1
|
Astakhova O, Ivanova A, Komoltsev I, Gulyaeva N, Enikolopov G, Lazutkin A. Traumatic Brain Injury Promotes Neurogenesis and Oligodendrogenesis in Subcortical Brain Regions of Mice. Cells 2025; 14:92. [PMID: 39851520 PMCID: PMC11764027 DOI: 10.3390/cells14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention. Here, we investigated cell division and differentiation in non-neurogenic brain regions during the acute and delayed phases of TBI-induced neurodegeneration. We subjected mice to lateral fluid percussion injury (LFPI) to model TBI and analyzed them 1 or 7 weeks later. To assess cellular proliferation and differentiation, we administered 5-ethinyl-2'-deoxyuridine (EdU) and determined the number and identity of dividing cells 2 h later using markers of neuronal precursors and astro-, micro-, and oligodendroglia. Our results demonstrated a significant proliferative response in several brain regions at one week post-injury that notably diminished by seven weeks, except in the optic tract. In addition to active astro- and microgliosis, we detected oligodendrogenesis in the striatum and optic tract. Furthermore, we observed trauma-induced neurogenesis in the striatum. These findings suggest that subcortical structures, particularly the striatum and optic tract, may possess a potential for self-repair through neuronal regeneration and axon remyelination.
Collapse
Affiliation(s)
- Olga Astakhova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Anna Ivanova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Ilia Komoltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexander Lazutkin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Amelchenko EM, Bezriadnov DV, Chekhov OA, Ivanova AA, Kedrov AV, Anokhin KV, Lazutkin AA, Enikolopov G. Cognitive Flexibility Is Selectively Impaired by Radiation and Is Associated with Differential Recruitment of Adult-Born Neurons. J Neurosci 2023; 43:6061-6083. [PMID: 37532464 PMCID: PMC10451007 DOI: 10.1523/jneurosci.0161-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.
Collapse
Affiliation(s)
- Evgeny M Amelchenko
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Dmitri V Bezriadnov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Olga A Chekhov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Anna A Ivanova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander V Kedrov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Konstantin V Anokhin
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander A Lazutkin
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
| | - Grigori Enikolopov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
3
|
Amelchenko EM, Bezriadnov DV, Chekhov OA, Anokhin KV, Lazutkin AA, Enikolopov G. Age-related decline in cognitive flexibility is associated with the levels of hippocampal neurogenesis. Front Neurosci 2023; 17:1232670. [PMID: 37645372 PMCID: PMC10461065 DOI: 10.3389/fnins.2023.1232670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Aging is associated with impairments in learning, memory, and cognitive flexibility, as well as a gradual decline in hippocampal neurogenesis. We investigated the performance of 6-and 14-month-old mice (considered mature adult and late middle age, respectively) in learning and memory tasks based on the Morris water maze (MWM) and determined their levels of preceding and current neurogenesis. While both age groups successfully performed in the spatial version of MWM (sMWM), the older mice were less efficient compared to the younger mice when presented with modified versions of the MWM that required a reassessment of the previously acquired experience. This was detected in the reversal version of MWM (rMWM) and was particularly evident in the context discrimination MWM (cdMWM), a novel task that required integrating various distal cues, local cues, and altered contexts and adjusting previously used search strategies. Older mice were impaired in several metrics that characterize rMWM and cdMWM, however, they showed improvement and narrowed the performance gap with the younger mice after additional training. Furthermore, we analyzed the adult-born mature and immature neurons in the hippocampal dentate gyrus and found a significant correlation between neurogenesis levels in individual mice and their performance in the tasks demanding cognitive flexibility. These results provide a detailed description of the age-related changes in learning and memory and underscore the importance of hippocampal neurogenesis in supporting cognitive flexibility.
Collapse
Affiliation(s)
- Evgeny M. Amelchenko
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | | | - Olga A. Chekhov
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Konstantin V. Anokhin
- P.K. Anokhin Research Institute of Normal Physiology RAS, Moscow, Russia
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A. Lazutkin
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
4
|
Omais S, El Atie YE, Ghanem N. Rb deficiency, neuronal survival and neurodegeneration: In search of the perfect mouse model. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100074. [PMID: 36699152 PMCID: PMC9869410 DOI: 10.1016/j.crneur.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Yara E. El Atie
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
5
|
Detection of De Novo Dividing Stem Cells In Situ through Double Nucleotide Analogue Labeling. Cells 2022; 11:cells11244001. [PMID: 36552766 PMCID: PMC9777310 DOI: 10.3390/cells11244001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Tissue-specific somatic stem cells are characterized by their ability to reside in a state of prolonged reversible cell cycle arrest, referred to as quiescence. Maintenance of a balance between cell quiescence and division is critical for tissue homeostasis at the cellular level and is dynamically regulated by numerous extrinsic and intrinsic factors. Analysis of the activation of quiescent stem cells has been challenging because of a lack of methods for direct detection of de novo dividing cells. Here, we present and experimentally verify a novel method based on double labeling with thymidine analogues to detect de novo dividing stem cells in situ. In a proof of concept for the method, we show that memantine, a drug widely used for Alzheimer's disease therapy and a known strong inducer of adult hippocampal neurogenesis, increases the recruitment into the division cycle of quiescent radial glia-like stem cells-primary precursors of the adult-born neurons in the hippocampus. Our method could be applied to assess the effects of aging, pathology, or drug treatments on the quiescent stem cells in stem cell compartments in developing and adult tissues.
