1
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
2
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
3
|
de Souza Cardoso R, Ono A. The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes. Viruses 2024; 16:1714. [PMID: 39599829 PMCID: PMC11599007 DOI: 10.3390/v16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Enveloped viruses rely on host membranes for trafficking and assembly. A substantial body of literature published over the years supports the involvement of cellular membrane lipids in the enveloped virus assembly processes. In particular, the knowledge regarding the relationship between viral structural proteins and acidic phospholipids has been steadily increasing in recent years. In this review, we will briefly review the cellular functions of plasma membrane-associated acidic phospholipids and the mechanisms that regulate their local distribution within this membrane. We will then explore the interplay between viruses and the plasma membrane acidic phospholipids in the context of the assembly process for two enveloped viruses, the influenza A virus (IAV) and the human immunodeficiency virus type 1 (HIV-1). Among the proteins encoded by these viruses, three viral structural proteins, IAV hemagglutinin (HA), IAV matrix protein-1 (M1), and HIV-1 Gag protein, are known to interact with acidic phospholipids, phosphatidylserine and/or phosphatidylinositol (4,5)-bisphosphate. These interactions regulate the localization of the viral proteins to and/or within the plasma membrane and likely facilitate the clustering of the proteins. On the other hand, these viral proteins, via their ability to multimerize, can also alter the distribution of the lipids and may induce acidic-lipid-enriched membrane domains. We will discuss the potential significance of these interactions in the virus assembly process and the property of the progeny virions. Finally, we will outline key outstanding questions that need to be answered for a better understanding of the relationships between enveloped virus assembly and acidic phospholipids.
Collapse
Affiliation(s)
| | - Akira Ono
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
4
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Debsikréo N, Mankréo BL, Moukénet A, Ouangkake M, Mara N, Moussa AM, Toure-Kane NC, Lunel-Fabiani F. Prevalence of hepatitis B virus infection and its associated factors among students in N'Djamena, Chad. PLoS One 2024; 19:e0273589. [PMID: 38635501 PMCID: PMC11025733 DOI: 10.1371/journal.pone.0273589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Infection by hepatitis B virus (HBV) is a major issue in public health. The prevalence of HBV in Chad is 12.4%, all age groups considered. Here, we aimed to determine the prevalence of HBV and its associated factors among university students in N'Djamena, the country's capital. METHODS A cross-sectional survey of students at either the University of N'djamena or Emi Koussi University was conducted from 3 to 23 July 2021. All participating students provided signed, informed consent and were included in the study consecutively. Blood samples were collected, and serum tested for hepatitis B surface antigen (HBsAg) using the Determine HBsAg rapid test kit, with confirmation of positive tests on an Abbott Architect i1000SR analyzer. Descriptive analysis and logistic regression were used to determine associations between the outcome variable and independent/covariate variables. RESULTS A total of 457 students with a median age of 24 years were included across different faculties. The prevalence of HBV infection was 14.87% (68/457). Most students (75%) were aged 25 years or less. Unprotected sex was reported by 64.9% of the students and multiple sexual partners by 53.6%. Furthermore, 45.7% of them reported having no knowledge of hepatitis B. Having an HBsAg-positive mother (AOR: 2.11), having a history of transcutaneous medical procedures (AOR: 2.97) and living with a family (AOR: 4.63) were significantly associated with HBV status. Age ≥26 years appeared as a protective factor (AOR = 0.41). CONCLUSION Our study detected a high, 14.87% prevalence of HBV infection among students in N'djamena, Chad, and shed light on its associated factors. HBV prevention strategies should include raising awareness among students, making full hepatitis vaccination mandatory before children begin school, promoting mass screening to identify and treat chronic HBV carriers and reduce transmission, and reducing the cost of vaccination.
