1
|
Qu J, Wang MH, Gao YH, Zhang HW. Identification of Molecular Subtypes and Prognostic Features of Breast Cancer Based on TGF-β Signaling-related Genes. Cancer Inform 2025; 24:11769351251316398. [PMID: 39902175 PMCID: PMC11789128 DOI: 10.1177/11769351251316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
Objectives The TGF-β signaling pathway is widely acknowledged for its role in various aspects of cancer progression, including cellular invasion, epithelial-mesenchymal transition, and immunosuppression. Immune checkpoint inhibitors (ICIs) and pharmacological agents that target TGF-β offer significant potential as therapeutic options for cancer. However, the specific role of TGF-β in prognostic assessment and treatment strategies for breast cancer (BC) remains unclear. Methods The Cancer Genome Atlas (TCGA) database was utilized to develop a predictive model incorporating five TGF-β signaling-related genes (TSRGs). The GSE161529 dataset from the Gene Expression Omnibus was employed to conduct single-cell analyses aimed at further elucidating the characteristics of these TSRGs. Additionally, an unsupervised clustering algorithm was applied to categorize BC patients into two distinct groups based on the five TSRGs, with a focus on immune response and overall survival (OS). Further investigations were conducted to explore variations in pharmacotherapy and the tumor microenvironment across different patient cohorts and clusters. Results The predictive model for BC identified five TSRGs: FUT8, IFNG, ID3, KLF10, and PARD6A. Single-cell analysis revealed that IFNG is predominantly expressed in CD8+ T cells. Consensus clustering effectively categorized BC patients into two distinct clusters, with cluster B demonstrating a longer OS and a more favorable prognosis. Immunological assessments indicated a higher presence of immune checkpoints and immune cells in cluster B, suggesting a greater likelihood of responsiveness to ICIs. Conclusion The findings of this study highlight the potential of the TGF-β signaling pathway for prognostic classification and the development of personalized treatment strategies for BC patients, thereby enhancing our understanding of its significance in BC prognosis.
Collapse
Affiliation(s)
- Jia Qu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei-Huan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue-Hua Gao
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hua-Wei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhang X, Xu L, Cao Y, Ye P, Cheng Y, Lin X, Yi T, Wang P. Whole-Exome Sequencing Identifies Germline BLM Mutation in Ovarian Hepatoid Adenocarcinoma with Favorable Response to Niraparib and Anlotinib Combination Therapy-A Case Report and Literature Review. Int J Surg Pathol 2025; 33:236-248. [PMID: 39053024 DOI: 10.1177/10668969241260811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Hepatoid adenocarcinoma of the ovary represents a rare and malignant extrahepatic tumor that shares morphological and immunophenotypic similarities with hepatocellular carcinoma. Due to the ambiguous histomorphology and aggressive behavior, the diagnosis and management of hepatoid adenocarcinoma of the ovary present unique challenges. Here, we present a 67-year-old woman with massive ascites and disseminated peritoneal implants at initial diagnosis. She was treated with six cycles of neoadjuvant therapy (albumin-bound paclitaxel + nedaplatin + bevacizumab) and a debulking surgery, followed by eight cycles of postoperative adjuvant therapy (albumin-bound paclitaxel + carboplatin + bevacizumab). Elaborate pathology workup found significant involvement of angiogenesis in the tumor and confirmed the diagnosis via immunohistochemistry. Further molecular characterization of the tumor by whole-exome sequencing (WES) revealed a novel heterozygous germline mutation (NM_000057.2, c.1290_1291delinsATCAGGCCTCCATAG, p.Y430fs1) in gene BLM, likely pathogenic, suggesting a potential candidate for Poly (ADP-ribose) polymerase (PARP) inhibitors. For the maintenance therapy, she received a combination of the PARP inhibitor niraparib and the antiangiogenic anlotinib. As of now, the patient has achieved a partial response, with no apparent evidence of disease progression observed nearly 30 months. Our study sheds light on the WES-based profiling in rare cancers to screen for any treatable targets with otherwise no standard therapeutic options. The promising results with the niraparib-anlotinib combination suggest its potential as a maintenance therapy option for hepatoid adenocarcinoma of the ovary, which warrants validation in future larger cohort.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Yidan Cao