Collapse
|
6
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
7
|
Malloul H, Bonzano S, Bennis M, De Marchis S, Ba-M'hamed S. Chronic thinner inhalation alters olfactory behaviors in adult mice. Behav Brain Res 2022; 417:113597. [PMID: 34563601 DOI: 10.1016/j.bbr.2021.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Volatile solvents exposure can result in various behavioral impairments that have been partly associated to altered adult hippocampal neurogenesis. Despite recent evidence supporting this association, few studies have been devoted to examine the impact on olfactory functioning and olfactory bulb (OB) neurogenesis, although olfactory system is directly in contact with volatile molecules. Thus, this study was designed to evaluate in adult mice the potential modifications of the olfactory functioning after acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposure to thinner vapor at both behavioral and cellular levels. Firstly, behavioral evaluations showed that chronic thinner exposure impacts on odor detection ability of treated mice but does not affect mice ability to efficiently discriminate between two different odors. Moreover, chronic thinner exposure produces impairment in the olfactory-mediated associative memory. Secondly, analysis of the effects of thinner exposure in the subventricular zone (SVZ) of the lateral ventricle and in the OB revealed that thinner treatments do not induce apoptosis nor glial activation. Thirdly, immunohistochemical quantification of different markers of adult olfactory neurogenesis showed that inhalant treatments do not change the number of proliferating progenitors in the SVZ and the rostral migratory stream (RMS), as well as the number of newborn cells reaching and integrating in the OB circuitry. Altogether, our data highlight that the impaired olfactory performances in chronically-exposed mice are not associated to an alteration of adult neurogenesis in the SVZ-OB system.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
8
|
Kremer LP, Cerrizuela S, Dehler S, Stiehl T, Weinmann J, Abendroth H, Kleber S, Laure A, El Andari J, Anders S, Marciniak-Czochra A, Grimm D, Martin-Villalba A. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:33-50. [PMID: 34553001 PMCID: PMC8427210 DOI: 10.1016/j.omtm.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%–60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.
Collapse
Affiliation(s)
- Lukas P.M. Kremer
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Santiago Cerrizuela
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Dehler
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weinmann
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Heike Abendroth
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Laure
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jihad El Andari
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Corresponding author: Ana Martin-Villalba, Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Ko SY, Frankland PW. Neurogenesis-dependent transformation of hippocampal engrams. Neurosci Lett 2021; 762:136176. [PMID: 34400284 DOI: 10.1016/j.neulet.2021.136176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
In humans and other mammals, memories of events are encoded by neuronal ensembles (or engrams) in the hippocampus. The mnemonic information stored in these engrams can then be used to guide future behavior, including prediction- and decision-making in dynamic environments. While some hippocampal engrams may be persistently stored, others are modified over time, suggesting that the represented memories may also be transformed. How might hippocampal engrams be modified through time? Adult hippocampal neurogenesis represents one process that continuously rewires hippocampal circuitry, presumably including stored hippocampal engrams. At intermediate stages, we propose that neurogenesis-mediated rewiring of hippocampal engram circuitry induces forgetting of specific stimulus attributes, and this less precise engram allows for generalization. At more advanced stages, we propose that neurogenesis-mediated rewiring of hippocampal engram circuitry leads to silencing of hippocampal engrams, rendering them no longer accessible by natural retrieval cues.
Collapse
Affiliation(s)
- Sangyoon Y Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
10
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
11
|
Moisenovich MM, Silachev DN, Moysenovich AM, Arkhipova AY, Shaitan KV, Bogush VG, Debabov VG, Latanov AV, Pevzner IB, Zorova LD, Babenko VA, Plotnikov EY, Zorov DB. Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia. Front Cell Dev Biol 2020; 8:823. [PMID: 33015039 PMCID: PMC7505932 DOI: 10.3389/fcell.2020.00823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin-green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area.
