1
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
2
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Dhiman M, Ghosh S, Singh TG, Chauhan S, Roy P, Lahiri D. Exploring the potential of an Aloe vera and honey extract loaded bi-layered nanofibrous scaffold of PCL-Col and PCL-SBMA mimicking the skin architecture for the treatment of diabetic wounds. J Mater Chem B 2024; 12:10383-10408. [PMID: 39290135 DOI: 10.1039/d4tb01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Diabetic wounds are often chronic in nature, and issues like elevated blood sugar, bacterial infections, oxidative stress and persistent inflammation impede the healing process. To ensure the appropriate healing of wounds, scaffolds should promote complete tissue regeneration in wounds, both functionally and structurally. However, the available scaffolds lack the explicit architecture and functionality that could match those of native skin, thus failing to carry out the scar-free skin regeneration in diabetic wounds. This study deals with the synthesis of a bi-layered nanofibrous scaffold mimicking the native skin architecture in terms of porosity and hydrophobic-hydrophilic gradients. In addition, herbal extracts of Aloe vera and litchi honey were added in consecutive layers to manage the high blood glucose level, inflammation, and increased ROS level associated with diabetic wounds. In vitro studies confirmed that the prepared scaffold with herbal extracts showed enhanced proliferation of skin cells with good mechanical strength, degradability, anti-bacterial and anti-diabetic properties. The scaffold also demonstrated superior wound healing in vivo with quicker scar-free wound recovery and appropriate skin regeneration, compared to conventional treatment. Altogether, the synthesized herbal extract loaded bi-layered nanofibrous scaffold can be used as a regenerative template for hard-to-heal diabetic wounds, offering a new strategy for the management of chronic wounds.
Collapse
Affiliation(s)
- Megha Dhiman
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Samrat Chauhan
- Chitkara College of Pharmacy, Chikara University Rajpura, Punjab 140401, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Garau Paganella L, Badolato A, Labouesse C, Fischer G, Sänger CS, Kourouklis A, Giampietro C, Werner S, Mazza E, Tibbitt MW. Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels. BIOMATERIALS ADVANCES 2024; 163:213933. [PMID: 38972277 DOI: 10.1016/j.bioadv.2024.213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.
Collapse
Affiliation(s)
- Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Fischer
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catharina S Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
7
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Robertson TF, Schrope J, Zwick Z, Rindy JK, Horn A, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607647. [PMID: 39211200 PMCID: PMC11360923 DOI: 10.1101/2024.08.14.607647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amoeboid cells like leukocytes can enter and migrate within virtually every tissue of the body, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with f-actin-rich leading-edge pseudopods, matching how they migrate in vitro . T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of f-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro , and we correspondingly found the stratified keratinocyte layers of the epidermis impose planar-like confinement on leukocytes in vivo . By imaging the same cell type across the body, our data collectively indicates that cells adapt their migration strategy to navigate different tissue geometries in vivo .
Collapse
|
9
|
Chen CY, Yang SH, Chang PY, Chen SF, Nieh S, Huang WY, Lin YC, Lee OKS. Cancer-Associated-Fibroblast-Mediated Paracrine and Autocrine SDF-1/CXCR4 Signaling Promotes Stemness and Aggressiveness of Colorectal Cancers. Cells 2024; 13:1334. [PMID: 39195225 DOI: 10.3390/cells13161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ping-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 40433, Taiwan
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40402, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Ivarsson J, Bennett A, Ferrara F, Strauch R, Vallase A, Iorizzo M, Pecorelli A, Lila MA, Valacchi G. Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage. Food Funct 2024; 15:7849-7864. [PMID: 38962816 DOI: 10.1039/d4fo01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel ex vivo co-culture model of human skin explants and primary endothelial cells. Skin explants, placed in transwell inserts, were exposed to UV, and subsequently co-cultured with endothelial cells. When the endothelial cells had been pretreated with the bioactive metabolites at physiological concentrations (hippuric acid 3000 nM, isoferulic acid 1000 nM, salicylic acid 130 nM, benzoic acid 900 nM, α-hydroxyhippuric acid 400 nM) cutaneous damage was prevented on the co-cultured with UV-challenged skin explants. Co-culture with non-pretreated endothelial cells did not protect skin explants. Specifically, the pretreatment was able to reduce skin lipid peroxidation (measured as 4-hydroxynonenal protein adducts), and pro-inflammatory enzymes such as cyclooxygenase 2 (COX-2) and NADPH oxidase 4 (NOX-4). Furthermore, pretreatment with the metabolites prevented UV-induced release of inflammatory cytokines such as IL-1β and IL-8 as well as nitric oxides (NO) levels. In addition, the metabolites showed an impressive ability to prevent the loss of cutaneous structural proteins including involucrin and collagen type 1. Of note, endothelial cells cultured with UV exposed skin explants exhibited increased oxidative stress demonstrated by heme oxygenase-1 (HO-1) up-regulation which was significantly prevented in the metabolite treated models. These findings highlight the ability of dietary polyphenolic metabolites to improve cutaneous defenses against extrinsic stressors.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Abby Bennett
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Renee Strauch
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Andrea Vallase
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| |
Collapse
|
11
|
Melfa F, McCarthy A, Aguilera SB, van Loghem J, Gennai A. Guided SEFFI and CaHA: A Retrospective Observational Study of an Innovative Protocol for Regenerative Aesthetics. J Clin Med 2024; 13:4381. [PMID: 39124647 PMCID: PMC11313436 DOI: 10.3390/jcm13154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: This retrospective observational study sought to determine the efficacy and safety of an innovative combined treatment protocol using guided Superficial Enhanced Fluid Fat Injection (SEFFI) and calcium hydroxylapatite (CaHA) in facial rejuvenation. Methods: A total of 158 patients (149 females and 9 males) underwent the combined treatment of guided SEFFI and diluted/hyperdiluted CaHA. The study evaluated treatment outcomes at 30, 90, and 150 days post-treatment using the Global Aesthetic Improvement Scale (GAIS) and three-dimensional photogrammetric analysis. Results: The combined treatment demonstrated consistent enhancement in skin quality and facial volume across temporal, malar, zygomatic, and jawline regions. At 90 days post-treatment, substantial improvements were observed, with the GAIS scores reflecting significant enhancements in both skin quality and volume, which were sustained or slightly improved by 150 days. Minor complications, predominantly ecchymosis at the injection sites, resolved within a week, confirming the treatments' safety. Conclusions: The integration of guided SEFFI and CaHA resulted in significant improvements in skin quality and facial volume with minimal complications. Further research is recommended to consolidate these findings and explore long-term outcomes.