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Pengfei Ye
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Yan Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
| | - Xiaojuan Lin
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Tianjin Yi
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Ping Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| |
Collapse
|
3
|
Singh R, Ha SE, Yu TY, Ro S. Dual Roles of miR-10a-5p and miR-10b-5p as Tumor Suppressors and Oncogenes in Diverse Cancers. Int J Mol Sci 2025; 26:415. [PMID: 39796267 PMCID: PMC11720153 DOI: 10.3390/ijms26010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis. They exert their effects by targeting tumor suppressor genes, thereby facilitating cancer progression, while also inhibiting oncogenes to prevent further disease advancement. The miR-10 family, particularly miR-10a-5p and miR-10b-5p (miR-10a/b-5p), is notably involved in cancer progression. Intriguingly, their functions can differ across different cancers, sometimes promoting and at other times suppressing tumor growth depending on the cancer type and target genes. This review explores the dual roles of miR-10a/b-5p as tumor-suppressive miRNAs (TSmiRs) or oncogenic miRNAs (oncomiRs) in various cancers by examining their molecular and cellular mechanisms and their impact on the tumor microenvironment. Furthermore, we discuss the potential of miR-10a/b-5p as therapeutic targets, emphasizing miRNA-based strategies for cancer treatment. The insights discussed in this review aim to advance our understanding of miR-10a/b-5p's roles in tumor biology and their application in developing innovative cancer therapies.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Tae Yang Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
4
|
Kong D, WillsonShirkey M, Piao W, Wu L, Luo S, Kensiski A, Zhao J, Lee Y, Abdi R, Zheng H, Bromberg JS. Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance. Eur J Immunol 2025; 55:e202451321. [PMID: 39555653 DOI: 10.1002/eji.202451321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.
Collapse
Affiliation(s)
- Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shunqun Luo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allision Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Young Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
6
|
Sadri S, Aghajani A, Soleimani H, Ghorbani Kalkhajeh S, Nazari H, Brouki Milan P, Peyravian N, Pezeshkian Z, Malekzadeh Kebria M, Shirazi F, Shams E, Naderi Noukabadi F, Nazemalhosseini-Mojarad E, Salehi Z. Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics. Biochem Genet 2024:10.1007/s10528-024-10988-y. [PMID: 39636332 DOI: 10.1007/s10528-024-10988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is an important public health issue and is the third most common cancer, accounting for approximately 10% of all cancer cases worldwide. CRC results from the accumulation of multiple genetic and epigenetic alterations in the normal epithelial cells of the colon and rectum, leading to the development of colorectal polyps and invasive carcinomas. The transforming growth factor-beta (TGF-β) pathway is regulated in many diseases, such as cancer. This factor can show tumor suppressant function in the early stages in healthy and cancer cells. It can be regulated and affected by different factors, including noncoding RNAs, which are the remarkable regulators for this pathway. The most prominent functions of this factor are cell cycle arrest and apoptosis in cancer cells. However, activating at the final stages of the cell cycle can cause tumor metastasis. Thus, the dual function of TGF-β and the pleiotropic nature of this signaling make it a crucial challenge for cancer treatment. Accurately studying the TGF-β signaling pathway is critical to determine its role. One of the roles of TGF-β signaling is its significant effect on colorectal polyp malignancy and cancer. In this article, we review the published scientific papers regarding the TGF-β signaling pathway, its related genes, and their contribution to precancerous conditions and colorectal cancer progression. The complex interaction of the TGF-β signaling pathway with noncoding RNAs, such as lncRNA TUG1 and miR-21, significantly influences colorectal polyp and cancer progression. Identifying dysregulated TGF-β-related noncoding RNAs offers promising therapeutic avenues for colorectal cancer. Comprehending TGF-β's connection to other molecular mechanisms is crucial for advancing effective therapeutic strategies.
