath.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Activating transcription factor 6 (ATF6), a key regulator of the unfolded protein response, plays a key role in endoplasmic reticulum function and protein homeostasis. Variants of ATF6 that abrogate transcriptional activity cause morphologic and molecular defects in cones, clinically manifesting as the human vision loss disease achromatopsia (ACHM). ATF6 is expressed in all retinal cells. However, the effect of disease-associated ATF6 variants on other retinal cell types remains unclear. Herein, this was investigated by analyzing bulk RNA-sequencing transcriptomes from retinal organoids generated from patients with ACHM, carrying homozygous loss-of-function ATF6 variants. Marked dysregulation in mitochondrial respiratory complex gene expression and disrupted mitochondrial morphology in ACHM retinal organoids were identified. This indicated that loss of ATF6 leads to previously unappreciated mitochondrial defects in the retina. Next, gene expression from control and ACHM retinal organoids were compared with transcriptome profiles of seven major retinal cell types generated from recent single-cell transcriptomic maps of nondiseased human retina. This indicated pronounced down-regulation of cone genes and up-regulation in Müller glia genes, with no significant effects on other retinal cells. Overall, the current analysis of ACHM patient retinal organoids identified new cellular and molecular phenotypes in addition to cone dysfunction: activation of Müller cells, increased endoplasmic reticulum stress, disrupted mitochondrial structure, and elevated respiratory chain activity gene expression.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California
| | - Monica S Diaz-Aguilar
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California; Department of Medicine, Rush University Medical College, Chicago, Illinois
| | - Hyejung Min
- Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California
| | - Jihee Choi
- Department of Pathology, Stanford University, Stanford, California
| | | | - Julia M Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Heike Kroeger
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Jonathan H Lin
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California.
| |
Collapse
|
18
|
Han P, Qiao Y, He J, Wang X. Stress responses to warming in Japanese flounder (Paralichthys olivaceus) from different environmental scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165341. [PMID: 37414161 DOI: 10.1016/j.scitotenv.2023.165341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of cold-water species widely farmed in Asia. In recent years, the increased frequency of extreme weather events caused by global warming has led to serious impact on Japanese flounder. Therefore, it is crucial to understand the effects of representative coastal economic fish under increasing water temperature. In this study, we investigated the histological and apoptosis responses, oxidative stress and transcriptomic profile in the liver of Japanese flounder exposed to gradual temperature rise (GTR) and abrupt temperature rise (ATR). The histological results showed liver cells in ATR group were the most serious in all three groups including vacuolar degeneration and inflammatory infiltration, and had more apoptosis cells than GTR group detected by TUNEL staining. These further indicated ATR stress caused more severe damage than GTR stress. Compared with control group, the biochemical analysis showed significantly changes in two kinds of heat stress, including GPT, GOT and D-Glc in serum, ATPase, Glycogen, TG, TC, ROS, SOD and CAT in liver. In addition, the RNA-Seq was used to analyze the response mechanism in Japanese flounder liver after heat stress. A total of 313 and 644 differentially expressed genes (DEGs) were identified in GTR and ATR groups, respectively. Further pathway enrichment of these DEGs revealed that heat stress affected cell cycle, protein processing and transportation, DNA replication and other biological processes. Notably, protein processing pathway in the endoplasmic reticulum (ER) was enriched significantly in KEGG and GSEA enrichment analysis, and the expression of ATF4 and JNK was significantly up-regulated in both GTR and ATR groups, while CHOP and TRAF2 were high expressed in GTR and ATR groups, respectively. In conclusion, heat stress could cause tissue damage, inflammation, oxidative stress and ER stress in the liver of Japanese flounder. The present study would provide insight into the reference for the adaptive mechanisms of economic fish in face of increasing water temperature caused by global warming.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
19
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
20
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
21
|
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248:154706. [PMID: 37499516 DOI: 10.1016/j.prp.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
When large amounts of misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER) in response to stress, a process called unfolded protein response (UPR) is activated. The disruption of this process leads to many diseases including diabetes, neurodegenerative diseases, and many cancers. In the process of UPR in response to stress and unfolded proteins, specific signaling pathways are induced in the endoplasmic reticulum and subsequently transmitted to the nucleus and cytoplasm, causing homeostasis and restoring the cell's normal condition with reducing protein translation and synthesis. The UPR response followed by stress enhancement balances cell survival with death, therefore in this condition cells decide either to survive or have the path of apoptosis ahead. However, in some cases, this balance is disturbed and the UPR pathway is chronically activated or not activated and the cell conditions lead to cancer. This study aimed to briefly investigate the association between ER stress, UPR, apoptosis, and autophagy in colorectal cancer (CRC). Moreover, in current study, we will try to demonstrate canonical ways and methods for the treatment of CRC cells with attenuated ER stress.