Collapse
Affiliation(s)
| | | | - Shino Bay Aguilera
- Shino Bay Cosmetic Dermatology & Laser Institute, Fort Lauderdale, FL 33301, USA
| | | | | |
Collapse
|
12
|
Kim J, Sakar MS, Bouklas N. Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01870-2. [PMID: 38972940 DOI: 10.1007/s10237-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
13
|
Kang D. Advancing Fingertip Regeneration: Outcomes from a New Conservative Treatment Protocol. J Clin Med 2024; 13:3646. [PMID: 38999212 PMCID: PMC11242295 DOI: 10.3390/jcm13133646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Background Fingertip injuries with volar pulp tissue defects present a significant challenge in management. This study aimed to evaluate the efficacy of a conservative treatment protocol using artificial dermis and semi-occlusive dressings for these injuries. Methods A single-center, prospective study was conducted on 31 patients with fingertip injuries involving volar pulp defects. The treatment protocol included wound debridement, application of artificial dermis (Pelnac®), and a semi-occlusive dressing (IV3000®). The outcomes were assessed using subjective questionnaires and objective measures, including fingerprint regeneration, sensory function, pain, and cosmetic appearance. Results The mean treatment duration was 45.29 days (SD = 17.53). Complications were minimal, with only one case (3.22%) directly attributable to the treatment. Fingerprint regeneration was considerable (mean score = 2.58, SD = 0.67). The sensory disturbances were minimal, with no significant differences across injury types. Post-treatment pain was low (mean = 0.45, SD = 0.67), and cosmetic satisfaction was high (mean = 4.09, SD = 0.94). The overall patient satisfaction was high (mean = 4.41, SD = 0.67), regardless of injury severity. Conclusions The conservative treatment protocol using artificial dermis and semi-occlusive dressings is a promising strategy for managing fingertip injuries with volar pulp defects. This approach minimizes surgical morbidity and achieves excellent functional and aesthetic outcomes.
Collapse
Affiliation(s)
- Daihun Kang
- Department of Plastic and Reconstructive Surgery, Ewha Womans University Seoul Hospital, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Wang Q, Yan H, Yao L, Li W, Xiao J. A highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. J Mater Chem B 2024; 12:4467-4477. [PMID: 38629894 DOI: 10.1039/d3tb03032f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| |
Collapse
|
15
|
Taira H, Ito Y, Yamamoto T, Koyama A, Li L, Sugimoto E, Mizuno Y, Awaji K, Sato S, Shibata S. Elevated serum vasohibin-1 levels in atopic dermatitis: Implications for disease chronicity. J Dermatol 2024. [PMID: 38711287 DOI: 10.1111/1346-8138.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Atopic dermatitis (AD) is often characterized by chronic skin changes of dermal fibrosis, typically regulated by inflammatory and angiogenic factors. However, the significance of angiogenesis inhibitory factors in the development of AD is poorly understood. The present study investigated the potential role of an angiogenesis inhibitory factor, vasohibin-1 (VASH1), in AD by evaluating serum and skin VASH1 levels and their correlation with clinical features. The results showed that VASH1 expression levels in both the serum and skin of patients with AD were significantly elevated compared to healthy controls. Immunohistochemical staining of AD skin showed increased VASH1 expression in dermal vascular endothelial cells. Notably, there was a significant correlation between serum VASH1 levels and disease duration as well as VASH1 and vascular endothelial growth factor A expression levels in the skin tissue of patients with AD. These results may suggest a pathogenesis of increased angiogenesis and associated elevated inhibitory processes accompanying inflammation in the chronic phase of AD.