Collapse
Affiliation(s)
| | - Denis N. Silachev
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Histology, Embryology and Cytology Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | | | | | | | - Vladimir G. Bogush
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Vladimir G. Debabov
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | | | - Irina B. Pevzner
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Ljubava D. Zorova
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Valentina A. Babenko
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Egor Y. Plotnikov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry B. Zorov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
12
|
Omais S, Halaby NN, Habashy KJ, Jaafar C, Bejjani AT, Ghanem N. Histological Assessment of Cre-loxP Genetic Recombination in the Aging Subventricular Zone of Nestin-CreER T2/Rosa26YFP Mice. Methods Mol Biol 2020; 2045:187-199. [PMID: 30888667 DOI: 10.1007/7651_2019_214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2/Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Nour N Halaby
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Karl John Habashy
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Anthony T Bejjani
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
13
|
Abstract
The dentate gyrus continually produces new neurons throughout life. Behavioral studies in rodents and network models show that new neurons contribute to normal dentate functions, but there are many unanswered questions about how the relatively small population of new neurons alters network activity. Here we discuss experimental evidence that supports multiple cellular mechanisms by which adult-born neurons contribute to circuit function. Whereas past work focused on the unique intrinsic properties of young neurons, more recent studies also suggest that adult-born neurons alter the excitability of the mature neuronal population via unexpected circuit interactions.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jose Carlos Gonzalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | |
Collapse
|
14
|
Lazutkin A, Podgorny O, Enikolopov G. Modes of division and differentiation of neural stem cells. Behav Brain Res 2019; 374:112118. [PMID: 31369774 DOI: 10.1016/j.bbr.2019.112118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/09/2023]
Abstract
Hippocampal neurogenesis presents an unorthodox form of neuronal plasticity and may be relevant for the normal or abnormal functioning of the human and animal brain. As production of new neurons decreases after birth, purposefully activating stem cells to create additional new neurons may augment brain function or slow a disease's progression. Here, we describe current models of hippocampal stem cell maintenance and differentiation, and emphasize key features of neural stem cells' turnover that may define hippocampal neurogenesis enhancement attempts' long-term consequences. We argue that even the basic blueprint of how stem cells are maintained, divide, differentiate, and are eliminated is still contentious, with different models potentially leading to vastly different outcomes in regard to neuronal production and stem cell pool preservation. We propose that to manipulate neurogenesis for a long-term benefit, we must first understand the outline of the neural stem cells' lifecycle.
Collapse
Affiliation(s)
- Alexander Lazutkin
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Moscow Institute of Physics and Technology, Moscow, Russia; P.K. Anokhin Institute for Normal Physiology, Moscow, Russia
| | - Oleg Podgorny
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
15
|
Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR. Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 2019; 122:958-969. [PMID: 31268808 DOI: 10.1152/jn.00332.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal slices are widely used for in vitro electrophysiological experiments to study underlying mechanisms for synaptic transmission and plasticity, and there is a growing appreciation for sex differences in synaptic plasticity. To date, several studies have shown that the process of making slices from male animals can induce synaptogenesis in cornu ammonis area 1 (CA1) pyramidal cells, but there is a paucity of data for females and other brain regions. In the current study we use microcrystals of the lipophilic carbocyanine dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) to stain individual neurons in the CA1 and dentate gyrus (DG) hippocampal subfields of postnatal day 21 male and female rats. We show that the preparation of sections for electrophysiology produces significant increases in spines in sections obtained from females, similar to that observed in males. We also show that the procedures used for in vitro electrophysiology also result in significant spine increases in the DG and CA1 subfields. These results demonstrate the utility of this refined DiI procedure for staining neuronal dendrites and spines. They also show, for the first time, that in vitro electrophysiology slice preparations enhance spine numbers on hippocampal cells equivalently in both juvenile females and males.NEW & NOTEWORTHY This study introduces a new DiI technique that elucidates differences in spine numbers in juvenile female and male hippocampus, and shows that slice preparations for hippocampal electrophysiology in vitro may mask these differences.
Collapse
Affiliation(s)
- J S Trivino-Paredes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Vizcaya, Spain
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Fu CH, Iascone DM, Petrof I, Hazra A, Zhang X, Pyfer MS, Tosi U, Corbett BF, Cai J, Lee J, Park J, Iacovitti L, Scharfman HE, Enikolopov G, Chin J. Early Seizure Activity Accelerates Depletion of Hippocampal Neural Stem Cells and Impairs Spatial Discrimination in an Alzheimer's Disease Model. Cell Rep 2019; 27:3741-3751.e4. [PMID: 31242408 PMCID: PMC6697001 DOI: 10.1016/j.celrep.2019.05.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.