Collapse
Affiliation(s)
- Nalda Debsikréo
- Cheikh Anta Diop University, Dakar, Senegal
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | | | - Azoukalné Moukénet
- Cheikh Anta Diop University, Dakar, Senegal
- University of N’Djamena, N’Djamena, Chad
| | | | | | - Ali Mahamat Moussa
- University of N’Djamena, N’Djamena, Chad
- Centre Hospitalier Universitaire la Référence, N’Djamena, Chad
| | - Ndèye Coumba Toure-Kane
- Cheikh Anta Diop University, Dakar, Senegal
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Françoise Lunel-Fabiani
- Centre Hospitalier Universitaire Angers, BAT IBS-4 rue Larrey, Angers, France
- Laboratoire HIFIH, UFR Santé département Médecine, SFR 4208-UPRES EA3859, Université d’Angers, Angers Cedex 01, France
| |
Collapse
|
6
|
Soleiman-Meigooni S, Yarahmadi A, Kheirkhah AH, Afkhami H. Recent advances in different interactions between toll-like receptors and hepatitis B infection: a review. Front Immunol 2024; 15:1363996. [PMID: 38545106 PMCID: PMC10965641 DOI: 10.3389/fimmu.2024.1363996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis B virus (HBV) B infections remain a primary global health concern. The immunopathology of the infection, specifically the interactions between HBV and the host immune system, remains somewhat unknown. It has been discovered that innate immune reactions are vital in eliminating HBV. Toll-like receptors (TLRs) are an essential category of proteins that detect pathogen-associated molecular patterns (PAMPs). They begin pathways of intracellular signals to stimulate pro-inflammatory and anti-inflammatory cytokines, thus forming adaptive immune reactions. HBV TLRs include TLR2, TLR3, TLR4, TLR7 and TLR9. Each TLR has its particular molecule to recognize; various TLRs impact HBV and play distinct roles in the pathogenesis of the disease. TLR gene polymorphisms may have an advantageous or disadvantageous efficacy on HBV infection, and some single nucleotide polymorphisms (SNPs) can influence the progression or prognosis of infection. Additionally, it has been discovered that similar SNPs in TLR genes might have varied effects on distinct populations due to stress, diet, and external physical variables. In addition, activation of TLR-interceded signaling pathways could suppress HBV replication and increase HBV-particular T-cell and B-cell reactions. By identifying these associated polymorphisms, we can efficiently advance the immune efficacy of vaccines. Additionally, this will enhance our capability to forecast the danger of HBV infection or the threat of dependent liver disease development via several TLR SNPs, thus playing a role in the inhibition, monitoring, and even treatment guidance for HBV infection. This review will show TLR polymorphisms, their influence on TLR signaling, and their associations with HBV diseases.
Collapse
Affiliation(s)
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Amir-Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Tsukuda S, Harris JM, Magri A, Balfe P, Wing PAC, Siddiqui A, McKeating JA. The N6-methyladenosine demethylase ALKBH5 regulates the hypoxic HBV transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564956. [PMID: 37961409 PMCID: PMC10634982 DOI: 10.1101/2023.10.31.564956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter to transcribe pre-genomic RNA. Application of a probe-enriched long-read sequencing method to map the HBV transcriptome showed an increased abundance of all viral RNAs under low oxygen or hypoxic conditions. Importantly, the hypoxic-associated increase in HBV transcripts was dependent on N6-methyladenosine (m6A) modifications and an m6A DRACH motif in the 5' stem loop of pre-genomic RNA defined transcript half-life under hypoxic conditions. Given the essential role of m6A modifications in the viral transcriptome we assessed the oxygen-dependent expression of RNA demethylases and bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2 cell line showed increased ALKBH5 gene expression under hypoxic conditions. Silencing the demethylase reduced the levels of HBV pre-genomic RNA and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.
Collapse
Affiliation(s)
- Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, UK
| | - Peter AC Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, UK
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, University of California, CA, USA
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, UK
| |
Collapse
|
8
|
Kim C, Schlicksup CJ, Pérez-Segura C, Hadden-Perilla JA, Wang JCY, Zlotnick A. Structure of the Hepatitis B virus capsid quasi-6-fold with a trapped C-terminal domain reveals capsid movements associated with domain exit. J Biol Chem 2023; 299:105104. [PMID: 37517693 PMCID: PMC10463254 DOI: 10.1016/j.jbc.2023.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.
Collapse
Affiliation(s)
- Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | | | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
9
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
10
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
11
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
12
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
13
|
Depta PN, Dosta M, Wenzel W, Kozlowska M, Heinrich S. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles. Int J Mol Sci 2022; 23:ijms232314699. [PMID: 36499027 PMCID: PMC9740473 DOI: 10.3390/ijms232314699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.