Collapse
Affiliation(s)
- Haruka Taira
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toyoki Yamamoto
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asumi Koyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lixin Li
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Sugimoto
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuka Mizuno
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Olaizola-Rodrigo C, Castro-Abril H, Perisé-Badía I, Pancorbo L, Ochoa I, Monge R, Oliván S. Reducing Inert Materials for Optimal Cell-Cell and Cell-Matrix Interactions within Microphysiological Systems. Biomimetics (Basel) 2024; 9:262. [PMID: 38786472 PMCID: PMC11118140 DOI: 10.3390/biomimetics9050262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
In the pursuit of achieving a more realistic in vitro simulation of human biological tissues, microfluidics has emerged as a promising technology. Organ-on-a-chip (OoC) devices, a product of this technology, contain miniature tissues within microfluidic chips, aiming to closely mimic the in vivo environment. However, a notable drawback is the presence of inert material between compartments, hindering complete contact between biological tissues. Current membranes, often made of PDMS or plastic materials, prevent full interaction between cell types and nutrients. Furthermore, their non-physiological mechanical properties and composition may induce unexpected cell responses. Therefore, it is essential to minimize the contact area between cells and the inert materials while simultaneously maximizing the direct contact between cells and matrices in different compartments. The main objective of this work is to minimize inert materials within the microfluidic chip while preserving proper cellular distribution. Two microfluidic devices were designed, each with a specific focus on maximizing direct cell-matrix or cell-cell interactions. The first chip, designed to increase direct cell-cell interactions, incorporates a nylon mesh with regular pores of 150 microns. The second chip minimizes interference from inert materials, thereby aiming to increase direct cell-matrix contact. It features an inert membrane with optimized macropores of 1 mm of diameter for collagen hydrogel deposition. Biological validation of both devices has been conducted through the implementation of cell migration and cell-to-cell interaction assays, as well as the development of epithelia, from isolated cells or spheroids. This endeavor contributes to the advancement of microfluidic technology, aimed at enhancing the precision and biological relevance of in vitro simulations in pursuit of more biomimetic models.
Collapse
Affiliation(s)
- Claudia Olaizola-Rodrigo
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (C.O.-R.); (H.C.-A.); (I.P.-B.); (S.O.)
- BEOnChip S.L., 50018 Zaragoza, Spain; (L.P.); (R.M.)
| | - Héctor Castro-Abril
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (C.O.-R.); (H.C.-A.); (I.P.-B.); (S.O.)
- Laboratorio de Biomiméticos, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Ismael Perisé-Badía
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (C.O.-R.); (H.C.-A.); (I.P.-B.); (S.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Lara Pancorbo
- BEOnChip S.L., 50018 Zaragoza, Spain; (L.P.); (R.M.)
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (C.O.-R.); (H.C.-A.); (I.P.-B.); (S.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosa Monge
- BEOnChip S.L., 50018 Zaragoza, Spain; (L.P.); (R.M.)
| | - Sara Oliván
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (C.O.-R.); (H.C.-A.); (I.P.-B.); (S.O.)
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Raote I, Rosendahl AH, Häkkinen HM, Vibe C, Küçükaylak I, Sawant M, Keufgens L, Frommelt P, Halwas K, Broadbent K, Cunquero M, Castro G, Villemeur M, Nüchel J, Bornikoel A, Dam B, Zirmire RK, Kiran R, Carolis C, Andilla J, Loza-Alvarez P, Ruprecht V, Jamora C, Campelo F, Krüger M, Hammerschmidt M, Eckes B, Neundorf I, Krieg T, Malhotra V. TANGO1 inhibitors reduce collagen secretion and limit tissue scarring. Nat Commun 2024; 15:3302. [PMID: 38658535 PMCID: PMC11043333 DOI: 10.1038/s41467-024-47004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | - Ann-Helen Rosendahl
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Hanna-Maria Häkkinen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Carina Vibe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, Barcelona, Spain
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Lena Keufgens
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pia Frommelt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kai Halwas
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Katrina Broadbent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gustavo Castro
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie Villemeur
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Julian Nüchel
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Anna Bornikoel
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Binita Dam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravi Kiran
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany.
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
18
|
Chitturi P, Leask A. The role of positional information in determining dermal fibroblast diversity. Matrix Biol 2024; 128:31-38. [PMID: 38423396 DOI: 10.1016/j.matbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
19
|
Christofidou ED, Tomazou M, Voutouri C, Michael C, Stylianopoulos T, Spyrou GM, Strati K. Oct4 is a gatekeeper of epithelial identity by regulating cytoskeletal organization in skin keratinocytes. Cell Rep 2024; 43:113859. [PMID: 38421873 DOI: 10.1016/j.celrep.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, β-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
20
|
Lu KY, Cheng LC, Hung ZC, Chen ZY, Wang CW, Hou HH. The Ethyl Acetate Extract of Caulerpa microphysa Promotes Collagen Homeostasis and Inhibits Inflammation in the Skin. Curr Issues Mol Biol 2024; 46:2701-2712. [PMID: 38534786 DOI: 10.3390/cimb46030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Inflammation and collagen-degrading enzymes' overexpression promote collagen decomposition, which affects the structural integrity of the extracellular matrix. The polysaccharide and peptide extracts of the green alga Caulerpa microphysa (C. microphysa) have been proven to have anti-inflammatory, wound healing, and antioxidant effects in vivo and in vitro. However, the biological properties of the non-water-soluble components of C. microphysa are still unknown. In the present study, we demonstrated the higher effective anti-inflammatory functions of C. microphysa ethyl acetate (EA) extract than water extract up to 16-30% in LPS-induced HaCaT cells, including reducing the production of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Furthermore, the excellent collagen homeostasis effects from C. microphysa were proven by suppressing the matrix metalloproteinase-1 (MMP-1) secretion, enhancing type 1 procollagen and collagen expressions dose-dependently in WS1 cells. Moreover, using UHPLC-QTOF-MS analysis, four terpenoids, siphonaxanthin, caulerpenyne, caulerpal A, and caulerpal B, were identified and may be involved in the superior collagen homeostasis and anti-inflammatory effects of the C. microphysa EA extract.