Collapse
Affiliation(s)
- Chia-Hsuan Fu
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Maxim Iascone
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Iraklis Petrof
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anupam Hazra
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark S Pyfer
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Umberto Tosi
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian F Corbett
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jingli Cai
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jason Lee
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Park
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lorraine Iacovitti
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Helen E Scharfman
- Departments of Psychiatry, Neuroscience, and Physiology and the Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeannie Chin
- Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
17
|
Kumar A, Pareek V, Faiq MA, Ghosh SK, Kumari C. ADULT NEUROGENESIS IN HUMANS: A Review of Basic Concepts, History, Current Research, and Clinical Implications. INNOVATIONS IN CLINICAL NEUROSCIENCE 2019; 16:30-37. [PMID: 31440399 PMCID: PMC6659986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurogenesis in adult humans remains a controversial area of research among neuroscientists. Methodological challenges have hampered investigators from conducting high-quality, in-vivo studies that can help elucidate the presence and/or activity of neurogenesis in human brains. Additionally, the studies that have been done in humans report conflicting results, further adding to the ambiguity surrounding the concept of adult neurogenesis in humans. In this review article, the authors seek to help clarify the concept of adult neurogenesis by providing an overview of the basic concept, as we currently understand it, including its historical birth and evolution. The authors also review and discuss current key studies (pro and con) on adult neurogenesis in humans and animals, as well as research challenges with potential solutions. Finally, the authors discuss the clinical implications of adult neurogenesis in humans, based on what we know so far, including its potential use as a drug target in the development of pharmacological treatments for various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Drs. Kumar and Ghosh are with the Department of Anatomy at the All India Institute of Medical Sciences (AIIMS) in Patna, India
- Dr. Pareek is with the Computational Neuroscience and Neuroimaging Division at National Brain Research Centre (NBRC) in Manesar, Haryana, India
- Dr. Faiq is with the Neuroimaging and Visual Science Laboratory at Langone Medical Centre, New York University School of Medicine in New York, New York
- Dr. Kumari is with the Department of Anatomy at Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh, India
- Drs. Kumar and Faiq are with All India Institute of Medical Sciences (AIIMS) in New Delhi, India
- Drs. Kumar, Pareek, Faiq, Ghosh, and Kumari are with the Etiologically Elusive Disorders Research Network (EEDRN) in New Delhi, India
| | - Vikas Pareek
- Drs. Kumar and Ghosh are with the Department of Anatomy at the All India Institute of Medical Sciences (AIIMS) in Patna, India
- Dr. Pareek is with the Computational Neuroscience and Neuroimaging Division at National Brain Research Centre (NBRC) in Manesar, Haryana, India
- Dr. Faiq is with the Neuroimaging and Visual Science Laboratory at Langone Medical Centre, New York University School of Medicine in New York, New York
- Dr. Kumari is with the Department of Anatomy at Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh, India
- Drs. Kumar and Faiq are with All India Institute of Medical Sciences (AIIMS) in New Delhi, India
- Drs. Kumar, Pareek, Faiq, Ghosh, and Kumari are with the Etiologically Elusive Disorders Research Network (EEDRN) in New Delhi, India
| | - Muneeb A Faiq
- Drs. Kumar and Ghosh are with the Department of Anatomy at the All India Institute of Medical Sciences (AIIMS) in Patna, India
- Dr. Pareek is with the Computational Neuroscience and Neuroimaging Division at National Brain Research Centre (NBRC) in Manesar, Haryana, India
- Dr. Faiq is with the Neuroimaging and Visual Science Laboratory at Langone Medical Centre, New York University School of Medicine in New York, New York
- Dr. Kumari is with the Department of Anatomy at Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh, India
- Drs. Kumar and Faiq are with All India Institute of Medical Sciences (AIIMS) in New Delhi, India
- Drs. Kumar, Pareek, Faiq, Ghosh, and Kumari are with the Etiologically Elusive Disorders Research Network (EEDRN) in New Delhi, India
| | - Sanjib K Ghosh
- Drs. Kumar and Ghosh are with the Department of Anatomy at the All India Institute of Medical Sciences (AIIMS) in Patna, India
- Dr. Pareek is with the Computational Neuroscience and Neuroimaging Division at National Brain Research Centre (NBRC) in Manesar, Haryana, India
- Dr. Faiq is with the Neuroimaging and Visual Science Laboratory at Langone Medical Centre, New York University School of Medicine in New York, New York
- Dr. Kumari is with the Department of Anatomy at Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh, India
- Drs. Kumar and Faiq are with All India Institute of Medical Sciences (AIIMS) in New Delhi, India
- Drs. Kumar, Pareek, Faiq, Ghosh, and Kumari are with the Etiologically Elusive Disorders Research Network (EEDRN) in New Delhi, India
| | - Chiman Kumari
- Drs. Kumar and Ghosh are with the Department of Anatomy at the All India Institute of Medical Sciences (AIIMS) in Patna, India