Collapse
Affiliation(s)
- Philipp Nicolas Depta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Correspondence:
| | - Maksym Dosta
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
- Boehringer Ingelheim Pharma GmbH & Co Kg., 88400 Biberach an der Riss, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heinrich
- Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
14
|
Zhou H, Wang X, Steer CJ, Song G, Niu J. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol Commun 2022; 6:1652-1663. [PMID: 35338607 PMCID: PMC9234685 DOI: 10.1002/hep4.1933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor of liver cirrhosis and hepatocellular carcinoma. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to precisely edit the HBV genome and eliminate HBV through non-homologous end-joining repair of double-stranded break (DSB). However, the CRISPR/Cas9-mediated DSB triggers instability of host genome and exhibits low efficiency to edit genome, limiting its application. CRISPR cytidine base editors (CBEs) could silence genes by generating a premature stop codon. Here we developed a CRISPR base editor approach to precisely edit single nucleotide within the HBV genome to impair HBV gene expression. Specifically, a single-guide RNA (sgRNA) was designed to edit the 30th codon of HBV S gene, which encodes HBV surface antigen (HBsAg), from CAG (glutamine) to stop codon TAG. We next used human hepatoma PLC/PRF/5 cells carrying the HBV genome to establish a cell line that expresses a CBE (PLC/PRF/5-CBE). Lentivirus was used to introduce sgRNA into PLC/PRF/5-CBE cells. Phenotypically, 71% of PLC/PRF/5-CBE cells developed a premature stop codon within the S gene. Levels of HBs messenger RNA were significantly decreased. A 92% reduction of HBsAg secretion was observed in PLC/PRF/5-CBE cells. The intracellular HBsAg was also reduced by 84% after treatment of gRNA_S. Furthermore, no off-target effect was detected in predicted off-target loci within the HBV genome. Sequencing confirmed that 95%, 93%, 93%, 9%, and 72% S gene sequences of HBV genotypes B, C, F, G, and H had the binding site of sgRNA. Conclusion: Our findings indicate that CRISPR-mediated base editing is an efficient approach to silence the HBV S gene, suggesting its therapeutic potential to eliminate HBV.
Collapse
Affiliation(s)
- Hao Zhou
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Xiaomei Wang
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Clifford J. Steer
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Guisheng Song
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Junqi Niu
- Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
15
|
Gherlan GS. Occult hepatitis B — the result of the host immune response interaction with different genomic expressions of the virus. World J Clin Cases 2022; 10:5518-5530. [PMID: 35979101 PMCID: PMC9258381 DOI: 10.12998/wjcc.v10.i17.5518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
With over 40 years of history, occult hepatitis B infection (OBI) continues to remain an important and challenging public health problem. Defined as the presence of replication-competent hepatitis B virus (HBV) DNA (i.e., episomal HBV covalently closed circular DNA) in the liver and/or HBV DNA in the blood of people who test negative for hepatitis B surface antigen (HBsAg) in currently available assays, OBI is currently diagnosed using polymerase chain reaction (PCR) and real-time PCR assays. However, all efforts should be made to exclude a false negative HBsAg in order to completely follow the definition of OBI. In recent years, significant advances have been made in understanding the HBV lifecycle and the molecular mechanisms that lead to the persistence of the virus in the occult form. These factors are mainly related to the host immune system and, to a smaller proportion, to the virus. Both innate and adaptive immune responses are important in HBV infection management, and epigenetic changes driven by host mechanisms (acetylation, methylation, and microRNA implication) are added to such actions. Although greater genetic variability in the S gene of HBV isolated from OBIs was found compared with overt infection, the mechanisms of OBI are not mainly viral mutations.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, Bucharest 030303, Romania
- Department of Infectious Diseases, “Dr. Victor Babes” Hospital of Infectious and Tropical Diseases, Bucharest 030303, Romania
| |
Collapse
|
16
|
Noreen A, Alam N, Syed Z, Aftab A, Shamim F, Najeebullah S, Khan D, Kakar SJ, Ahmed T, Adnan F. Prevalence and assessment of the associated risk factors of hepatitis B and C infections in the low socioeconomic communities. Future Virol 2022. [DOI: 10.2217/fvl-2021-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study determined the prevalence and risk factors associated with hepatitis B and C among the low socioeconomic population. Materials & methods: A total of 1004 participants were screened for hepatitis B/C infection and risk factors from six different localities of Islamabad, Pakistan Results: The prevalence rate of hepatitis B and C was 1 and 4%, respectively. Chi-square test showed hepatitis B/C infection was related with marital status, hepatitis B vaccination, blood recipients and family income. Multivariable analysis showed hepatitis B vaccination, exposure to therapeutic injections, dental visits, exposure to HCV patients and age of participants were independently associated with hepatitis C infection. Conclusion: The risk of hepatitis B/C infection is multifactorial and the population needs to be vaccinated at a larger scale to avoid outbreaks.
Collapse
Affiliation(s)
- Aisha Noreen
- Department of Microbiology, Quaid-i-azam University, Islamabad, 44000, Pakistan
| | - Naik Alam
- Islamabad lab & research center, Lehtrar road, Islamabad, 44000, Pakistan
| | - Zainab Syed
- Department of Microbiology, Quaid-i-azam University, Islamabad, 44000, Pakistan
| | - Aroosa Aftab
- Department of Microbiology, Quaid-i-azam University, Islamabad, 44000, Pakistan
| | - Farah Shamim
- Department of Microbiology, Quaid-i-azam University, Islamabad, 44000, Pakistan
| | - Syed Najeebullah
- Islamabad lab & research center, Lehtrar road, Islamabad, 44000, Pakistan
| | | | - Salik Javed Kakar
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, 4000, Pakistan
| | - Tahir Ahmed
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, 4000, Pakistan
| | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, 4000, Pakistan
| |
Collapse
|
17
|
Taverniti V, Ligat G, Debing Y, Kum DB, Baumert TF, Verrier ER. Capsid Assembly Modulators as Antiviral Agents against HBV: Molecular Mechanisms and Clinical Perspectives. J Clin Med 2022; 11:1349. [PMID: 35268440 PMCID: PMC8911156 DOI: 10.3390/jcm11051349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.