Collapse
Affiliation(s)
- Kuo-Yun Lu
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Zheng-Ci Hung
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
| | - Ze-Ying Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 100, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
21
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
22
|
Frech S, Lichtenberger BM. Modulating embryonic signaling pathways paves the way for regeneration in wound healing. Front Physiol 2024; 15:1367425. [PMID: 38434140 PMCID: PMC10904466 DOI: 10.3389/fphys.2024.1367425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Epithelial tissues, including the skin, are highly proliferative tissues with the capability to constant renewal and regeneration, a feature that is essential for survival as the skin forms a protective barrier against external insults and water loss. In adult mammalian skin, every injury will lead to a scar. The scar tissue that is produced to seal the wound efficiently is usually rigid and lacks elasticity and the skin's original resilience to external impacts, but also secondary appendages such as hair follicles and sebaceous glands. While it was long thought that hair follicles develop solely during embryogenesis, it is becoming increasingly clear that hair follicles can also regenerate within a wound. The ability of the skin to induce hair neogenesis following injury however declines with age. As fetal and neonatal skin have the remarkable capacity to heal without scarring, the recapitulation of a neonatal state has been a primary target of recent regenerative research. In this review we highlight how modulating dermal signaling or the abundance of specific fibroblast subsets could be utilized to induce de novo hair follicles within the wound bed, and thus to shift wound repair with a scar to scarless regeneration.
Collapse
|
23
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
24
|
Wyles SP, Carruthers JD, Dashti P, Yu G, Yap JQ, Gingery A, Tchkonia T, Kirkland JL. Cellular Senescence in Human Skin Aging: Leveraging Senotherapeutics. Gerontology 2023; 70:7-14. [PMID: 37879300 PMCID: PMC10873061 DOI: 10.1159/000534756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Jean D. Carruthers
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Dashti
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Grace Yu
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and Mayo Clinic Medical Scientist Training Program, Rochester, MN
| | - Jane Q. Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN United States
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande P. Incorporation of hair follicles in 3D bioprinted models of human skin. SCIENCE ADVANCES 2023; 9:eadg0297. [PMID: 37831765 PMCID: PMC10575578 DOI: 10.1126/sciadv.adg0297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Current approaches fail to adequately introduce complex adnexal structures such as hair follicles within tissue engineered models of skin. Here, we report on the use of 3D bioprinting to incorporate these structures in engineered skin tissues. Spheroids, induced by printing dermal papilla cells (DPCs) and human umbilical vein cells (HUVECs), were precisely printed within a pregelled dermal layer containing fibroblasts. The resulting tissue developed hair follicle-like structures upon maturation, supported by migration of keratinocytes and melanocytes, and their morphology and composition grossly mimicked that of the native skin tissue. Reconstructed skin models with increased complexity that better mimic native adnexal structures can have a substantial impact on regenerative medicine as grafts and efficacy models to test the safety of chemical compounds.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Grupo Boticário, Curitiba, Paraná, Brazil
| | | | - Lexi Dechiario
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
26
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
27
|
Nishikiori N, Takada K, Sato T, Miyamoto S, Watanabe M, Hirakawa Y, Sekiguchi S, Furuhashi M, Yorozu A, Takano K, Miyazaki A, Suzuki H, Ohguro H. Physical Properties and Cellular Metabolic Characteristics of 3D Spheroids Are Possible Definitive Indices for the Biological Nature of Cancer-Associated Fibroblasts. Cells 2023; 12:2160. [PMID: 37681892 PMCID: PMC10486986 DOI: 10.3390/cells12172160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
The current study's objective was to elucidate some currently unknown biological indicators to evaluate the biological nature of cancer-associated fibroblasts (CAFs). For this purpose, four different CAFs, CAFS1, CAFS2, SCC17F and MO-1000, were established using surgical specimens from oral squamous cell carcinomas (OSCC) with different clinical malignant stages (CAFS1 and CAFS2, T2N0M0, stage II; SCC17F and MO-1000, T4aN2bM0, stage IVA). Fibroblasts unrelated to cancer (non-CAFs) were also prepared and used as controls. Initially, confirmation that these four fibroblasts were indeed CAFs was obtained by their mRNA expression using positive and negative markers for the CAF or fibroblasts. To elucidate possible unknown biological indicators, these fibroblasts were subjected to a cellular metabolic analysis by a Seahorse bioanalyzer, in conjugation with 3D spheroid cultures of the cells and co-cultures with a pancreas ductal carcinoma cell line, MIA PaCa-2. The mitochondrial and glycolytic functions of human orbital fibroblasts (HOF) were nearly identical to those of Graves'-disease-related HOF (GOF). In contrast, the characteristics of the metabolic functions of these four CAFs were different from those of human conjunctival fibroblasts (HconF), a representative non-CAF. It is particularly noteworthy that CAFS1 and CAFS2 showed markedly reduced ratios for the rate of oxygen consumption to the extracellular acidification rate, suggesting that glycolysis was enhanced compared to mitochondrial respiration. Similarly, the physical aspects, their appearance and stiffness, of their 3D spheroids and fibroblasts that were induced effects based on the cellular metabolic functions of MIA PaCa-2 were also different between CAFs and non-CAFs, and their levels for CAFS1 or SCC17F were similar to those for CAFS2 or MO-1000 cells, respectively. The findings reported herein indicate that cellular metabolic functions and the physical characteristics of these types of 3D spheroids may be valuable and useful indicators for estimating potential biological diversity among various CAFs.