Collapse
Affiliation(s)
| | | | - Iraj Alipourfard
- Insttue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia, Katowice, Poland
| | - Peyman Hassani
- DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
22
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
23
|
Xu X, Zhou B, Liu J, Ma Q, Zhang T, Wu X. Ru360 Alleviates Postoperative Cognitive Dysfunction in Aged Mice by Inhibiting MCU-Mediated Mitochondrial Dysfunction. Neuropsychiatr Dis Treat 2023; 19:1531-1542. [PMID: 37424959 PMCID: PMC10329430 DOI: 10.2147/ndt.s409568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Ru360, a selective inhibitor of mitochondrial calcium uptake, maintains mitochondrial calcium homeostasis. To evaluate whether mitochondrial calcium uniporter (MCU)-mediated mitochondrial function is associated with the pathological process of Postoperative cognitive dysfunction (POCD), elucidate its relationship with neuroinflammation, and observe whether the relevant pathological process can be improved with Ru360. Methods Aged mice underwent experimental open abdominal surgery after anesthesia. Open field tests, Novel object recognition tests and Y Maze Tests were used to conduct behavioral experiments. The reactive oxygen species (ROS) content, the levels of inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), intra-mitochondrial calcium, mitochondrial membrane potential (MMP) and the activity of antioxidant superoxide dismutase (SOD) in the hippocampus of mice were detected using kits. The expression of proteins was detected using Western blot. Results After treatment with Ru360, MCU-mediated mitochondrial dysfunction was inhibited, neuroinflammation was reduced, and the learning ability of the mice was improved after surgery. Conclusion Our study demonstrated that mitochondrial function plays a crucial role in the pathology of POCD, and using Ru360 to improve mitochondrial function may be a new and necessary direction for the treatment of POCD.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Bin Zhou
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Jun Liu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Qianli Ma
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Tengyu Zhang
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Xiang Wu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| |
Collapse
|
24
|
Kar A, Jain D, Kumar S, Rajput K, Pal S, Rana K, Kar R, Jha SK, Medatwal N, Yavvari PS, Pandey N, Mehta D, Sharma H, Bhattacharya D, Pradhan MK, Sharma RD, Srivastava A, Agrawal U, Mukhopadhyay A, Sengupta S, Patil VS, Bajaj A, Dasgupta U. A localized hydrogel-mediated chemotherapy causes immunogenic cell death via activation of ceramide-mediated unfolded protein response. SCIENCE ADVANCES 2023; 9:eadf2746. [PMID: 37390205 PMCID: PMC10313169 DOI: 10.1126/sciadv.adf2746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/25/2023] [Indexed: 07/02/2023]
Abstract
Treatment of triple-negative breast cancer (TNBC) is challenging because of its "COLD" tumor immunosuppressive microenvironment (TIME). Here, we present a hydrogel-mediated localized delivery of a combination of docetaxel (DTX) and carboplatin (CPT) (called DTX-CPT-Gel therapy) that ensured enhanced anticancer effect and tumor regression on multiple murine syngeneic and xenograft tumor models. DTX-CPT-Gel therapy modulated the TIME by an increase of antitumorigenic M1 macrophages, attenuation of myeloid-derived suppressor cells, and increase of granzyme B+CD8+ T cells. DTX-CPT-Gel therapy elevated ceramide levels in tumor tissues that activated the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-mediated unfolded protein response (UPR). This UPR-mediated activation of apoptotic cell death led to release of damage-associated molecular patterns, thereby activating the immunogenic cell death that could even clear the metastatic tumors. This study provides a promising hydrogel-mediated platform for DTX-CPT therapy that induces tumor regression and effective immune modulation and, therefore, can be explored further for treatment of TNBC.
Collapse
Affiliation(s)
- Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kajal Rajput
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Raunak Kar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Somesh K. Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nihal Medatwal
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Debanjan Bhattacharya
- National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar West, New Delhi, 110029, India
| | - Manas K. Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India
| | - Usha Agrawal
- National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar West, New Delhi, 110029, India
| | - Arnab Mukhopadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- National Institute of Biomedical Genomics, Kalyani, 741251, West Bengal, India
| | - Veena S. Patil
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon, 122413, Haryana, India
| |
Collapse
|
25
|
Sun HN, Ren CX, Lee DH, Wang WH, Guo XY, Hao YY, Wang XM, Zhang HN, Xiao WQ, Li N, Cong J, Han YH, Kwon T. PRDX1 negatively regulates bleomycin-induced pulmonary fibrosis via inhibiting the epithelial-mesenchymal transition and lung fibroblast proliferation in vitro and in vivo. Cell Mol Biol Lett 2023; 28:48. [PMID: 37268886 DOI: 10.1186/s11658-023-00460-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-β secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Chen-Xi Ren
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Wei-Hao Wang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Xiao-Ming Wang
- Yabian Academy of Agricultural Science, Longjing, Jilin, 1334000, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Nan Li