Collapse
Affiliation(s)
- Valerio Taverniti
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Yannick Debing
- Aligos Belgium BV, 3001 Leuven, Belgium; (Y.D.); (D.B.K.)
| | | | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| |
Collapse
|
18
|
Saeed U, Piracha ZZ, Kwon H, Kim J, Kalsoom F, Chwae YJ, Park S, Shin HJ, Lee HW, Lim JH, Kim K. The HBV Core Protein and Core Particle Both Bind to the PPiase Par14 and Par17 to Enhance Their Stabilities and HBV Replication. Front Microbiol 2022; 12:795047. [PMID: 34970249 PMCID: PMC8713550 DOI: 10.3389/fmicb.2021.795047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
We recently reported that the PPIase Par14 and Par17 encoded by PIN4 upregulate HBV replication in an HBx-dependent manner by binding to conserved arginine–proline (RP) motifs of HBx. HBV core protein (HBc) has a conserved 133RP134 motif; therefore, we investigated whether Par14/Par17 bind to HBc and/or core particles. Native agarose gel electrophoresis (NAGE) and immunoblotting and co-immunoprecipitation were used. Chromatin immunoprecipitation from HBV-infected HepG2-hNTCP-C9 cells was performed. NAGE and immunoblotting revealed that Par14/Par17 bound to core particles and co-immunoprecipitation revealed that Par14/Par17 interacted with core particle assembly-defective, and dimer-positive HBc-Y132A. Thus, core particles and HBc interact with Par14/Par17. Par14/Par17 interacted with the HBc 133RP134 motif possibly via substrate-binding E46/D74 and E71/D99 motifs. Although Par14/Par17 dissociated from core particles upon heat treatment, they were detected in 0.2 N NaOH-treated opened-up core particles, demonstrating that Par14/Par17 bind outside and inside core particles. Furthermore, these interactions enhanced the stabilities of HBc and core particles. Like HBc-Y132A, HBc-R133D and HBc-R133E were core particle assembly-defective and dimer-positive, demonstrating that a negatively charged residue at position 133 cannot be tolerated for particle assembly. Although positively charged R133 is solely important for Par14/17 interactions, the 133RP134 motif is important for efficient HBV replication. Chromatin immunoprecipitation from HBV-infected cells revealed that the S19 and E46/D74 residues of Par14 and S44 and E71/D99 residues of Par17 were involved in recruitment of 133RP134 motif-containing HBc into cccDNA. Our results demonstrate that interactions of HBc, Par14/Par17, and cccDNA in the nucleus and core particle–Par14/Par17 interactions in the cytoplasm are important for HBV replication.
Collapse
Affiliation(s)
- Umar Saeed
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Zahra Zahid Piracha
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Hyeonjoong Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Jumi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Hong Lim
- Department of General Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
19
|
Patel N, Clark S, Weiß EU, Mata CP, Bohon J, Farquhar ER, Maskell DP, Ranson NA, Twarock R, Stockley PG. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun Biol 2021; 4:1407. [PMID: 34916604 PMCID: PMC8677749 DOI: 10.1038/s42003-021-02897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T = 4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry relaxation followed by asymmetric reconstruction reveal that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sam Clark
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Electron and Confocal Microscopy Unit (UCCTs), National Centre for Microbiology (ISCIII). Majadahonda, Madrid, Spain
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
21
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
22
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
23
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
24
|
Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses 2021; 13:v13050757. [PMID: 33925977 PMCID: PMC8145197 DOI: 10.3390/v13050757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major public health concern, with more than 250 million chronically infected people who are at high risk of developing liver diseases, including cirrhosis and hepatocellular carcinoma. Although antiviral treatments efficiently control virus replication and improve liver function, they cannot cure HBV infection. Viral persistence is due to the maintenance of the viral circular episomal DNA, called covalently closed circular DNA (cccDNA), in the nuclei of infected cells. cccDNA not only resists antiviral therapies, but also escapes innate antiviral surveillance. This viral DNA intermediate plays a central role in HBV replication, as cccDNA is the template for the transcription of all viral RNAs, including pregenomic RNA (pgRNA), which in turn feeds the formation of cccDNA through a step of reverse transcription. The establishment and/or expression of cccDNA is thus a prime target for the eradication of HBV. In this review, we provide an update on the current knowledge on the initial steps of HBV infection, from the nuclear import of the nucleocapsid to the formation of the cccDNA.