Collapse
Affiliation(s)
- Nami Nishikiori
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan
| | - Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Yui Hirakawa
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Shohei Sekiguchi
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
- Department of Otolaryngology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| |
Collapse
|
28
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
29
|
Bakhshandeh B, Jahanafrooz Z, Allahdadi S, Daryani S, Dehghani Z, Sadeghi M, Pedram MS, Dehghan MM. Transcriptomic and in vivo approaches introduced human iPSC-derived microvesicles for skin rejuvenation. Sci Rep 2023; 13:9963. [PMID: 37339980 DOI: 10.1038/s41598-023-36162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
The skin undergoes the formation of fine lines and wrinkles through the aging process; also, burns, trauma, and other similar circumstances give rise to various forms of skin ulcers. Induced pluripotent stem cells (iPSCs) have become promising candidates for skin healing and rejuvenation due to not stimulating inflammatory responses, low probability of immune rejection, high metabolic activity, good large-scale production capacity and potentials for personalized medicine. iPSCs can secrete microvesicles (MVs) containing RNA and proteins responsible for the normal repairing process of the skin. This study aimed to evaluate the possibility, safety and effectiveness of applying iPSCs-derived MVs for skin tissue engineering and rejuvenation applications. The possibility was assessed using the evaluation of the mRNA content of iPSC-derived MVs and the behavior of fibroblasts after MV treatment. Investigating the effect of microvesicle on stemness potential of mesenchymal stem cells was performed for safety concerns. In vivo evaluation of MVs was done in order to investigate related immune response, re-epithelialization and blood vessel formation to measure effectiveness. Shedding MVs were round in shape distributed in the range from 100 to 1000 nm in diameter and positive for AQP3, COL2A, FGF2, ITGB, and SEPTIN4 mRNAs. After treating dermal fibroblasts with iPSC-derived MVs, the expressions of collagens Iα1 and III transcripts (as the main fibrous extracellular matrix (ECM) proteins) were upregulated. Meanwhile, the survival and proliferation of MV treated fibroblasts did not change significantly. Evaluation of stemness markers in MV treated MSCs showed negligible alteration. In line with in vitro results, histomorphometry and histopathology findings also confirmed the helpful effect of MVs in skin regeneration in the rat burn wound models. Conducting more investigations on hiPSCs-derived MVs may lead to produce more efficient and safer biopharmaceutics for skin regeneration in the pharmaceutical market.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Shiva Allahdadi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shiva Daryani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Biotechnology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mahya Sadeghi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mir Sepehr Pedram
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| |
Collapse
|
30
|
Ivarsson J, Pecorelli A, Lila MA, Valacchi G. Blueberry Supplementation and Skin Health. Antioxidants (Basel) 2023; 12:1261. [PMID: 37371992 DOI: 10.3390/antiox12061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Environmental stressors such as air pollutants, ozone, and UV radiation are among the most noxious outdoor stressors affecting human skin and leading to premature skin aging. To prevent the extrinsic aging, the skin is equipped with an effective defensive system. However, cutaneous defense mechanisms can be overwhelmed through chronic exposure to environmental pollutants. Recent studies have suggested that the topical usage of natural compounds, such as blueberries, could be a good strategy to prevent skin damage from the environment. Indeed, blueberries contain bioactive compounds found to induce an active skin response against the environmental noxious effects. In this review, results from recent studies on this topic are discussed in order to build the argument for blueberries to possibly be an effective agent for skin health. In addition, we hope to highlight the need for further research to elucidate the mechanisms behind the use of both topical application and dietary supplementation with blueberries to bolster cutaneous systems and defensive mechanisms.
Collapse
Affiliation(s)
- John Ivarsson
- Plants for Human Health Institute, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Regenerative Medicine, Department of Animal Science, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Chen F, Guo X, Wu Y. Skin antiaging effects of a multiple mechanisms hyaluronan complex. Skin Res Technol 2023; 29:e13350. [PMID: 37357659 PMCID: PMC10225814 DOI: 10.1111/srt.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Intrinsic skin aging is an inevitable process with reduced extracellular matrix deposition and impaired mechanical integrity in the dermal-epidermal junction (DEJ). Hyaluronan is one of the most promising natural ingredients. In this research, multiple mechanisms of a novel hyaluronan complex against intrinsic skin aging were revealed. METHOD Immunohistochemical analysis and enzyme-linked immunosorbent assay were employed to evaluate the effect of low-molecular weight sodium hyaluronan, its acetylated derivative and HA complex on expression of matrix metalloproteinase-1 (MMP-1) and type I collagen in normal human fibroblasts. Then, immunohistochemical analysis and hematoxylin and eosin staining was carried out to evaluate identical effects of HA complex in reconstructed skin equivalents, as well as its benefits on histological structure and DEJ. RESULT In normal human dermal fibroblasts, the hyaluronan complex, which contains low-molecular weight sodium hyaluronate and its acetylated derivative, has synergistic effects by increasing type I collagen expression. At the same time, MMP-1 production was inhibited. This was confirmed in subsequent experiments with skin equivalent, and intriguingly, the hyaluronan complex was also found to increase the expression of two DEJ proteins. CONCLUSION The multimechanism hyaluronan complex in this proof-of-concept study exhibited skin antiaging effects in vitro through inhibiting the expression of MMP-1 and enhancing type I collagen accumulation and the expression of DEJ proteins, which reveals new avenues for investigating more biological activities of various types of hyaluronan.