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Jie Cong
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33 Neongme-Gil, Ibam-Myeon, Jeongeup-Si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
28
|
Kushwaha A, Kumar V, Agarwal V. Pseudomonas quinolone signal induces organelle stress and dysregulates inflammation in human macrophages. Biochim Biophys Acta Gen Subj 2023; 1867:130269. [PMID: 36379399 DOI: 10.1016/j.bbagen.2022.130269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
Pseudomonas quinolone signal (PQS) is a quorum-sensing molecule associated with Pseudomonas aeruginosa that regulates quorum sensing, extracellular vesicle biogenesis, iron acquisition, and the secretion of virulence factors. PQS has been shown to have immunomodulatory effects on the host. It induces oxidative stress, modulates cytokine levels, and activates regulated cell death in the host. In this study, we investigated the effects of PQS (10 μM) on host organelle dynamics and dysfunction in human macrophages at the interphase of endoplasmic reticulum (ER), mitochondria, and lysosome. This study showed that PQS increases cytosolic Ca+2 levels and elevates ER stress, as evidenced by increased expression of BiP and activation of the PERK-CHOP axis of unfolded protein response (UPR). Moreover, PQS also negatively affects mitochondria by disrupting mitochondrial membrane potential and increasing mitochondrial ROS generation (mROS). Additionally, PQS stimulation decreased the number of acridine orange-positive lysosomes, indicating lysosomal destabilization. Furthermore, PQS-induced lysosomal destabilization also induces overexpression of the lysosomal stress-responsive gene TFEB. Besides organelle dysfunction, PQS dysregulates inflammation-related genes by upregulating NLRC4, TMS1, and Caspase 1 while downregulating NLRP3 and IL-1β. Also, PQS increases gene expression of pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ). In conclusion, our findings suggest that PQS negatively affects human macrophages by interfering with organelle function and dysregulating inflammatory response. Consequently, this study provides crucial insight into PQS-driven macrophage dysfunction and may contribute to a better understanding of Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India.
| |
Collapse
|
29
|
Li G, Li X, Mahmud I, Ysaguirre J, Fekry B, Wang S, Wei B, Eckel-Mahan KL, Lorenzi PL, Lehner R, Sun K. Interfering with lipid metabolism through targeting CES1 sensitizes hepatocellular carcinoma for chemotherapy. JCI Insight 2023; 8:163624. [PMID: 36472914 PMCID: PMC9977307 DOI: 10.1172/jci.insight.163624] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. In this study, we found that carboxylesterase 1 (CES1) is expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, lipidomic analyses indicated that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, the expression of SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the CES1-PPARα/γ-SCD axis sensitized HCC cells to cisplatin treatment. As a result, the growth of HCC xenograft tumors in NU/J mice was potently slowed by coadministration of cisplatin and CES1 inhibition. Our results, thus, suggest that CES1 is a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Gang Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuyue Wang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bo Wei
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Philip L. Lorenzi
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
30
|
Motawi TK, Al-Kady RH, Senousy MA, Abdelraouf SM. Repaglinide Elicits a Neuroprotective Effect in Rotenone-Induced Parkinson's Disease in Rats: Emphasis on Targeting the DREAM-ER Stress BiP/ATF6/CHOP Trajectory and Activation of Mitophagy. ACS Chem Neurosci 2023; 14:180-194. [PMID: 36538285 DOI: 10.1021/acschemneuro.2c00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Repaglinide, a meglitinide insulinotropic antidiabetic, was unraveled as a promising therapeutic agent for Huntington's disease by targeting the neuronal calcium sensor downstream regulatory element antagonist modulator (DREAM). However, its mechanistic profile in Parkinson's disease (PD) especially its impact on endoplasmic reticulum (ER) stress, mitophagy, and their interconnections is poorly elucidated. This study is the first to examine the neuroprotective potential of repaglinide in rotenone-induced PD in rats by exploring its effects on DREAM, BiP/ATF6/CHOP ER stress pathway, apoptosis, mitophagy/autophagy, oxidative stress, astrogliosis/microgliosis, and neuroinflammation. Male Wistar rats were randomly assigned to four groups: groups 1 and 2 received the vehicle or repaglinide (0.5 mg/kg/day p.o). Groups 3 and 4 received rotenone (1.5 mg/kg/48 h s.c) for 21 days; meanwhile, group 4 additionally received repaglinide (0.5 mg/kg/day p.o) for 15 days starting from day 11. Interestingly, repaglinide lessened striatal ER stress and apoptosis as evidenced by reduced BiP/ATF6/CHOP and caspase-3 levels; however, it augmented striatal DREAM mRNA expression. Repaglinide triggered the expression of the mitophagy marker PINK1 and the autophagy protein beclin1 and alleviated striatal oxidative stress through escalating catalase activity. In addition, repaglinide halted astrocyte/microglial activation and neuroinflammation in the striatum as expressed by reducing glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor protein 1 (Iba1) immunostaining and decreasing interleukin (IL)-6 and IL-1β levels. Repaglinide restored striatum morphological alterations, intact neuron count, and neurobehavioral motor performance in rats examined by an open field, grip strength, and footprint gait analysis. Conclusively, repaglinide modulates the DREAM-ER stress BiP/ATF6/CHOP cascade, increases mitophagy/autophagy, inhibits apoptosis, and lessens oxidative stress, astrocyte/microglial activation, and neuroinflammation in PD.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Biochemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| |