- Dr. Pareek is with the Computational Neuroscience and Neuroimaging Division at National Brain Research Centre (NBRC) in Manesar, Haryana, India
- Dr. Faiq is with the Neuroimaging and Visual Science Laboratory at Langone Medical Centre, New York University School of Medicine in New York, New York
- Dr. Kumari is with the Department of Anatomy at Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh, India
- Drs. Kumar and Faiq are with All India Institute of Medical Sciences (AIIMS) in New Delhi, India
- Drs. Kumar, Pareek, Faiq, Ghosh, and Kumari are with the Etiologically Elusive Disorders Research Network (EEDRN) in New Delhi, India
| |
Collapse
|
18
|
Maturation Dynamics of the Axon Initial Segment (AIS) of Newborn Dentate Granule Cells in Young Adult C57BL/6J Mice. J Neurosci 2019; 39:1605-1620. [PMID: 30651327 DOI: 10.1523/jneurosci.2253-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
Newborn dentate granule cells (DGCs) are generated in the hippocampal dentate gyrus (DG) of rodents through a process called adult hippocampal neurogenesis, which is subjected to tight intrinsic and extrinsic regulation. The use of retroviruses encoding fluorescent proteins has allowed the characterization of the maturation dynamics of newborn DGCs, including their morphological development and the establishment and maturation of their afferent and efferent synaptic connections. However, the study of a crucial cellular compartment of these cells, namely, the axon initial segment (AIS), has remained unexplored to date. The AIS is not only the site of action potential initiation, but it also has a unique molecular identity that makes it one of the master regulators of neural plasticity and excitability. Here we examined the dynamics of AIS formation in newborn DGCs of young female adult C57BL/6J mice in vivo Our data reveal notable changes in AIS length and thickness throughout cell maturation under physiological conditions and show that the most remarkable structural changes coincide with periods of intense morphological and functional remodeling. Moreover, we demonstrate that AIS development can be modulated extrinsically by both neuroprotective (environmental enrichment) and detrimental (lipopolysaccharide from Escherichia coli) stimuli.SIGNIFICANCE STATEMENT The hippocampal dentate gyrus (DG) of rodents generates newborn dentate granule cells (DGCs) throughout life. This process, named adult hippocampal neurogenesis, confers a unique degree of plasticity to the hippocampal circuit, and it is crucial for learning and memory. Here we studied, for the first time, the formation of a key cellular compartment of newborn DGCs, namely, the axon initial segment (AIS) in vivo Our data reveal remarkable AIS structural remodeling throughout the maturation of these cells under physiological conditions. Moreover, AIS development can be modulated extrinsically by both neuroprotective (environmental enrichment) and detrimental (lipopolysaccharide from Escherichia coli) stimuli.
Collapse
|
19
|
Mineyeva OA, Bezriadnov DV, Kedrov AV, Lazutkin AA, Anokhin KV, Enikolopov GN. Radiation Induces Distinct Changes in Defined Subpopulations of Neural Stem and Progenitor Cells in the Adult Hippocampus. Front Neurosci 2019; 12:1013. [PMID: 30686979 PMCID: PMC6333747 DOI: 10.3389/fnins.2018.01013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5–1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2–4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy.
Collapse
Affiliation(s)
- Olga A Mineyeva
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.,National Research Center "Kurchatov Institute," Moscow, Russia
| | - Dmitri V Bezriadnov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Alexander V Kedrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Alexander A Lazutkin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.,N.N. Burdenko Neurosurgery Institute, Moscow, Russia
| | - Konstantin V Anokhin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.,National Research Center "Kurchatov Institute," Moscow, Russia
| | - Grigori N Enikolopov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Center for Developmental Genetics, Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
20
|
Bao H, Song J. Treating Brain Disorders by Targeting Adult Neural Stem Cells. Trends Mol Med 2018; 24:991-1006. [PMID: 30447904 PMCID: PMC6351137 DOI: 10.1016/j.molmed.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis, a developmental process of generating functionally integrated neurons from neural stem cells, occurs throughout life in the hippocampus of the mammalian brain and highlights the plastic nature of the mature central nervous system. Substantial evidence suggests that new neurons participate in cognitive and affective brain functions and aberrant adult neurogenesis contributes to various brain disorders. Focusing on adult hippocampal neurogenesis, we review recent findings that advance our understanding of the key properties and potential functions of adult neural stem cells. We further discuss the key evidence demonstrating the causal role of aberrant hippocampal neurogenesis and various brain disorders. Finally, we propose strategies aimed at simultaneously correcting stem cells and their niche for treating brain disorders.
Collapse
Affiliation(s)
- Hechen Bao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38:10401-10410. [PMID: 30381404 DOI: 10.1523/jneurosci.2144-18.2018] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in 1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis in the adult human brain.