Collapse
Affiliation(s)
- Fan Chen
- Department of Research and DevelopmentBloomage Biotechnology Co., Ltd.ShanghaiChina
| | - Xueping Guo
- Department of Research and DevelopmentBloomage Biotechnology Co., Ltd.JinanChina
| | - Yue Wu
- Department of Research and DevelopmentBloomage Biotechnology Co., Ltd.ShanghaiChina
| |
Collapse
|
32
|
Su CY, Liu TY, Wang HV, Yang WC. Histopathological Study on Collagen in Full-Thickness Wound Healing in Fraser's Dolphins ( Lagenodelphis hosei). Animals (Basel) 2023; 13:ani13101681. [PMID: 37238111 DOI: 10.3390/ani13101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Fraser's dolphins (Lagenodelphis hosei) possess great healing abilities. Their skin composition can be restored after wounding, including collagen spacing, orientation, and bundle thickness. However, it remains unclear how collagens are involved in the wound-healing process and eventually regain normality in Fraser's dolphins. Learned from the other two scarless healing animals, changes in type III/I collagen composition are believed to modulate the wound healing process and influence the scarring or scarless fate determination in human fetal skin and spiny mouse skin. In the current study, Herovici's, trichrome, and immunofluorescence staining were used on normal and wounded skin samples in Fraser's dolphins. The results suggested that type I collagens were the main type of collagens in the normal skin of Fraser's dolphins, while type III collagens were barely seen. During the wound healing process, type III collagens showed at early wound healing stages, and type I collagen increased in the mature healed wound. In an early healed wound, collagens were organized in a parallel manner, showing a transient hypertrophic-like scar, and eventually restored to normal collagen configuration and adipocyte distribution in the mature healed wound. The remarkable ability to remove excessive collagens merits further investigation to provide new insights into clinical wound management.
Collapse
Affiliation(s)
- Chen-Yi Su
- School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan
| | - Tzu-Yu Liu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
33
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
34
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
35
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage Commitment of Dermal Fibroblast Progenitors is Mediated by Chromatin De-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531478. [PMID: 36945417 PMCID: PMC10028926 DOI: 10.1101/2023.03.07.531478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.
Collapse
Affiliation(s)
- Quan M. Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Lucia Salz
- North Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Sam S. Kindl
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jayden S. Lopez
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sean M. Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jasson Makkar
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Iwona M. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
- Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
36
|
Induction of psoriasis- and atopic dermatitis-like phenotypes in 3D skin equivalents with a fibroblast-derived matrix. Sci Rep 2023; 13:1807. [PMID: 36720910 PMCID: PMC9889787 DOI: 10.1038/s41598-023-28822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Skin homeostasis is a complex regulated process relying on the crosstalk of keratinocytes, fibroblasts and immune cells. Imbalances of T-cell subsets and the cytokine environment can lead to inflammatory skin diseases such as psoriasis (Ps) and atopic dermatitis (AD). Modern tissue engineering provides several in vitro models mimicking Ps and AD phenotypes. However, these models are either limited in their pathological features, life span, sample availability, reproducibility, controlled handling or simplicity. Some models further lack intensive characterization as they solely focus on differentiation and proliferation aspects. This study introduces a self-assembly model in which the pathological T-cell-signalling of Ps and AD was simulated by subcutaneous Th1 and Th2 cytokine stimulation. The self-established dermal fibroblast-derived matrices of these models were hypothesized to be beneficial for proximal cytokine signalling on epidermal keratinocytes. Comprehensive histological and mRNA analyses of the diseased skin models showed a weakened barrier, distinct differentiation defects, reduced cellular adhesion, inflammation and parakeratosis formation. A keratin shift of declining physiological cytokeratin-10 (CK10) towards increasing inflammatory CK16 was observed upon Th1 or Th2 stimulation. Antimicrobial peptides (AMPs) were upregulated in Ps and downregulated in AD models. The AD biomarker genes CA2, NELL2 and CCL26 were further induced in AD. While Ps samples featured basal hyperproliferation, cells in AD models displayed apoptotic signs. In accordance, these well-controllable three-dimensional in vitro models exhibited Ps and AD-like phenotypes with a high potential for disease research and therapeutic drug testing.
Collapse
|
37
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
38
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
39
|
Shao Y, Zhu Y, Xiao Z, Shen Y, Dai B, Tang H, Wang D. RNA sequencing reveals the transcriptome profile of the atopic prurigo nodularis with severe itching. Exp Dermatol 2023; 32:30-40. [PMID: 36134503 DOI: 10.1111/exd.14678] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023]
Abstract
Prurigo nodularis (PN), characterized by inevitable chronicity and severe pruritus, is most frequently associated with atopy compared with other origins. However, the skin transcriptomic profiling of PN arising from atopic dermatitis (AD), so-called atopic PN (APN), remains unclear. We sought to explore the cutaneous transcriptome of APN with severe pruritus and compare it with classic AD. RNA sequencing was performed on the lesional skin from 13 APN to 11 AD patients with severe pruritus (itch numerical rating scale score ≥ 7) and normal skin from 11 healthy subjects. Quantitative real-time polymerase chain reaction and immunochemistry were used for validation. We detected 1085 and 1984 differentially expressed genes (DEGs) in lesional APN skin and lesional AD skin versus normal skin, respectively. In total, 142 itch/inflammation-related DEGs were identified. Itch/inflammation-related DEGs, such as IL-6, IL-10, IL-13, oncostatin M, and IL-4 receptor, had elevated gene transcript levels in both diseases. The itch/inflammation-related DEGs that increased only in APN were mainly neuroactive molecules, while many inflammatory mediators such as T helper 22-related genes were found to be increased only in AD. Both disorders showed mixed Th1/Th2/Th17 polarisation and impaired skin barrier. In contrast to AD, M1/M2 macrophage activation, tumor necrosis factor production, fibrosis, revascularization and neural dysregulation are unique features of APN. The study findings broaden our understanding of the pathogenesis underlying APN, which provides insights into novel pathogenesis with potential therapeutic implications.