Collapse
|
31
|
Farzana F, McConville MJ, Renoir T, Li S, Nie S, Tran H, Hannan AJ, Hatters DM, Boughton BA. Longitudinal spatial mapping of lipid metabolites reveals pre-symptomatic changes in the hippocampi of Huntington's disease transgenic mice. Neurobiol Dis 2023; 176:105933. [PMID: 36436748 DOI: 10.1016/j.nbd.2022.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
Collapse
Affiliation(s)
- Farheen Farzana
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia; Metabolomics Australia, The University of Melbourne, Victoria 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Victoria 3010, Australia; Australian National Phenome Centre, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
32
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Choi M, Kang KW. Mitoregulin controls mitochondrial function and stress-adaptation response during early phase of endoplasmic reticulum stress in breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166570. [PMID: 36241124 DOI: 10.1016/j.bbadis.2022.166570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
The proper regulation of mitochondrial function is important for cellular homeostasis. Especially, in cancer cells, dysregulation of mitochondria is associated with diverse cellular events such as metabolism, redox status, and stress responses. Mitoregulin (MTLN), a micro protein encoded by LINC00116, recently has been reported to control mitochondrial functions in skeletal muscle cells and adipocytes. However, the role of MTLN in cancer cells remains unclear. In the present study, we found that MTLN regulates membrane potential and reactive oxygen species (ROS) generation of mitochondria in breast cancer cells. Moreover, MTLN deficiency resulted in abnormal mitochondria-associated ER membranes (MAMs) formation, which is crucial for stress adaptation. Indeed, the MTLN-deficient breast cancer cells failed to successfully resolve ER (endoplasmic reticulum) stress, and cell vulnerability to ER-stress inducers was significantly enhanced by the downregulation of MTLN. In conclusion, MTLN controls stress-adaptation responses in breast cancer cells as a key regulator of mitochondria-ER harmonization, and thereby its expression level may serve as an indicator of the responsiveness of cancer cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Romito O, Guéguinou M, Raoul W, Champion O, Robert A, Trebak M, Goupille C, Potier-Cartereau M. Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 2022; 108:102673. [PMID: 36410063 DOI: 10.1016/j.ceca.2022.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.
Collapse
Affiliation(s)
- Olivier Romito
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Ophélie Champion
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Alison Robert
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Mohamed Trebak
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Caroline Goupille
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France; CHRU de Tours, hôpital Bretonneau, Tours, France.
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| |
Collapse
|
35
|
Kumar M, Shelly A, Dahiya P, Ray A, Mazumder S. Aeromonas hydrophila inhibits autophagy triggering cytosolic translocation of mtDNA which activates the pro-apoptotic caspase-1/IL-1β-nitric oxide axis in headkidney macrophages. Virulence 2022; 13:60-76. [PMID: 34967692 PMCID: PMC9794009 DOI: 10.1080/21505594.2021.2018767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms underlying Aeromonas hydrophila-pathogenesis are not well understood. Using head kidney macrophages (HKM) of Clarias gariepinus, we previously reported the role of ER-stress in A. hydrophila-induced pathogenesis. Here, we report that PI3K/PLC-induced cytosolic-Ca2+ imbalance induces the expression of pro-apoptotic ER-stress marker, CHOP in A. hydrophila-infected HKM. CHOP promotes HKM apoptosis by inhibiting AKT activation and enhancing JNK signaling. Elevated mitochondrial ROS (mtROS) was recorded which declined significantly by ameliorating ER-stress and in the presence of ER-Ca2+ release modulators (2-APB and dantrolene) and mitochondrial-Ca2+ uptake inhibitor, Ru360, together suggesting the role of ER-mitochondrial Ca2+ dynamics in mtROS generation. Inhibiting mtROS production reduced HKM death implicating the pro-apoptotic role of mtROS in A. hydrophila-pathogenesis. The expression of autophagic proteins (LC3B, beclin-1, and atg 5) was suppressed in the infected HKM. Our results with autophagy-inducer rapamycin demonstrated that impaired autophagy favored the cytosolic accumulation of mitochondrial DNA (mtDNA) and the process depended on mtROS levels. Enhanced caspase-1 activity and IL-1β production was detected and transfection studies coupled with pharmacological inhibitors implicated mtROS/mtDNA axis to be crucial for activating the caspase-1/IL-1β cascade in infected HKM. RNAi studies further suggested the involvement of IL-1β in generating pro-apoptotic NO in A. hydrophila-infected HKM. Our study suggests a novel role of ER-mitochondria cross-talk in regulating A. hydrophila pathogenesis. Based on our observations, we conclude that A. hydrophila induces ER-stress and inhibits mitophagy resulting in mitochondrial dysfunction which leads to mtROS production and translocation of mtDNA into cytosol triggering the activation of caspase-1/IL-1β-mediated NO production, culminating in HKM apoptosis.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India,Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India,CONTACT Shibnath Mazumder Faculty of Life Sciences and Biotechnology