Collapse
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ali Aghajani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hiva Soleimani
- Department of General Biology, Faculty of Fundamental Science, Islamic Azad University of Shahr-E Qods, Tehran, 37515-374, Iran
| | - Sourena Ghorbani Kalkhajeh
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundi-Shapour University of Medical Sciences, Ahvaz, Iran
| | - Haniyeh Nazari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, 19395-1495, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, 817467344, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
| |
Collapse
|
7
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang X, Liu J, Zuo C, Peng X, Xie J, Shu Y, Ao D, Zhang Y, Ye Q, Cai J. Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review). Oncol Rep 2024; 52:169. [PMID: 39422046 PMCID: PMC11544583 DOI: 10.3892/or.2024.8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Salt‑induced kinase 1 (SIK1) is a serine/threonine protein kinase that is a member of the AMP‑activated protein kinase family. SIK is catalytically activated through its phosphorylation by the upstream kinase LKB1. SIK1 has been reported to be associated with numerous types of cancer. The present review summarizes the structure, regulatory factors and inhibitors of SIK1, and also describes how SIK1 is a signal regulatory factor that fulfills connecting roles in various signal regulatory pathways. Furthermore, the anti‑inflammatory effects of SIK1 during the early stage of tumor occurrence and its different regulatory effects following tumor occurrence, are summarized, and through collating the tumor signal regulatory mechanisms in which SIK1 participates, it has been demonstrated that SIK1 acts as a necessary node in cancer signal transduction. In conclusion, SIK1 is discussed independent of the SIKs family, its research results and recent progress in oncology are summarized in detail with a focus on SIK1, and its potential as a therapeutic target is highlighted, underscoring the need for SIK1‑targeted regulatory strategies in future cancer therapy.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jing Liu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Chenyang Zuo
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinyuan Xie
- Department of Joint Surgery and Sports Medicine, Jingmen Central Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ya Shu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Dongxu Ao
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yang Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingqing Ye
- Department of Breast Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jun Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
9
|
Doghish AS, Abd-Elmawla MA, Hatawsh A, Zaki MB, Aborehab NM, Radwan AF, Moussa R, Eisa MA, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Elimam H. Unraveling the role of LncRNAs in glioblastoma progression: insights into signaling pathways and therapeutic potential. Metab Brain Dis 2024; 40:42. [PMID: 39589598 DOI: 10.1007/s11011-024-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of brain cancer, characterized by its poor prognosis and low survival rate despite current treatment modalities. Because GBM is lethal, clarifying the pathogenesis's underlying mechanisms is important, which are still poorly understood. Recent discoveries in the fields of molecular genetics and cancer biology have demonstrated the critical role that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play in the molecular pathophysiology of GBM growth. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. They are significant epigenetic modulators that control gene e expression at several levels. Their dysregulation and interactions with important signaling pathways play a major role in the malignancy and development of GBM. The increasing role of lncRNAs in GBM pathogenesis is thoroughly examined in this review, with particular attention given to their regulation mechanisms in key signaling pathways such as PI3K/AKT, Wnt/β-catenin, and p53. It also looks into lncRNAs' potential as new biomarkers and treatment targets for GBM. In addition, the study discusses the difficulties in delivering lncRNA-based medicines across the blood-brain barrier and identifies areas that need more research to advance lncRNA-oriented treatments for this deadly cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
10
|
Chen SY, Kung HC, Espinoza B, Washington I, Chen K, Wang J, Zlomke H, Loycano M, Wang R, Pickup M, Burns WR, Fu J, Hwang WL, Zheng L. Targeting heterogeneous tumor microenvironments in pancreatic cancer mouse models of metastasis by TGF-β depletion. JCI Insight 2024; 9:e182766. [PMID: 39298276 DOI: 10.1172/jci.insight.182766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
The dual tumor-suppressive and -promoting functions of TGF-β signaling has made its targeting challenging. We examined the effects of TGF-β depletion by AVID200/BMS-986416 (TGF-β-TRAP), a TGF-β ligand trap, on the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) murine models with different organ-specific metastasis. Our study demonstrated that TGF-β-TRAP potentiates the efficacy of anti-programmed cell death 1 (anti-PD-1) in a PDAC orthotopic murine model with liver metastasis tropism, significantly reducing liver metastases. We further demonstrated the heterogeneous response of cytotoxic effector T cells to combination TGF-β-TRAP and anti-PD-1 treatment across several tumor models. Single-nuclear RNA sequencing suggested that TGF-β-TRAP modulates cancer-associated fibroblast (CAF) heterogeneity and suppresses neutrophil degranulation and CD4+ T cell response to neutrophil degranulation. Ligand-receptor analysis indicated that TGF-β-TRAP may modulate the CCL5/CCR5 axis as well as costimulatory and checkpoint signaling from CAFs and myeloid cells. Notably, the most highly expressed ligands of CCR5 shifted from the immunosuppressive CCL5 to CCL7 and CCL8, which may mediate the immune agonist activity of CCR5 following TGF-β-TRAP and anti-PD-1 combination treatment. This study suggested that TGF-β depletion modulates CAF heterogeneity and potentially reprograms CAFs and myeloid cells into antitumor immune agonists in PDAC, supporting the validation of such effects in human specimens.