Collapse
Affiliation(s)
- Yixin Shao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqi Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zijing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Duoqin Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
del Olmo M, Spörl F, Korge S, Jürchott K, Felten M, Grudziecki A, de Zeeuw J, Nowozin C, Reuter H, Blatt T, Herzel H, Kunz D, Kramer A, Ananthasubramaniam B. Inter-layer and inter-subject variability of diurnal gene expression in human skin. NAR Genom Bioinform 2022; 4:lqac097. [PMID: 36601580 PMCID: PMC9803873 DOI: 10.1093/nargab/lqac097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
The skin is the largest human organ with a circadian clock that regulates its function. Although circadian rhythms in specific functions are known, rhythms in the proximal clock output, gene expression, in human skin have not been thoroughly explored. This work reports 24 h gene expression rhythms in two skin layers, epidermis and dermis, in a cohort of young, healthy adults, who maintained natural, regular sleep-wake schedules. 10% of the expressed genes showed such diurnal rhythms at the population level, of which only a third differed between the two layers. Amplitude and phases of diurnal gene expression varied more across subjects than layers, with amplitude being more variable than phases. Expression amplitudes in the epidermis were larger and more subject-variable, while they were smaller and more consistent in the dermis. Core clock gene expression was similar across layers at the population-level, but were heterogeneous in their variability across subjects. We also identified small sets of biomarkers for internal clock phase in each layer, which consisted of layer-specific non-core clock genes. This work provides a valuable resource to advance our understanding of human skin and presents a novel methodology to quantify sources of variability in human circadian rhythms.
Collapse
Affiliation(s)
- Marta del Olmo
- Institute for Theoretical Biology – Laboratory of Theoretical Chronobiology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, House 4, 10115 Berlin, Germany
| | - Florian Spörl
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Sandra Korge
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karsten Jürchott
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Berlin Institute of Health – Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Matthias Felten
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Astrid Grudziecki
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan de Zeeuw
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Nowozin
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hendrik Reuter
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology – Laboratory of Theoretical Chronobiology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, House 4, 10115 Berlin, Germany
| | - Dieter Kunz
- Institute of Physiology – Sleep Research & Clinical Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Achim Kramer
- Institute for Medical Immunology – Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
41
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
42
|
Raja E, Changarathil G, Oinam L, Tsunezumi J, Ngo YX, Ishii R, Sasaki T, Imanaka‐Yoshida K, Yanagisawa H, Sada A. The extracellular matrix fibulin 7 maintains epidermal stem cell heterogeneity during skin aging. EMBO Rep 2022; 23:e55478. [PMID: 36278510 PMCID: PMC9724670 DOI: 10.15252/embr.202255478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue stem cells (SCs) divide infrequently as a protective mechanism against internal and external stresses associated with aging. Here, we demonstrate that slow- and fast-cycling SCs in the mouse skin epidermis undergo distinct aging processes. Two years of lineage tracing reveals that Dlx1+ slow-cycling clones expand into the fast-cycling SC territory, while the number of Slc1a3+ fast-cycling clones gradually declines. Transcriptome analysis further indicate that the molecular properties of each SC population are altered with age. Mice lacking fibulin 7, an extracellular matrix (ECM) protein, show early impairments resembling epidermal SC aging, such as the loss of fast-cycling clones, delayed wound healing, and increased expression of inflammation- and differentiation-related genes. Fibulin 7 interacts with structural ECM and matricellular proteins, and the overexpression of fibulin 7 in primary keratinocytes results in slower proliferation and suppresses differentiation. These results suggest that fibulin 7 plays a crucial role in maintaining tissue resilience and epidermal SC heterogeneity during skin aging.