| |
Collapse
|
36
|
Ramesh P, Bajire SK, Kanichery A, Najar MA, Shastry RP, Prasad TSK. 6-Methylcoumarin rescues bacterial quorum sensing induced ribosome-inactivating stress in Caenorhabditis elegans. Microb Pathog 2022; 173:105833. [PMID: 36265737 DOI: 10.1016/j.micpath.2022.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bacterial pathogenicity has for long posed severe effects on patient care. Pseudomonas aeruginosa is a common cause of hospital-acquired infections and nosocomial illnesses. It is known to infect the host by colonizing through quorum sensing and the production of exotoxins. METHODS The current effort is an analysis of proteomic alterations caused by P. aeruginosa PAO1 to study the effects of quorum sensing inhibitor 6-Methylcoumarin on PAO1 infectivity in the Caenorhabditis elegans model. RESULTS Through tandem mass tag-based quantitative proteomics approaches, 229 proteins were found to be differentially regulated in infection and upon inhibition. Among these, 34 proteins were found to be dysregulated in both infection and quorum-sensing inhibition conditions. Along with the dysregulation of proteins involved in host-pathogen interaction, PAO1 was found to induce ribosome-inactivating stress accompanied by the downregulating mitochondrial proteins. This in turn caused dysregulation of apoptosis. The expression of multiple proteins involved in ribosome biogenesis and structure, oxidative phosphorylation, and mitochondrial enzymes were altered due to infection. This mechanism, adapted by PAO1 to survive in the host, was inhibited by 6-Methylcoumarin by rescuing the downregulation of ribosomal and mitochondrial proteins. CONCLUSIONS Taken together, the data reflect the molecular alterations due to quorum sensing and the usefulness of inhibitors in controlling pathogenesis.
Collapse
Affiliation(s)
- Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
37
|
Xiao H, Peng L, Jiang D, Liu Y, Zhu L, Li Z, Geng J, Xie B, Huang X, Wang J, Dai H, Wang C. IL‐17A
promotes lung fibrosis through impairing mitochondrial homeostasis in type
II
alveolar epithelial cells. J Cell Mol Med 2022; 26:5728-5741. [DOI: 10.1111/jcmm.17600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Huijuan Xiao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital, School of Clinical Medicine Peking University Beijing China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Liang Peng
- Beijing Key Laboratory for Immune‐Mediated Inflammatory Diseases, Institute of Medical Science China‐Japan Friendship Hospital Beijing China
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
- Department of Respiratory and Critical Care Medicine Zhongnan Hospital of Wuhan University Wuhan China
| | - Lili Zhu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Zhen Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Bingbing Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Xiaoxi Huang
- Medical Research Center Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College Beijing China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital, School of Clinical Medicine Peking University Beijing China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China‐Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences Peking Union Medical College Beijing China
| |
Collapse
|
38
|
Endoplasmic Reticulum Stress Underlies Nanosilver-Induced Neurotoxicity in Immature Rat Brain. Int J Mol Sci 2022; 23:ijms232113013. [PMID: 36361797 PMCID: PMC9655133 DOI: 10.3390/ijms232113013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
The growing production of silver nanoparticles (AgNPs), and their widespread use in medical and consumer products, poses a potential threat to the environment and raises questions about biosafety. Immature organisms are particularly susceptible to various insults during development. The biological characteristics of immature organisms are different from those of adults, and dictate the consequences of exposure to various toxic substances, including AgNPs. Nanoparticles are highly reactive and can easily cross the blood–brain barrier (BBB) to accumulate in brain tissues. It is therefore important to investigate the molecular mechanisms of AgNP-induced neurotoxicity in the developing brain. Immature 2-week-old rats were exposed to a low dose of AgNPs (0.2 mg/kg b.w.) over a long period. Subsequently, brain tissues of the animals were subjected to ultrastructural and molecular analyses to determine endoplasmic reticulum (ER) stress. Ultrastructural markers of ER stress, such as pathological alterations in the ER and elongated forms of mitochondria accompanied by autophagy structures, were confirmed to be present in AgNP-exposed rat brain. Evidence for induction of ER stress in neurons was also provided by molecular markers. Upregulation of genes related to the ER-stress-induced unfolded protein response (UPR) pathway, such as GRP78, PERK, and CHOP ATF-6, was observed at the transcriptional and translational levels. The results show that prolonged exposure of immature rats to a low dose of AgNPs during the developmental period leads to induction of ER stress in the neurons of the developing brain. Simultaneously, in response to AgNP-induced ER stress, neurons promote protective mechanisms that partially compensate for ER stress by regulating the biodynamic processes of mitochondria and autophagy.