Collapse
Affiliation(s)
- Sophia Y Chen
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng-Chung Kung
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Birginia Espinoza
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - India Washington
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Kai Chen
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Jianxin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Haley Zlomke
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Michael Loycano
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Rulin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
| | | | - William R Burns
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan Fu
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - William L Hwang
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Piqué-Gili M, Andreu-Oller C, Mesropian A, Esteban-Fabró R, Bárcena-Varela M, Ruiz de Galarreta M, Montironi C, Martinez-Quetglas I, Cappuyns S, Peix J, Keraite I, Gris-Oliver A, Fernández-Martínez E, Mauro E, Torres-Martin M, Abril-Fornaguera J, Lindblad KE, Lambrechts D, Dekervel J, Thung SN, Sia D, Lujambio A, Pinyol R, Llovet JM. Oncogenic role of PMEPA1 and its association with immune exhaustion and TGF-β activation in HCC. JHEP Rep 2024; 6:101212. [PMID: 39524206 PMCID: PMC11550205 DOI: 10.1016/j.jhepr.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims Transforming growth factor β (TGF-β) plays an oncogenic role in advanced cancer by promoting cell proliferation, metastasis and immunosuppression. PMEPA1 (prostate transmembrane protein androgen induced 1) has been shown to promote TGF-β oncogenic effects in other tumour types. Thus, we aimed to explore the role of PMEPA1 in hepatocellular carcinoma (HCC). Methods We analysed 1,097 tumours from patients with HCC, including discovery (n = 228) and validation (n = 361) cohorts with genomic and clinicopathological data. PMEPA1 levels were assessed by qPCR (n = 228), gene expression data (n = 869) and at the single-cell level (n = 54). Genetically engineered mouse models overexpressing MYC+PMEPA1 compared to MYC were generated and molecular analyses were performed on the HCCs obtained. Results PMEPA1 was overexpressed in 18% of HCC samples (fold-change >2; n = 201/1,097), a feature associated with TGF-β signalling activation (p <0.05) and absence of gene body hypomethylation (p <0.01). HCCs showing both TGF-β signalling and high PMEPA1 levels (12% of cases) were linked to immune exhaustion, late TGF-β activation, aggressiveness and higher recurrence rates after resection, in contrast to HCCs with only TGF-β signalling (8%) or PMEPA1 overexpression (9%). Single-cell RNA sequencing analysis identified PMEPA1 expression in HCC and stromal cells. PMEPA1-expressing tumoural cells were predicted to interact with CD4+ regulatory T cells and CD4+ CXCL13+ and CD8+ exhausted T cells. In vivo, overexpression of MYC+PMEPA1 led to HCC development in ∼60% of mice and a decreased survival compared to mice overexpressing MYC alone (p = 0.014). MYC+PMEPA1 tumours were enriched in TGF-β signalling, paralleling our human data. Conclusions In human HCC, PMEPA1 upregulation is linked to TGF-β activation, immune exhaustion, and an aggressive phenotype. Overexpression of PMEPA1+MYC led to tumoural development in vivo, demonstrating the oncogenic role of PMEPA1 in HCC for the first time. Impact and implications PMEPA1 can enhance the tumour-promoting effects of TGF-β in cancer. In this study, we demonstrate that PMEPA1 is highly expressed in ∼18% of patients with hepatocellular carcinoma (HCC), a feature associated with poor prognosis, TGF-β activation and exhaustion of immune cells. Similarly, in mouse models, PMEPA1 overexpression promotes HCC development, which demonstrates its oncogenic role. The identification of PMEPA1 as oncogenic driver in HCC and its role in immune exhaustion and poor clinical outcomes enhances our understanding of HCC pathogenesis and opens new avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Marta Piqué-Gili
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carmen Andreu-Oller
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Agavni Mesropian
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Bárcena-Varela
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Ruiz de Galarreta
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carla Montironi
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Pathology Department & Molecular Biology CORE, Biomedical Diagnostic Center, Barcelona Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Iris Martinez-Quetglas
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Judit Peix
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ieva Keraite
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Albert Gris-Oliver