Collapse
|
25
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
26
|
Phosphorylation of Phylogenetically Conserved Amino Acid Residues Confines HBx within Different Cell Compartments of Human Hepatocarcinoma Cells. Molecules 2021; 26:molecules26051254. [PMID: 33652602 PMCID: PMC7956559 DOI: 10.3390/molecules26051254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a circular, and partially double-stranded DNA virus. Upon infection, the viral genome is translocated into the cell nucleus, generating the covalently closed circular DNA (cccDNA) intermediate, and forming a mini chromosome. HBV HBx is a small protein displaying multiple roles in HBV-infected cells, and in different subcellular locations. In the nucleus, the HBx protein is required to initiate and maintain viral transcription from the viral mini chromosome. In contrast, HBx also functions in the cytoplasm, where it is able to alter multiple cellular functions such as mitochondria metabolism, apoptosis and signal transduction pathways. It has been reported that in cultured cells, at low expression levels, the HBx protein is localized in the nucleus, whereas at high expression levels, it accumulates in the cytoplasm. This dynamic subcellular distribution of HBx might be essential to exert its multiple roles during viral infection. However, the mechanism that regulates different subcellular localizations of the HBx protein is unknown. We have previously taken a bioinformatics approach to investigate whether HBx might be regulated via post-translational modification, and we have proposed that the multiple nucleocytoplasmic functions of HBx might be regulated by an evolutionarily conserved mechanism via phosphorylation. In the current study, phylogenetically conserved amino acids of HBx with a high potential of phosphorylation were targeted for site-directed mutagenesis. Two conserved serine (Ser25 and Ser41), and one conserved threonine (Thr81) amino acids were replaced by either alanine or aspartic acid residues to simulate an unphosphorylated or phosphorylated state, respectively. Human hepatoma cells were transfected with increasing amounts of the HBx DNA constructs, and the cells were analyzed by fluorescence microscopy. Together, our results show that the nucleocytoplasmic distribution of the HBx protein could be regulated by phosphorylation since some of the modified proteins were mainly confined to distinct subcellular compartments. Remarkably, both HBx Ser41A, and HBx Thr81D proteins were predominantly localized within the nuclear compartment throughout the different expression levels of HBx mutants.
Collapse
|
27
|
Deng F, Xu G, Cheng Z, Huang Y, Ma C, Luo C, Yu C, Wang J, Xu X, Liu S, Zhu Y. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Front Immunol 2021; 12:618196. [PMID: 33717111 PMCID: PMC7947203 DOI: 10.3389/fimmu.2021.618196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.
Collapse
Affiliation(s)
- Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupeng Xu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Huangshi, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Rahman MA, Ueda K, Honda T. A Traditional Chinese Medicine, Maoto, Suppresses Hepatitis B Virus Production. Front Cell Infect Microbiol 2021; 10:581345. [PMID: 33553000 PMCID: PMC7862555 DOI: 10.3389/fcimb.2020.581345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Worldwide, millions of people suffer from hepatitis B virus (HBV) infection, putting them at a high risk of death from liver cirrhosis and cancer. Although effective anti-HBV drugs have been developed, current drugs have some limitations, as most of them have a risk of significant side effects. Therefore, the discovery of safe and effective anti-HBV drugs is still needed. Natural compounds are considered sources of novel, safe and effective therapeutics. In this study, we screened a library of Kampos, traditional herbal medicines, for suppression of HBV production. Among them, we found that maoto reduced extracellular HBV DNA but not extracellular HBsAg during HBV infection, suggesting that it suppressed HBV production by interfering with HBV nucleocapsid incorporation into viral particles. Furthermore, we revealed that maoto reduced the expression of a host gene, Tropomyosin β chain (TPM2), whose downregulation also suppressed HBV production, similarly to maoto. Since the safety of maoto has been already confirmed, maoto can be considered a candidate anti-HBV agent if the effect is confirmed in vivo. In addition, our findings also suggest TPM2 as a novel molecular target for the development of anti-HBV agents.