Collapse
|
39
|
Wang Y, Liu Z, Wei J, Di L, Wang S, Wu T, Li N. Norlignans and phenolics from genus Curculigo protect corticosterone-injured neuroblastoma cells SH-SY5Y by inhibiting endoplasmic reticulum stress-mitochondria pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115430. [PMID: 35659626 DOI: 10.1016/j.jep.2022.115430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of genus Curculigo are divided into the Section Curculigo and the Section Capitulata, which are mainly distributed in southeastern and southwestern China. Various ancient chinese books record that these plants were used as an important herb for tonifying kidney yang. Traditional Chinese medicine often draws on this property to treat depression syndrome. Thus genus Curculigo has potential for the treatment of neurodegenerative diseases (ND). The study showed that phenolics were the main characteristic components of plants in the Section Curculigo, represented by orcinol glucoside and curculigoside; the norlignans, with Ph-C5-Ph as the basic backbone, were the main characteristic components of the Section Capitulata. However, there is a lack of sufficient scientific evidence as to whether these two types of ingredients have neuroprotective effects. AIM OF THE STUDY To determine the neuroprotective effects of phenolics and norlignans in genus Curculigo on human neuroblastoma cells SH-SY5Y. To discuss their structure-activity relationship and screen for compounds with high activity and neuroprotective effects. To reveal that the amelioration of endoplasmic reticulum (ER) stress by two classes of compounds is mediated by the PERK/eIF2α/ATF4 pathway. MATERIALS AND METHODS The cytotoxicity of 17 compounds was assayed by MTT. SH-SY5Y cells were damaged by corticosterone (Cort) (200 μM) for 24 h and then co-administered with 17 compounds (0.1-100 μM) and Cort (200 μM) for 24 h. Cell survival was determined by MTT assay. Apoptosis rate, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) levels were detected using flow cytometry. Intracellular Ca2+ levels were detected using a fluorescent probe. Cellular mitochondrial and ER damage was observed using transmission electron microscopy (TEM). ER stress and apoptotic pathway-related proteins (BiP, CHOP, cleaved caspase-3, cleaved caspase-9, Bax/Bcl-2), and the expression level of PERK/eIF2α/ATF4 pathway was measured via western blot (WB). RESULTS The experimental data showed that Cort treatment of SH-SY5Y cells resulted in decreased cell survival and increased apoptosis, mitochondrial depolarization, ROS, and intracellular Ca2+ levels. The co-action of 17 compounds and Cort for a period of time significantly increased cell survival. Compounds 3, 7, 12, 13 also reduced apoptosis rate, mitochondrial depolarization, ROS and intracellular Ca2+ levels in the subsequent experiments. In addition, TEM observed that Cort caused mitochondrial and ER damage, and the damage was improved after treatment. WB analysis obtained that Cort increased the expression of apoptotic and ER stress-related proteins and activated pathway expression. However, in the presence of compounds 3, 7, 12, 13, the expression of BiP, CHOP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 was significantly reduced, and the phosphorylation of PERK and eIF2α and the expression of ATF4 were inhibited. CONCLUSION This study found that one phenolic (3) and three norlignans (7, 12, 13) from genus Curculigo have significant neuroprotective effects. The results of the structure-activity relationship indicated that the glucosyl polymeric norlignans and the phenolics with benzoic acid as the parent nucleus were more active. The neuroprotective effect of three norlignans is the latest discovery. This finding has important research value in the field of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Lei Di
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Tingni Wu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Bhardwaj A, Bhardwaj R, Saini A, Dhawan DK, Kaur T. Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cell Mol Neurobiol 2022; 43:1619-1635. [PMID: 36002608 DOI: 10.1007/s10571-022-01271-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
41
|
Seal S, Carreras-Puigvert J, Trapotsi MA, Yang H, Spjuth O, Bender A. Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection. Commun Biol 2022; 5:858. [PMID: 35999457 PMCID: PMC9399120 DOI: 10.1038/s42003-022-03763-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We combined Cell Painting and Gene Expression data with chemical structural information from Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane depolarization assay. We observed that mitochondrial toxicants differ from non-toxic compounds in morphological space and identified compound clusters having similar mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides biological insights related to mechanisms of action of this endpoint. We further showed that models combining Cell Painting, Gene Expression features and Morgan fingerprints improved model performance on an external test set of 244 compounds by 60% (in terms of F1 score) and improved extrapolation to new chemical space. The performance of our combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. Our results suggest that combining chemical descriptors with biological readouts enhances the detection of mitochondrial toxicants, with practical implications in drug discovery.
Collapse
Affiliation(s)
- Srijit Seal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Maria-Anna Trapotsi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Hongbin Yang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.