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elisa Fernández-Martínez
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ezequiel Mauro
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miguel Torres-Martin
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Abril-Fornaguera
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Katherine E. Lindblad
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Swan N. Thung
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Amaia Lujambio
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep M. Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
13
|
Lee M, Ham H, Lee J, Lee ES, Chung CH, Kong DH, Park JR, Lee DK. TGF-β-Induced PAUF Plays a Pivotal Role in the Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cell Line Panc-1. Int J Mol Sci 2024; 25:11420. [PMID: 39518973 PMCID: PMC11546992 DOI: 10.3390/ijms252111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) was initially identified as a secreted protein that is substantially expressed in pancreatic ductal adenocarcinoma (PDAC). PAUF also affects invasiveness, motility, and the proliferation of cells in several types of cancer. Recently, PAUF was reported to play a pivotal role in the TLR4-mediated migration and invasion of PDAC cells. However, the mechanism inducing PAUF expression and its functional role in TGF-β-stimulated PDAC cells have not yet been studied. Thus, we first assessed whether TGF-β regulates PAUF expression in several PDAC cell lines and found a significant increase in PAUF expression in Smad signaling-positive Panc-1 cells treated with TGF-β. We also found that the PAUF promoter region contains a Smad-binding element. TGF-β-treated Panc-1 cells showed an increase in PAUF promoter activity, but this effect was not observed in TGF-β-stimulated Smad4-null BxPC-3 cells. Restoring Smad4 expression increased the PAUF promoter activity and expression in Smad4-overexpressing BxPC-3 cells treated with TGF-β. We further found that PAUF aggravated the TGF-β-induced epithelial-mesenchymal transition (EMT) in Panc-1 and BxPC-3 cells via the activation of MEK-ERK signaling. These results indicate that TGF-β/Smad signaling-mediated upregulation of PAUF plays a crucial role in EMT progression by activating the TGF-β-mediated MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Miso Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Hyejun Ham
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Jiyeong Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Eun Soo Lee
- Department of Internal Medicine, Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Gangwon-do, Republic of Korea; (E.S.L.); (C.H.C.)
| | - Choon Hee Chung
- Department of Internal Medicine, Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Gangwon-do, Republic of Korea; (E.S.L.); (C.H.C.)
| | - Deok-Hoon Kong
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Jeong-Ran Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Dong-Keon Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| |
Collapse
|
14
|
Millapán T, Gutiérrez Á, Rosas K, Buchegger K, Ili CG, Brebi P. In Silico Insights Reveal Fibronectin 1 as a Theranostic Marker in Gastric Cancer. Int J Mol Sci 2024; 25:11113. [PMID: 39456895 PMCID: PMC11507984 DOI: 10.3390/ijms252011113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is a complex and highly variable disease, ranking among the top five cancers diagnosed globally, and a leading cause of cancer-related deaths. Emerging from stomach lining cells amid chronic inflammation, it often advances to preneoplastic stages. Late-stage diagnoses and treatment challenges highlight the critical need for early detection and innovative biomarkers, motivating this study's focus on identifying theranostic markers through gene ontology analysis. By exploring deregulated biological processes, this study aims to uncover insights into cancer progression and associated markers, potentially identifying novel theranostic candidates in GC. Using public data from The Human Protein Atlas, this study pinpointed 299 prognostic genes, delineating 171 with unfavorable prognosis and 128 with favorable prognosis. Functional enrichment and protein-protein interaction analyses, supported by RNAseq results and conducted via Metascape and Cytoscape, highlighted five genes (vWF, FN1, THBS1, PCDH7, and F5) with promising theranostic potential. Notably, FN1 and THBS1 exhibited significant promise, with FN1 showing a 370% expression increase in cancerous tissue, and it is possible that FN1 can also indicate the stratification status in GC. While further validation is essential, these findings provide new insights into molecular alterations in GC and potential avenues for clinical application of theranostic markers.