Collapse
|
22
|
Hippocampal neural progenitor cells play a distinct role in fear memory retrieval in male and female CIE rats. Neuropharmacology 2018; 143:239-249. [PMID: 30273595 DOI: 10.1016/j.neuropharm.2018.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.
Collapse
|
23
|
Abstract
One of the consequences of chronic methamphetamine (Meth) abuse and Meth addiction is impaired hippocampal function which plays a critical role in enhanced propensity for relapse. This impairment is predicted by alterations in hippocampal neurogenesis, structural- and functional-plasticity of granule cell neurons (GCNs), and expression of plasticity-related proteins in the dentate gyrus. This review will elaborate on the effects of Meth in animal models during different stages of addiction-like behavior on proliferation, differentiation, maturation, and survival of newly born neural progenitor cells. We will then discuss evidence for the contribution of adult neurogenesis in context-driven Meth-seeking behavior in animal models. These findings from interdisciplinary studies suggest that a subset of newly born GCNs contribute to context-driven Meth-seeking in Meth addicted animals.
Collapse
Affiliation(s)
- Yoshio Takashima
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| | - Chitra D. Mandyam
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
24
|
Dutta RR, Taffe MA, Mandyam CD. Chronic administration of amphetamines disturbs development of neural progenitor cells in young adult nonhuman primates. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:46-53. [PMID: 29601895 PMCID: PMC5962428 DOI: 10.1016/j.pnpbp.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023]
Abstract
The detrimental effects of amphetamines on developmental stages of NPCs are limited to rodent brain and it is not known if these effects occur in nonhuman primates which are the focus of the current investigation. Young adult rhesus macaques either experienced MDMA only, a combination of amphetamines (MDMA, MDA and methamphetamine) or no amphetamines (controls) and hippocampal tissue was processed for immunohistochemical analysis.Quantitative stereological analysis showed that intermittent exposure to MDMA or the three amphetamines over 9.6 months causes >80% decrease in the number of Ki-67 cells (actively dividing NPCs) and >50% decrease in the number of NeuroD1 cells (NPCs that have attained a neuronal phenotype). Co-labeling analysis revealed distinct, actively dividing hippocampal NPCs in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type-1) to immature transiently amplifying neuroblasts (type-2a, type-2b, and type-3).MDMA-alone and the combination reduced the number of dividing type-1 and type-3 NPCs and cells that were not NPCs. These data indicate that amphetamines interfere with the division and migration of NPCs. Notably, the reduction in the number of NPCs and immature neurons were not associated with changes in cell death (via apoptosis) or granule cell neuron numbers, indicating that amphetamines selectively affected the generation and maturation of newly born granule cell neurons. In sum, our findings suggest that alterations in the cellular composition in the dentate gyrus during chronic exposure to amphetamines can effect neuroplasticity in the hippocampus and influence functional properties of hippocampal neurons.
Collapse
Affiliation(s)
- Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Chitra D Mandyam
- Department of Neuroscience, The Scripps Research Institute,USA; VA San Diego Healthcare System, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
25
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
26
|
Crowther AJ, Lim SA, Asrican B, Albright BH, Wooten J, Yeh CY, Bao H, Cerri DH, Hu J, Ian Shih YY, Asokan A, Song J. An Adeno-Associated Virus-Based Toolkit for Preferential Targeting and Manipulating Quiescent Neural Stem Cells in the Adult Hippocampus. Stem Cell Reports 2018; 10:1146-1159. [PMID: 29478897 PMCID: PMC5918266 DOI: 10.1016/j.stemcr.2018.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Quiescent neural stem cells (qNSCs) with radial morphology are the only proven source of new neurons in the adult mammalian brain. Our understanding of the roles of newly generated neurons depends on the ability to target and manipulate adult qNSCs. Although various strategies have been developed to target and manipulate adult hippocampal qNSCs, they often suffer from prolonged breeding, low recombination efficiency, and non-specific labeling. Therefore, developing a readily manufactured viral vector that allows flexible packaging and robust expression of various transgenes in qNSCs is a pressing need. Here, we report a recombinant adeno-associated virus serotype 4 (rAAV4)-based toolkit that preferentially targets hippocampal qNSCs and allows for lineage tracing, functional analyses, and activity manipulation of adult qNSCs. Importantly, targeting qNSCs in a non-Cre-dependent fashion opens the possibility for studying qNSCs in less genetically tractable animal species and may have translational impact in gene therapy by preferentially targeting qNSCs. rAAV4 vectors preferentially target quiescent NSCs in the adult hippocampus rAAV4 vectors with distinct promoters reveal differential selectivity for radial NSCs rAAV4 allows for genetic manipulation and lineage tracing of quiescent NSCs rAAV4 allows for calcium imaging and activity manipulation of quiescent NSCs
Collapse
Affiliation(s)
- Andrew J Crowther