| |
Collapse
|
42
|
Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022; 547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
Collapse
|
43
|
Deficiency of the Two-Pore Potassium Channel KCNK9 Impairs Intestinal Epithelial Cell Survival and Aggravates Dextran Sodium Sulfate-Induced Colitis. Cell Mol Gastroenterol Hepatol 2022; 14:1199-1211. [PMID: 35973573 PMCID: PMC9579309 DOI: 10.1016/j.jcmgh.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The 2-pore potassium channel subfamily K member 9 (KCNK9) regulates intracellular calcium concentration and thus modulates cell survival and inflammatory signaling pathways. It also was recognized as a risk allele for inflammatory bowel disease. However, it remains unclear whether KCNK9 modulates inflammatory bowel disease via its impact on immune cell function or whether its influence on calcium homeostasis also is relevant in intestinal epithelial cells. METHODS Kcnk9-/- mice were challenged with 3% dextran sulfate sodium (DSS) to induce experimental acute colitis. Primary cultures of intestinal epithelial cells were generated, and expression of potassium channels as well as cytosolic calcium levels and susceptibility to apoptosis were evaluated. Furthermore, we evaluated whether KCNK9 deficiency was compensated by the closely related 2-pore potassium channel KCNK3 in vivo or in vitro. RESULTS Compared with controls, KCNK9 deficiency or its pharmacologic blockade were associated with aggravated DSS-induced colitis compared with wild-type animals. In the absence of KCNK9, intestinal epithelial cells showed increased intracellular calcium levels and were more prone to mitochondrial damage and caspase-9-dependent apoptosis. We found that expression of KCNK3 was increased in Kcnk9-/- mice but did not prevent apoptosis after DSS exposure. Conversely, increased levels of KCNK9 in Kcnk3-/- mice were associated with an ameliorated course of DSS-induced colitis. CONCLUSIONS KCNK9 enhances mitochondrial stability, reduces apoptosis, und thus supports epithelial cell survival after DSS exposure in vivo and in vitro. Conversely, its increased expression in Kcnk3-/- resulted in less mitochondrial damage and apoptosis and was associated with beneficial outcomes in DSS-induced colitis.
Collapse
|
44
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
45
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
46
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
47
|
Xing C, Chen S, Wang Y, Pan Z, Zou Y, Sun S, Ren Z, Zhang Y. Glyphosate exposure deteriorates oocyte meiotic maturation via induction of organelle dysfunctions in pigs. J Anim Sci Biotechnol 2022; 13:80. [PMID: 35799248 PMCID: PMC9264682 DOI: 10.1186/s40104-022-00732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Recently, defects in mammalian oocytes maturation induced by environmental pollution results in the decreasing animal reproduction. Animal exposed to glyphosate is largely unavoidable because glyphosate is one of the most widely used herbicide worldwide due to its high-efficiency and broad-spectrum effects, which causes glyphosate an environmental contaminant found in soil, water and food. During the last few years, the growing and wider use of glyphosate has raised great concerns about its effects of reproductive toxicity. In this study, using porcine models, we investigated effects of glyphosate on organelle functions during oocyte meiosis. Results The results showed glyphosate exposure disrupted porcine oocyte maturation. Expression levels of cumulus expansion-related genes were interfered, further indicating the meiotic defects. The damaging effects were mediated by destruction of mitochondrial distribution and functions, which induced ROS accumulation and oxidative stress, also indicated by the decreased mRNA expression of related antioxidant enzyme genes. We also found an interference of endoplasmic reticulum (ER) distribution, disturbance of Ca2+ homeostasis, as well as fluctuation of ER stress, showing with the reduced ER stress-related mRNA or protein expression, which could indicate the dysfunction of ER for protein processing and signal transduction in glyphosate-exposed oocytes. Moreover, glyphosate exposure induced the disruption of lysosome function for autophagy, showing with the decrease of LAMP2 expression and autophagy-related genes mRNA expression. Additionally, our data showed the distribution of Golgi apparatus and the functions of ribosome were disturbed after glyphosate exposure, which might affect protein synthesis and transport. Conclusions Collectively, our study showed that exposed to glyphosate could affect animal reproduction by compromising the quality of oocytes through its wide toxic effects on organelle functions.
Collapse
Affiliation(s)
- Chunhua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhennan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanjing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zili Ren
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Tan Y, Yu H, Sun S, Gan S, Gong R, Mou KJ, Xue J, Xu S, Wu J, Ma L. Honokiol exerts protective effects on neural myelin sheaths after compressed spinal cord injury by inhibiting oligodendrocyte apoptosis through regulation of ER-mitochondrial interactions. J Spinal Cord Med 2022; 45:595-604. [PMID: 33830903 PMCID: PMC9246194 DOI: 10.1080/10790268.2021.1890878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate the effect of honokiol on demyelination after compressed spinal cord injury (CSCI) and it's possible mechanism. DESIGN Animal experiment study. SETTING Institute of Neuroscience of Chongqing Medical University. INTERVENTIONS Total of 69 Sprague-Dawley (SD) rats were randomly divided into 3 groups: sham group (n=15), honokiol group (n=27) and vehicle group (n=27). After established CSCI model by a custom-made compressor successfully, the rats of sham group were subjected to the limited laminectomy without compression; the rats of honokiol group were subjected to CSCI surgery and intraperitoneal injection of 20 mg/kg honokiol; the rats of vehicle group were subjected to CSCI surgery and intraperitoneal injection of an equivalent volume of saline.Outcome measures: The locomotor function of each group was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. The pathological changes of myelinated nerve fibers of spinal cord in 3 groups were detected by osmic acid staining and transmission electron microcopy (TME). Immunofluorescence and Western blot were used to research the experessions of active caspase-3, caspase-12, cytochrome C and myelin basic protein (MBP) respectively. RESULTS In the vehicle group, the rats became paralyzed and spastic after injury, and the myelin sheath became swollen and broken down along with decreased number of myelinated nerve fibers. Western blot analysis manifested that active caspase-3, caspase-12 and cytochrome C began to increase 1 d after injury while the expression of MBP decreased gradually. After intervened with honokiol for 6 days, compared with the vehicle group, the locomotor function and the pathomorphological changes of myelin sheath of the CSCD rats were improved with obviously decreased expression of active caspase-3, caspase-12 and cytochrome C. CONCLUSIONS Honokiol may improve locomotor function and protect neural myelin sheat from demyelination via prevention oligodendrocytes (OLs) apoptosis through mediate endoplasmic reticulum (ER)-mitochondria pathway after CSCI.