Collapse
Affiliation(s)
- Tatiana Millapán
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Doctoral Program in Sciences with a Specialization in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4810296, Chile
| | - Krisnna Rosas
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Biotechnology Engineering Program, Universidad de La Frontera, Temuco 4810296, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Carmen Gloria Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (T.M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- BMRC, Biomedical Research Consortium, Santiago 8331150, Chile
| |
Collapse
|
15
|
Pan B, Shi H, Shan G, Wu G, Rao K, Liang J, Jin X, Bi G, Zhao M, Guo W. Prognostic modeling and Emerging therapeutic targets Unveiled through single-cell sequencing in esophageal squamous Cell carcinoma. Heliyon 2024; 10:e38078. [PMID: 39397956 PMCID: PMC11470424 DOI: 10.1016/j.heliyon.2024.e38078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
ESCC presents a significant global health challenge due to its high mortality rates and varying responses to treatment. This underscores the critical need for novel diagnostic and predictive biomarkers to improve treatment outcomes. Initially, we conducted single-cell transcriptome sequencing on a total of 128,688 cells obtained from 10 patients as part of our research. Utilizing machine learning and cross-validation techniques, we developed a model incorporating 12 genes that distinguish malignant cells from non-malignant ones. In vitro, we explored the effects of IGFBP2 knockdown on the proliferation, invasion, and migration of ESCC cells. The clinical relevance of IGFBP2 was confirmed through IHC and Kaplan-Meier survival analyses. Furthermore, using bioinformatics tools such as GSVA and xCell on public databases, we discovered that high expression of IGFBP2 is associated with an immunosuppressive tumor microenvironment in ESCC, characterized by reduced CD8+ T cell infiltration. This was validated then through IHC. In summary, our study integrates single-cell sequencing and sophisticated computational techniques to highlight IGFBP2 as a promising biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kungeng Rao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Thoracic Surgery and Urology, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| |
Collapse
|
16
|
Valenti G, Laise P, Takahashi R, Wu F, Ruan T, Vasciaveo A, Jiang Z, Sunagawa M, Middelhoff M, Nienhüser H, Fu N, Malagola E, Hayakawa Y, Iuga AC, Califano A, Wang TC. Regulatory network analysis of Dclk1 gene expression reveals a tuft cell-ILC2 axis that inhibits pancreatic tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610508. [PMID: 39257805 PMCID: PMC11383664 DOI: 10.1101/2024.08.30.610508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dclk1 expression defines a rare population of cells in the normal pancreas whose frequency is increased at early stages of pancreatic tumorigenesis. The identity and the precise roles of Dclk1 expressing cells in pancreas have been matter of debate, although evidence suggests their involvement in a number of key functions, including regeneration and neoplasia. We employed a recently developed Dclk1 reporter mouse model and single cell RNAseq analysis to define Dclk1 expressing cells in normal pancreas and pancreatic neoplasia. In normal pancreas, Dclk1 epithelial expression identifies subsets of ductal, islet and acinar cells. In pancreatic neoplasia, Dclk1 expression identifies five epithelial cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two cell populations play opposing roles in pancreatic neoplasia, with Dclk1+ ADM-like cells sustaining tumor growth while Dclk1+ tuft-like cells restraining tumor progression. The differentiation of Kras mutant acinar cells into Dclk1+ tuft-like cells requires the activation of the transcription factor SPIB and is further supported by a cellular paracrine loop involving cancer group 2 innate lymphoid cells (ILC2) and cancer activated fibroblasts (CAFs) that provide IL13 and IL33, respectively. In turn, Dclk1+ tuft-like cells release angiotensinogen that plays protective roles against pancreatic neoplasia. Overall, our study provides novel insights on the biology of Dclk1+ cells in normal pancreas and unveils a protective axis against pancreatic neoplasia, involving CAFs, ILC2 and Dclk1+ tuft-like cells, which ultimately results in angiotensinogen release.
Collapse
Affiliation(s)
- Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- These authors contributed equally
| | - Pasquale Laise
- Department of Systems Biology, Columbia University, New York, New York, USA
- DarwinHealth Inc., New York, New York, USA
- These authors contributed equally
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, TU Munich, Germany
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Alina C. Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Lead Contact
| |
Collapse
|
17
|
Shao N. Research progress on human papillomavirus-negative cervical cancer: A review. Medicine (Baltimore) 2024; 103:e39957. [PMID: 39465870 PMCID: PMC11479510 DOI: 10.1097/md.0000000000039957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. The vast majority of cervical cancers are associated with human papillomavirus (HPV) infection, but a small proportion of cervical cancers occur independently of HPV infection, with different subtypes having varying rates of occurrence. Despite the presence of false negatives in current testing, improving the accuracy of detection is crucial for studying the pathogenesis of HPV-negative cervical cancer and improving the prognosis of these patients. Existing research suggests that HPV-negative cervical cancer has a different pathogenesis from HPV-positive cervical cancer, although the exact mechanism is not yet clear. It is currently believed to be associated with the immune microenvironment, certain tumor gene mutations, and some long noncoding RNAs. This article provides an overview of the latest research progress on HPV-negative cervical cancer, including possible reasons, pathogenesis, pathological features, and clinical characteristics, aiming to provide new insights for diagnosis, treatment, and prognosis improvement.