Collapse
Affiliation(s)
- Erna Raja
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| | - Gopakumar Changarathil
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Lalhaba Oinam
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Jun Tsunezumi
- Department of Pharmaceutical SciencesKyushu University of Health and WelfareMiyazakiJapan
| | - Yen Xuan Ngo
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takako Sasaki
- Department of Biochemistry IIOita UniversityOitaJapan
| | - Kyoko Imanaka‐Yoshida
- Department of Pathology and Matrix BiologyMie University Graduate School of MedicineMieJapan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Aiko Sada
- International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of TsukubaTsukubaJapan
| |
Collapse
|
43
|
Current Understanding of the Role of Senescent Melanocytes in Skin Ageing. Biomedicines 2022; 10:biomedicines10123111. [PMID: 36551868 PMCID: PMC9775966 DOI: 10.3390/biomedicines10123111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
Collapse
|
44
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|
45
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
46
|
Oceguera-Yanez F, Avila-Robinson A, Woltjen K. Differentiation of pluripotent stem cells for modeling human skin development and potential applications. Front Cell Dev Biol 2022; 10:1030339. [PMID: 36506084 PMCID: PMC9728031 DOI: 10.3389/fcell.2022.1030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| | | | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| |
Collapse
|
47
|
Ren R, Guo J, Liu G, Kang H, Machens HG, Schilling AF, Slobodianski A, Zhang Z. Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications. J Biol Eng 2022; 16:30. [PMID: 36329479 PMCID: PMC9635183 DOI: 10.1186/s13036-022-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The fibroblast is one of the ideal target cell candidates for cell-based gene therapy approaches to promote tissue repair. Gene delivery to fibroblasts by viral transfection has been confirmed to have high transfection efficiency. However, in addition to immunogenic effects of viruses, the random integration of viral genes may damage the genome, affect the cell phenotype or even cause cancerous mutations in the transfected cells. Due to these potential biohazards and unknown long-term risks, the clinical use of viral transfection has been very limited. In contrast, initial non-viral transfection methods have been simple and safe to implement, with low immunogenicity, insertional mutagenesis, and risk of carcinogenesis, but their transfection efficiency has been relatively low. Nucleofection, a more recent non-viral transfection method, now combines the advantages of high transfection efficiency and direct nucleic acid delivery to the nucleus with a high safety.Here, we reviewed recent articles on fibroblast nucleofection, summarized different research points, improved methods and application scopes, and opened up ideas for promoting the further improvement and development of fibroblast nucleofection to meet the needs of a variety of disease research and clinical applications.
Collapse
Affiliation(s)
- Ranyue Ren
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jiachao Guo
- grid.412793.a0000 0004 1799 5032Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Guangwu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hao Kang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hans-Günther Machens
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Arndt F. Schilling
- grid.411984.10000 0001 0482 5331Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Alex Slobodianski
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Ziyang Zhang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
48
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
49
|
Mohammadi M, Kohan L, Saeidi M, Saghaeian Jazi M, Mohammadi S. The antifibrotic effects of naringin in a hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. Immunopharmacol Immunotoxicol 2022; 44:704-711. [PMID: 35583493 DOI: 10.1080/08923973.2022.2077217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Fibrosis is a chronic inflammation caused by the loss of innate compensational mechanisms. Naringin (NR) is a flavonoid with antineoplastic and anti-inflammatory effects. Here, we aimed to investigate the antifibrotic effects of NR and underlying mechanisms in a Hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. MATERIALS AND METHODS A total of 24 six-week-old female BALB/c mice were randomly allocated into five groups: HOCl, Sham, PBS, HOCl + NR and DMSO and selected skin regions were treated for 6 weeks, until sacrifice. The histopathologic and collagenesis of skin resections were analyzed using H&E and PR staining. The mRNA levels of COL1, COL3 and αSMA genes were quantified. Serum samples were also used to evaluate TGF-β levels and LDH activity. RESULTS HOCl could increase the relative collagen content, while NR administration on HOCl-treated biopsies decreased collagenesis. COL1, COL3 and αSMA mRNA levels were significantly increased among HOCl-treated skin samples, while NR treatment could decrease these mRNA levels of genes to the extent equal to the levels in the Sham group. Similarly, Naringin-treated samples could decrease TGF-β levels. CONCLUSIONS We demonstrated that Naringin could exert protective effects against fibrotic complications of HOCL in skin tissue in vivo, by reducing the collagenesis and decreasing the levels of fibrosis-associated genes.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Leila Kohan
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
50
|
Motter Catarino C, Kaiser K, Baltazar T, Motter Catarino L, Brewer JR, Karande P. Evaluation of native and non-native biomaterials for engineering human skin tissue. Bioeng Transl Med 2022; 7:e10297. [PMID: 36176598 PMCID: PMC9472026 DOI: 10.1002/btm2.10297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
A variety of human skin models have been developed for applications in regenerative medicine and efficacy studies. Typically, these employ matrix molecules that are derived from non-human sources along with human cells. Key limitations of such models include a lack of cellular and tissue microenvironment that is representative of human physiology for efficacy studies, as well as the potential for adverse immune responses to animal products for regenerative medicine applications. The use of recombinant extracellular matrix proteins to fabricate tissues can overcome these limitations. We evaluated animal- and non-animal-derived scaffold proteins and glycosaminoglycans for the design of biomaterials for skin reconstruction in vitro. Screening of proteins from the dermal-epidermal junction (collagen IV, laminin 5, and fibronectin) demonstrated that certain protein combinations when used as substrates increase the proliferation and migration of keratinocytes compared to the control (no protein). In the investigation of the effect of components from the dermal layer (collagen types I and III, elastin, hyaluronic acid, and dermatan sulfate), the primary influence on the viability of fibroblasts was attributed to the source of type I collagen (rat tail, human, or bovine) used as scaffold. Furthermore, incorporation of dermatan sulfate in the dermal layer led to a reduction in the contraction of tissues compared to the control where the dermal scaffold was composed primarily of collagen type I. This work highlights the influence of the composition of biomaterials on the development of complex reconstructed skin models that are suitable for clinical translation and in vitro safety assessment.
Collapse
Affiliation(s)
- Carolina Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Katharina Kaiser
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Tânia Baltazar
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Present address:
Department of ImmunobiologyYale School of MedicineNew HavenConnecticutUSA
| | - Luiza Motter Catarino
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Department of BiomedicinePositivo UniversityCuritibaBrazil
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Pankaj Karande
- Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|