Collapse
Affiliation(s)
- Md Arifur Rahman
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Zhou L, He R, Fang P, Li M, Yu H, Wang Q, Yu Y, Wang F, Zhang Y, Chen A, Peng N, Lin Y, Zhang R, Trilling M, Broering R, Lu M, Zhu Y, Liu S. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun 2021; 12:98. [PMID: 33397935 PMCID: PMC7782485 DOI: 10.1038/s41467-020-20316-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose metabolism and innate immunity evolved side-by-side. It is unclear if and how the two systems interact with each other during hepatitis B virus (HBV) infections and, if so, which mechanisms are involved. Here, we report that HBV activates glycolysis to impede retinoic acid-inducible gene I (RIG-I)-induced interferon production. We demonstrate that HBV sequesters MAVS from RIG-I by forming a ternary complex including hexokinase (HK). Using a series of pharmacological and genetic approaches, we provide in vitro and in vivo evidence indicating that HBV suppresses RLR signaling via lactate dehydrogenase-A-dependent lactate production. Lactate directly binds MAVS preventing its aggregation and mitochondrial localization during HBV infection. Therefore, we show that HK2 and glycolysis-derived lactate have important functions in the immune escape of HBV and that energy metabolism regulates innate immunity during HBV infection.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peining Fang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haisheng Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Yu
- The Key Laboratory of Biosystems Homeostasis and Protection of the Ministry of Education and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Aidong Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Nanfang Peng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yong Lin
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Rui Zhang
- Department of Hepato-Pancreato-Biliary Surgery, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, 510120, China
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
30
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:cells9092101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| |
Collapse
|
31
|
Affiliation(s)
- Ter Yong Tan
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Hillebrandt N, Vormittag P, Bluthardt N, Dietrich A, Hubbuch J. Integrated Process for Capture and Purification of Virus-Like Particles: Enhancing Process Performance by Cross-Flow Filtration. Front Bioeng Biotechnol 2020; 8:489. [PMID: 32671023 PMCID: PMC7326125 DOI: 10.3389/fbioe.2020.00489] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are emerging nanoscale protein assemblies applied as prophylactic vaccines and in development as therapeutic vaccines or cargo delivery systems. Downstream processing (DSP) of VLPs comes both with challenges and opportunities, depending on the complexity and size of the structures. Filtration, precipitation/re-dissolution and size-exclusion chromatography (SEC) are potent technologies exploiting the size difference between product and impurities. In this study, we therefore investigated the integration of these technologies within a single unit operation, resulting in three different processes, one of which integrates all three technologies. VLPs, contained in clarified lysate from Escherichia coli, were precipitated by ammonium sulfate, washed, and re-dissolved in a commercial cross-flow filtration (CFF) unit. Processes were analyzed for yield, purity, as well as productivity and were found to be largely superior to a reference centrifugation process. Productivity was increased 2.6-fold by transfer of the wash and re-dissolution process to the CFF unit. Installation of a multimodal SEC column in the permeate line increased purity to 96% while maintaining a high productivity and high yield of 86%. In addition to these advantages, CFF-based capture and purification allows for scalable and disposable DSP. In summary, the developed set-up resulted in high yields and purities, bearing the potential to be applied as an integrated process step for capture and purification of in vivo-assembled VLPs and other protein nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
33
|
Ho JKT, Jeevan-Raj B, Netter HJ. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020; 12:v12020126. [PMID: 31973017 PMCID: PMC7077199 DOI: 10.3390/v12020126] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B remains one of the major global health problems more than 40 years after the identification of human hepatitis B virus (HBV) as the causative agent. A critical turning point in combating this virus was the development of a preventative vaccine composed of the HBV surface (envelope) protein (HBsAg) to reduce the risk of new infections. The isolation of HBsAg sub-viral particles (SVPs) from the blood of asymptomatic HBV carriers as antigens for the first-generation vaccines, followed by the development of recombinant HBsAg SVPs produced in yeast as the antigenic components of the second-generation vaccines, represent landmark advancements in biotechnology and medicine. The ability of the HBsAg SVPs to accept and present foreign antigenic sequences provides the basis of a chimeric particulate delivery platform, and resulted in the development of a vaccine against malaria (RTS,S/AS01, MosquirixTM), and various preclinical vaccine candidates to overcome infectious diseases for which there are no effective vaccines. Biomedical modifications of the HBsAg subunits allowed the identification of strategies to enhance the HBsAg SVP immunogenicity to build potent vaccines for preventative and possibly therapeutic applications. The review provides an overview of the formation and assembly of the HBsAg SVPs and highlights the utilization of the particles in key effective vaccines.