Collapse
Affiliation(s)
- Ning Shao
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Jacob S, Balonov I, Jurinovic V, Heiliger C, Tschaidse T, Kumbrink J, Kirchner T, Werner J, Angele MK, Michl M, Neumann J. TGFβ signalling pathway impacts brain metastases profiles in locally advanced colorectal cancer. Clin Exp Metastasis 2024; 41:687-697. [PMID: 38498101 PMCID: PMC11499386 DOI: 10.1007/s10585-024-10277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
RATIONALE Colorectal Cancer (CRC) represents the third most common type of cancer in Germany and the second most common cancer-related cause of death worldwide. Distant metastases are still the main limit for patient survival. While liver metastases as well as peritoneal carcinomatosis can often either be resected or treated with systemic therapy, little options remain for brain metastases. Additionally, a number of studies has already investigated hepatic, peritoneal, pulmonary as well as continuing distant metastases in colorectal cancer. Yet, with respect to tumor biology and brain metastases, little is known so far. MATERIAL AND METHODS Two cohorts, M0 without distant spread and BRA with brain metastases were build. RNA was isolated from paraffin embedded specimen. Gene expression was performed by an RNA NanoString-Analysis using the nCounter® PanCancer Progression Panel by NanoString-Technologies (Hamburg, Germany). Results were analysed by principal component analysis, gene expression and pathway analysis using commonly available databases such as KEGG as benchmark for comparison. RESULTS We were able to determine a gene signature that provides a sophisticated group separation between M0 and BRA using principal component analysis. All genes with strong loading characteristics on principal component 1 were cross-referenced with the subsequently performed accurate gene set enrichment analysis (GSEA). The GSEA revealed a clear dysregulation of the TGFβ pathway in compared cohorts M0 and BRA. Interestingly, the targeted pathways analysis of the identified genes confirmed that in fact almost all strong loading genes of PC1 play a role in the TGFβ pathway. CONCLUSION Our results suggest the TGFβ pathway as a crucial player in the development of brain metastases in primary CRC. In some types of colorectal cancer, downregulation of the TGFβ pathway might hinder primary colorectal cancer to metastasize to the nervous system. While the paradoxical functioning of the TGFβ pathway is still not fully understood, these shed light on yet another clinical implication of this complex pathway.
Collapse
Affiliation(s)
- Sven Jacob
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Ilja Balonov
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Vindi Jurinovic
- The Institute for Medical Information Processing, Ludwig-Maximilians-University (LMU) Munich, Biometry, and Epidemiology, Munich, Germany
| | - Christian Heiliger
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Tengis Tschaidse
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
20
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Jacob R, A S, Abdul Razack N, Prabhuswamimath SC. Malignancy of Malignant Ascites: A Comprehensive Review of Interplay between Biochemical Variables, Tumor Microenvironment and Growth Factors. Asian Pac J Cancer Prev 2024; 25:3413-3420. [PMID: 39471006 PMCID: PMC11711360 DOI: 10.31557/apjcp.2024.25.10.3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
Malignant ascites, a buildup of fluid in the abdominal cavity, is a serious consequence of many malignancies. This review aims to comprehend the biochemical makeup of malignant ascites, such as pH, cholesterol, protein, etc., which is crucial to developing therapeutics with better treatment outcomes and hence correlate with corresponding prognostic value. The unique tumour microenvironment exhibited by malignant ascites and the crosstalk between inflammatory cells, cytokines and chemokines, interactions between tumour and non-tumour cell types, activation of vital cell signalling pathways within the TME for VEGF-regulated sustained angiogenesis, cancer progression and metastasis is highlighted. This review addresses the need to develop comprehensive assay platforms to identify various biochemical aspects of ascites, to discover the interactions of the tumour microenvironment and to study VEGF-regulated permeability that can expedite early diagnosis and progression of ascites.