Collapse
Affiliation(s)
- Yong Tan
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| | - Haijun Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shengwei Gan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Gong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke-Jie Mou
- Bishan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Xue
- Bishan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiye Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiangfeng Wu
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| | - Lan Ma
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| |
Collapse
|
49
|
Hsieh PC, Peng CK, Liu GT, Kuo CY, Tzeng IS, Wang MC, Lan CC, Huang KL. Aqueous Extract of Descuraniae Semen Attenuates Lipopolysaccharide-Induced Inflammation and Apoptosis by Regulating the Proteasomal Degradation and IRE1α-Dependent Unfolded Protein Response in A549 Cells. Front Immunol 2022; 13:916102. [PMID: 35812413 PMCID: PMC9265213 DOI: 10.3389/fimmu.2022.916102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lipopolysaccharide (LPS)-induced acute lung injury (ALI) induces endoplasmic reticulum stress, unfolded protein response (UPR), apoptosis, and inflammation. Inositol-requiring enzyme 1 (IRE1)-α is important for adaptive and apoptotic UPR determination during ER stress. The aqueous extract of Descuraniae Semen (AEDS) is reported to be a safe and effective herb for the treatment of pulmonary edema as it shows anti-inflammatory activities. Methods We investigated the effects of AEDS on LPS-induced ALI in A549 cells with respect to the regulation of IRE1α-dependent UPR, proteasomal degradation, mitochondrial membrane potential (MtMP), inflammation, and apoptosis. Results AEDS attenuated ER stress by regulating the proteasomal degradation. LPS induced ER stress [binding immunoglobulin protein (BiP), phosphorylated IRE1α, sliced X-box binding protein 1 [XBP1s], phosphorylated cJUN NH2-terminal kinase (pJNK), B-cell lymphoma (Bcl)-2-associated X (Bax), Bcl-2], inflammation (nucleus factor-kappa B (NF-κB) p65 nuclear translocation, nucleus NF-κB, pro-inflammatory cytokines] and apoptosis [C/EBP homologous protein (CHOP), cytochrome c, caspase-8, and caspase-6, and TUNEL] were significantly attenuated by AEDS treatment in A549 cells. AEDS prevents LPS-induced decreased expression of MtMP in A549 cells. Conclusions AEDS attenuated LPS-induced inflammation and apoptosis by regulating proteasomal degradation, promoting IRE1α-dependent adaptive UPR, and inhibiting IRE1α-dependent apoptotic UPR. Moreover, IRE1α-dependent UPR plays a pivotal role in the mechanisms of LPS-induced ALI. Based on these findings, AEDS is suggested as a potential therapeutic option for treating patients with ALI.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Guan-Ting Liu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ming-Chieh Wang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Kun-Lun Huang, ; Chou-Chin Lan,
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
- *Correspondence: Kun-Lun Huang, ; Chou-Chin Lan,
| |
Collapse
|
50
|
Luan X, Sun M, Zhao X, Wang J, Han Y, Gao Y. Bisimidazolium Salt Glycosyltransferase Inhibitors Suppress Hepatocellular Carcinoma Progression In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15060716. [PMID: 35745636 PMCID: PMC9229238 DOI: 10.3390/ph15060716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma is a leading cause of cancer death, and the disease progression has been related to glycophenotype modifications. Previously synthesized bisimidazolium salts (C20 and C22) have been shown to selectively inhibit the activity of glycosyltransferases in cultured cancer cell homogenates. The current study investigated the anticancer effects of C20/C22 and the possible pathways through which these effects are achieved. The therapeutic value of C20/C22 in terms of inhibiting cancer cell proliferation, metastasis, and angiogenesis, as well as inducing apoptosis, were examined with hepatic cancer cell line HepG2 and a xenograft mouse model. C20/C22 treatment downregulated the synthesis of SLex and Ley sugar epitopes and suppressed selectin-mediated cancer cell metastasis. C20/C22 inhibited HepG2 proliferation, induced cell-cycle arrest, increased intracellular ROS level, led to ER stress, and eventually induced apoptosis through the intrinsic pathway. Furthermore, C20/C22 upregulated the expressions of death receptors DR4 and DR5, substantially increasing the sensitivity of HepG2 to TRAIL-triggered apoptosis. In vivo, C20/C22 effectively inhibited tumor growth and angiogenesis in the xenograft mouse model without adverse effects on major organs. In summary, C20 and C22 are new promising anti-hepatic cancer agents with multiple mechanisms in controlling cancer cell growth, metastasis, and apoptosis, and they merit further development into anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yin Gao
- Correspondence: ; Fax: +86-431-85168175
| |
Collapse
|