Collapse
Affiliation(s)
- Joan Kha-Tu Ho
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Beena Jeevan-Raj
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
- Correspondence:
| |
Collapse
|
34
|
Pastor F, Herrscher C, Patient R, Eymieux S, Moreau A, Burlaud-Gaillard J, Seigneuret F, de Rocquigny H, Roingeard P, Hourioux C. Direct interaction between the hepatitis B virus core and envelope proteins analyzed in a cellular context. Sci Rep 2019; 9:16178. [PMID: 31700077 PMCID: PMC6838148 DOI: 10.1038/s41598-019-52824-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis B virus (HBV) production requires intricate interactions between the envelope and core proteins. Analyses of mutants of these proteins have made it possible to map regions involved in the formation and secretion of virions. Tests of binding between core and envelope peptides have also been performed in cell-free conditions, to study the interactions potentially underlying these mechanisms. We investigated the residues essential for core-envelope interaction in a cellular context in more detail, by transiently producing mutant or wild-type L, S, or core proteins separately or in combination, in Huh7 cells. The colocalization and interaction of these proteins were studied by confocal microscopy and co-immunoprecipitation, respectively. The L protein was shown to constitute a molecular platform for the recruitment of S and core proteins in a perinuclear environment. Several core amino acids were found to be essential for direct interaction with L, including residue Y132, known to be crucial for capsid formation, and residues L60, L95, K96 and I126. Our results confirm the key role of L in the tripartite core-S-L interaction and identify the residues involved in direct core-L interaction. This model may be valuable for studies of the potential of drugs to inhibit HBV core-envelope interaction.
Collapse
Affiliation(s)
- Florentin Pastor
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Charline Herrscher
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Romuald Patient
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Sebastien Eymieux
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France
| | - Florian Seigneuret
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France
| | | | - Philippe Roingeard
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France. .,Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France.
| | - Christophe Hourioux
- INSERM U1259 MAVIVH - University of Tours and CHRU of Tours, Tours, France. .,Plate-Forme IBiSA des Microscopies, PPF ASB - University of Tours and CHRU of Tours, Tours, France.
| |
Collapse
|
35
|
Prescott NA, Bram Y, Schwartz RE, David Y. Targeting Hepatitis B Virus Covalently Closed Circular DNA and Hepatitis B Virus X Protein: Recent Advances and New Approaches. ACS Infect Dis 2019; 5:1657-1667. [PMID: 31525994 DOI: 10.1021/acsinfecdis.9b00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic Hepatitis B virus (HBV) infection remains a worldwide concern and public health problem. Two key aspects of the HBV life cycle are essential for viral replication and thus the development of chronic infections: the establishment of the viral minichromosome, covalently closed circular (ccc) DNA, within the nucleus of infected hepatocytes and the expression of the regulatory Hepatitis B virus X protein (HBx). Interestingly, nuclear HBx redirects host epigenetic machinery to activate cccDNA transcription. In this Perspective, we provide an overview of recent advances in understanding the regulation of cccDNA and the mechanistic and functional roles of HBx. We also describe the progress toward targeting both cccDNA and HBx for therapeutic purposes. Finally, we outline standing questions in the field and propose complementary chemical biology approaches to address them.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| |
Collapse
|
36
|
van Galen M, Higler R, Sprakel J. Allosteric pathway selection in templated assembly. SCIENCE ADVANCES 2019; 5:eaaw3353. [PMID: 31646175 PMCID: PMC6788871 DOI: 10.1126/sciadv.aaw3353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Assembling large numbers of molecular building blocks into functional nanostructures is no trivial task. It relies on guiding building blocks through complex energy landscapes shaped by synergistic and antagonistic supramolecular interactions. In nature, the use of molecular templates is a potent strategy to navigate the process to the desired structure with high fidelity. Yet, nature's templating strategy remains to be fully exploited in man-made nanomaterials. Designing effective template-guided self-assembling systems can only be realized through precise insight into how the chemical design of building blocks and the resulting balance of repulsive and attractive forces give rise to pathway selection and suppression of trapped states. We develop a minimal model to unravel the kinetic pathways and pathway selection of the templated assembly of molecular building blocks on a template. We show how allosteric activation of the associative interactions can suppress undesired solution-aggregation pathways and gives rise to a true template-assembly path.