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Szu-Aun Lim
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brent Asrican
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blake H Albright
- Department of Genetics and Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josh Wooten
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chia-Yu Yeh
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hechen Bao
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Domenic H Cerri
- Department of Neurology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jessica Hu
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aravind Asokan
- Department of Genetics and Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Galinato MH, Takashima Y, Fannon MJ, Quach LW, Morales Silva RJ, Mysore KK, Terranova MJ, Dutta RR, Ostrom RW, Somkuwar SS, Mandyam CD. Neurogenesis during Abstinence Is Necessary for Context-Driven Methamphetamine-Related Memory. J Neurosci 2018; 38:2029-2042. [PMID: 29363584 PMCID: PMC5824740 DOI: 10.1523/jneurosci.2011-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Abstinence from methamphetamine addiction enhances proliferation and differentiation of neural progenitors and increases adult neurogenesis in the dentate gyrus (DG). We hypothesized that neurogenesis during abstinence contributes to context-driven drug-seeking behaviors. To test this hypothesis, the pharmacogenetic rat model (GFAP-TK rats) was used to conditionally and specifically ablate neurogenesis in the DG. Male GFAP-TK rats were trained to self-administer methamphetamine or sucrose and were administered the antiviral drug valganciclovir (Valcyte) to produce apoptosis of actively dividing GFAP type 1 stem-like cells to inhibit neurogenesis during abstinence. Hippocampus tissue was stained for Ki-67, NeuroD, and DCX to measure levels of neural progenitors and immature neurons, and was stained for synaptoporin to determine alterations in mossy fiber tracts. DG-enriched tissue punches were probed for CaMKII to measure alterations in plasticity-related proteins. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naive (controls) and methamphetamine experienced animals (+/-Valcyte). Spontaneous EPSCs and intrinsic excitability were recorded from granule cell neurons (GCNs). Reinstatement of methamphetamine seeking enhanced autophosphorylation of CaMKII, reduced mossy fiber density, and induced hyperexcitability of GCNs. Inhibition of neurogenesis during abstinence prevented context-driven methamphetamine seeking, and these effects correlated with reduced autophosphorylation of CaMKII, increased mossy fiber density, and reduced the excitability of GCNs. Context-driven sucrose seeking was unaffected. Together, the loss-of-neurogenesis data demonstrate that neurogenesis during abstinence assists with methamphetamine context-driven memory in rats, and that neurogenesis during abstinence is essential for the expression of synaptic proteins and plasticity promoting context-driven drug memory.SIGNIFICANCE STATEMENT Our work uncovers a mechanistic relationship between neurogenesis in the dentate gyrus and drug seeking. We report that the suppression of excessive neurogenesis during abstinence from methamphetamine addiction by a confirmed phamacogenetic approach blocked context-driven methamphetamine reinstatement and prevented maladaptive changes in expression and activation of synaptic proteins and basal synaptic function associated with learning and memory in the dentate gyrus. Our study is the first to demonstrate an interesting and dysfunctional role of adult hippocampal neurogenesis during abstinence to drug-seeking behavior in animals self-administering escalating amounts of methamphetamine. Together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.
Collapse
Affiliation(s)
- Melissa H Galinato
- Departments of Neuroscience
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Yoshio Takashima
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | | | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Michael J Terranova
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Ryan W Ostrom
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Chitra D Mandyam
- Departments of Neuroscience,
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
28
|
Hochgerner H, Zeisel A, Lönnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci 2018; 21:290-299. [PMID: 29335606 DOI: 10.1038/s41593-017-0056-2] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.
Collapse
Affiliation(s)
- Hannah Hochgerner
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Amit Zeisel
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
29
|
Dhaliwal J, Trinkle-Mulcahy L, Lagace DC. Autophagy and Adult Neurogenesis: Discoveries Made Half a Century Ago Yet in their Infancy of being Connected. Brain Plast 2017; 3:99-110. [PMID: 29765863 PMCID: PMC5928547 DOI: 10.3233/bpl-170047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the brain, the physiological and pathological functions of autophagy in development and throughout the lifespan are being elucidated. This review summarizes recent in vitro and in vivo results that are defining the role of autophagy-related genes during the process of adult neurogenesis. We also discuss the need for future experiments to determine the molecular mechanism and functional significance of autophagy in the different neural stem cell populations and throughout the stages of adult neurogenesis.