Collapse
|
37
|
Lin Y, Wu C, Wang X, Liu S, Kemper T, Li F, Squire A, Zhu Y, Zhang J, Chen X, Lu M. Synaptosomal‐associated protein 29 is required for the autophagic degradation of hepatitis B virus. FASEB J 2019; 33:6023-6034. [PMID: 30742775 DOI: 10.1096/fj.201801995rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Lin
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Chunchen Wu
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of Sciences Wuhan China
| | - Xueyu Wang
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Shi Liu
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
- State Key Laboratory of VirologyCollege of Life SciencesWuhan University Wuhan China
| | - Thekla Kemper
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Fahong Li
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
- Department of Infectious DiseasesHuashan HospitalFudan University Shanghai China
| | - Anthony Squire
- Institute for Experimental Immunology and ImagingUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Ying Zhu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan University Wuhan China
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan University Shanghai China
| | - Xinwen Chen
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of Sciences Wuhan China
| | - Mengji Lu
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| |
Collapse
|
38
|
Functional association of cellular microtubules with viral capsid assembly supports efficient hepatitis B virus replication. Sci Rep 2017; 7:10620. [PMID: 28878350 PMCID: PMC5587681 DOI: 10.1038/s41598-017-11015-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Viruses exploit host factors and environment for their efficient replication. The virus-host interaction mechanisms for achieving an optimal hepatitis B virus (HBV) replication have been largely unknown. Here, a single cell cloning revealed that HepAD38 cells, a widely-used HBV-inducible cell line, contain cell clones with diverse permissiveness to HBV replication. The HBV permissiveness was impaired upon treatment with microtubule inhibitor nocodazole, which was identified as an HBV replication inhibitor from a pharmacological screening. In the microtubule-disrupted cells, the efficiency of HBV capsid assembly was remarkably decreased without significant change in pre-assembly process. We further found that HBV core interacted with tubulin and co-localized with microtubule-like fibriforms, but this association was abrogated upon microtubule-disassembly agents, resulting in attenuation of capsid formation. Our data thus suggest a significant role of microtubules in the efficient capsid formation during HBV replication. In line with this, a highly HBV permissive cell clone of HepAD38 cells showed a prominent association of core-microtubule and thus a high capacity to support the capsid formation. These findings provide a new aspect of virus-cell interaction for rendering efficient HBV replication.
Collapse
|
39
|
Patel N, White SJ, Thompson RF, Bingham R, Weiß EU, Maskell DP, Zlotnick A, Dykeman E, Tuma R, Twarock R, Ranson NA, Stockley PG. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol 2017; 2:17098. [PMID: 28628133 PMCID: PMC5495169 DOI: 10.1038/nmicrobiol.2017.98] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Bingham
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Zlotnick
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eric Dykeman
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
40
|
Liu C, Fan G, Wang Z, Chen HS, Yin CC. Allosteric conformational changes of human HBV core protein transform its assembly. Sci Rep 2017; 7:1404. [PMID: 28469174 PMCID: PMC5431180 DOI: 10.1038/s41598-017-01568-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B Virus core protein (HBc) has multiple roles in the viral lifecycle: viral assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions. HBc displays assembly polymorphism - it can assemble into icosahedral capsid and aberrant non-capsid structures. It has been hypothesized that the assembly polymorphism is due to allosteric conformational changes of HBc dimer, the smallest assembly unit, however, the mechanism governing the polymorphic assembly of the HBc dimer is still elusive. By using the experimental antiviral drug BAY 41-4109, we successfully transformed the HBc assembly from icosahedral capsid to helical tube. Structural analyses of HBc dimers from helical tubes, T = 4 icosahedral capsid, and sheet-like HBc ensemble revealed differences within the inter-dimer interface. Disruption of the HBc inter-dimer interface may likely promote the various assembly forms of HBc. Our work provides new structural insights into the HBV assembly mechanism and strategic guide for anti-HBV drug design.
Collapse
Affiliation(s)
- Chuang Liu
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Guizhen Fan
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Zhao Wang
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China
| | - Hong-Song Chen
- Institute of Hepatology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Chang-Cheng Yin
- Department of Biophysics, Peking University Health Science Centre, Peking University, Beijing, 100191, China.
| |
Collapse
|
41
|
Kondylis P, Zhou J, Harms ZD, Kneller AR, Lee LS, Zlotnick A, Jacobson SC. Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly. Anal Chem 2017; 89:4855-4862. [PMID: 28322548 PMCID: PMC5549943 DOI: 10.1021/acs.analchem.6b04491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To improve the precision of resistive-pulse measurements, we have used a focused ion beam instrument to mill nanofluidic devices with 2, 4, and 8 pores in series and compared their performance. The in-plane design facilitates the fabrication of multiple pores in series which, in turn, permits averaging of the series of pulses generated from each translocation event. The standard deviations (σ) of the pulse amplitude distributions decrease by 2.7-fold when the average amplitudes of eight pulses are compared to the amplitudes of single pulses. Similarly, standard deviations of the pore-to-pore time distributions decrease by 3.2-fold when the averages of the seven measurements from 8-pore devices are contrasted to single measurements from 2-pore devices. With signal averaging, the inherent uncertainty in the measurements decreases; consequently, the resolution (mean/σ) improves by a factor equal to the square root of the number of measurements. We took advantage of the improved size resolution of the 8-pore devices to analyze in real time the assembly of Hepatitis B Virus (HBV) capsids below the pseudocritical concentration. We observe that abundances of assembly intermediates change over time. During the first hour of the reaction, the abundance of smaller intermediates decreased, whereas the abundance of larger intermediates with sizes closer to a T = 4 capsid remained constant.
Collapse
Affiliation(s)
| | - Jinsheng Zhou
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Zachary D. Harms
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - Lye Siang Lee
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | | |
Collapse
|
42
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016; 50:489-509. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/02/2025]
|