Collapse
Affiliation(s)
- Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
30
|
Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Transl Psychiatry 2017; 7:e1228. [PMID: 28872640 PMCID: PMC5639241 DOI: 10.1038/tp.2017.196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Nectin-3, a cell adhesion molecule enriched in hippocampal neurons, has been implicated in stress-related cognitive disorders. Nectin-3 is expressed by granule cells in the dentate gyrus (DG), but it remains unclear whether nectin-3 in DG modulates the structural plasticity of dentate granule cells and hippocampus-dependent memory. In this study, we found that DG nectin-3 expression levels were developmentally regulated and reduced by early postnatal stress exposure in adult mice. Most importantly, knockdown of nectin-3 levels in all DG neuron populations by adeno-associated virus (AAV) mimicked the cognitive effects of early-life stress, and impaired long-term spatial memory and temporal order memory. Moreover, AAV-mediated DG nectin-3 knockdown increased the density of doublecortin-immunoreactive differentiating cells under proliferation and calretinin-immunoreactive immature neurons, but markedly decreased calbindin immunoreactivity, indicating that nectin-3 modulates the differentiation and maturation of adult-born DG granule cells. Using retrovirus to target newly generated DG neurons, we found that selective nectin-3 knockdown in new DG neurons also impaired long-term spatial memory. In addition, suppressing nectin-3 expression in new DG neurons evoked a reduction of dendritic spines, especially thin spines. Our data indicate that nectin-3 expressed in DG neurons may modulate adult neurogenesis, dendritic spine plasticity and the cognitive effects of early-life stress.
Collapse
|
31
|
Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther 2017; 8:28. [PMID: 28173861 PMCID: PMC5297126 DOI: 10.1186/s13287-017-0479-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Background Laminin, a major basement membrane component that has direct contact with pericytes under physiological conditions, actively regulates the proliferation and differentiation/fate determination of pericytes. Recently, two types of pericytes (type I and type II) with different molecular markers and functions have been identified in skeletal muscles. Whether laminin differentially regulates the proliferation and differentiation of these two subpopulations remains unclear. Methods Wild-type and pericytic laminin-deficient mice under Nestin-GFP background were used to determine if laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Specifically, type I and type II pericytes were isolated from these mice, and their proliferation and differentiation were examined in vitro. Moreover, in vivo studies were also performed. Results We demonstrate that, although laminin inhibits the proliferation of both type I and type II pericytes in vitro, loss of laminin predominantly induces proliferation of type II pericytes in vivo. In addition, laminin negatively regulates the adipogenic differentiation of type I pericytes and positively regulates the myogenic differentiation of type II pericytes in vitro. Conclusions Laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0479-4) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Adlaf EW, Vaden RJ, Niver AJ, Manuel AF, Onyilo VC, Araujo MT, Dieni CV, Vo HT, King GD, Wadiche JI, Overstreet-Wadiche L. Adult-born neurons modify excitatory synaptic transmission to existing neurons. eLife 2017; 6:19886. [PMID: 28135190 PMCID: PMC5279947 DOI: 10.7554/elife.19886] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit. DOI:http://dx.doi.org/10.7554/eLife.19886.001 Neurogenesis, the creation of new brain cells called neurons, occurs primarily before birth. However, a region of the brain called the dentate gyrus, which is involved in memory, continues to produce new neurons throughout life. Recent studies suggest that adding neurons to the dentate gyrus helps the brain to distinguish between similar sights, sounds and smells. This in turn makes it easier to encode similar experiences as distinct memories. The brain’s outer layer, called the cortex, processes information from our senses and sends it, along with information about our location in space, to the dentate gyrus. By combining this sensory and spatial information, the dentate gyrus is able to generate a unique memory of an experience. But how does neurogenesis affect this process? As the dentate gyrus accumulates more neurons, the number of neurons in the cortex remains unchanged. Do some cortical neurons transfer their connections – called synapses – to the new neurons? Or does the brain generate additional synapses to accommodate the newborn cells? Adlaf et al. set out to answer this question by genetically modifying mice to alter the number of new neurons that could form in the dentate gyrus. Increasing the number of newborn neurons reduced the number of synapses between the cortex and the mature neurons in the dentate gyrus. Conversely, killing off newborn neurons had the opposite effect, increasing the strength of the synaptic connections to older cells. This suggests that new synapses are not formed to accommodate new neurons, but rather that there is a redistribution of synapses between old and new neurons in the dentate gyrus. Further work is required to determine how this redistribution of synapses contributes to how the dentate gyrus works. Does redistributing synapses disrupt existing memories? And how do these findings relate to the effects of exercise – does this natural way of increasing neurogenesis increase the overall number of synapses in the system, potentially creating enough connections for both new and old neurons? DOI:http://dx.doi.org/10.7554/eLife.19886.002
Collapse
Affiliation(s)
- Elena W Adlaf
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Ryan J Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Anastasia J Niver
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Allison F Manuel
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Vincent C Onyilo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Matheus T Araujo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Cristina V Dieni
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | |
Collapse
|
33
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
34
|
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R. Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct 2015; 221:4411-4427. [DOI: 10.1007/s00429-015-1171-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|