Collapse
Affiliation(s)
| | | | | | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India.
| |
Collapse
|
22
|
Strathearn LS, Spender LC, Schoenherr C, Mason S, Edwards R, Blyth K, Inman GJ. C1orf106 ( INAVA) Is a SMAD3-Dependent TGF-β Target Gene That Promotes Clonogenicity and Correlates with Poor Prognosis in Breast Cancer. Cells 2024; 13:1530. [PMID: 39329715 PMCID: PMC11429573 DOI: 10.3390/cells13181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Transforming Growth Factor-β (TGF-β) can have both tumour-promoting and tumour-suppressing activity in breast cancer. Elucidating the key downstream mediators of pro-tumorigenic TGF-β signalling in this context could potentially give rise to new therapeutic opportunities and/or identify biomarkers for anti-TGF-β directed therapy. Here, we identify C1orf106 (also known as innate immunity activator INAVA) as a novel TGF-β target gene which is induced in a SMAD3-dependent but SMAD2/SMAD4-independent manner in human and murine cell lines. C1orf106 expression positively correlates with tumourigenic or metastatic potential in human and murine breast cancer cell line models, respectively, and is required for enhanced migration and invasion in response to TGF-β stimulation. C1orf106 promoted self-renewal and colony formation in vitro and may promote tumour-initiating frequency in vivo. High C1orf106 mRNA expression correlates with markers of aggressiveness and poor prognosis in human breast cancer. Taken together, our findings indicate that C1orf106 may act as a tumour promoter in breast cancer.
Collapse
Affiliation(s)
- Lauren S. Strathearn
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Lindsay C. Spender
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Christina Schoenherr
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Susan Mason
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Ruaridh Edwards
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Gareth J. Inman
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
23
|
Khodr V, Clauzier L, Machillot P, Sales A, Migliorini E, Picart C. Development of an automated high-content immunofluorescence assay of pSmads quantification: Proof-of-concept with drugs inhibiting the BMP/TGF-β pathways. Biotechnol J 2024; 19:e2400007. [PMID: 39295554 DOI: 10.1002/biot.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Bone morphogenetic proteins (BMPs) and transforming growth factors (TGF-β) are members of the TGF-β superfamily, known for their roles in several physiological and pathological processes. These factors are known to bind in vivo to BMP and TGF-β receptors, respectively, which induces the phosphorylation of Smad (pSmad) transcription factors. This pathway is generally studied with Western blot and luciferase bioluminescence assay, which presents some limitations. PURPOSE In this work, we developed and optimized a high-throughput assay to study pSmad pathways using immunofluorescence (IF) as an alternative to Western blot. We aimed to overcome the technical challenges usually faced in the classical IF assay in image acquisition, analysis, and quantification. METHODS We used C2C12 cells as a cellular model. The cells were stimulated with BMP-2 and TGF-β1 that were delivered either in solution (soluble) or via a biomaterial presenting the growth factor (GF), that is in a "matrix-bound" manner. Image acquisition parameters, analysis methods, and quantification of pSmads using IF were optimized for cells cultured on two types of supports: on bare glass and on a biomimetic coating made by self-assembly of the biopolymers hyaluronic acid and poly(l-lysine), which was crosslinked and then loaded with the GFs. RESULTS We performed high-content kinetic studies of pSmad expression for cells cultured in 96-well microplates in response to soluble and matrix-bound BMP-2 and TGF-β1. The detection limit of the IF-based assay was found to be similar to Western blot. Additionally, we provide a proof-of-concept for drug testing using inhibitors of BMP and TGF-β receptors, under conditions where specific signaling pathways are engaged via the ligand/receptor interactions. Altogether, our findings offer perspectives for future mechanistic studies on cell signaling and for studies at the single cell level using imaging methods.
Collapse
Affiliation(s)
- Valia Khodr
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
| | - Laura Clauzier
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Paul Machillot
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Adrià Sales
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Elisa Migliorini
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Catherine Picart
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
24
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
26
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
27
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
28
|
Zhang D, Sun B, Wang J, Chen SPR, Bobrin VA, Gu Y, Ng CK, Gu W, Monteiro MJ. RGD Density on Tadpole Nanostructures Regulates Cancer Stem Cell Proliferation and Stemness. Biomacromolecules 2024; 25:5260-5272. [PMID: 39056889 DOI: 10.1021/acs.biomac.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-β3 and TGF-β2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.
Collapse
Affiliation(s)
- Dayong Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sung-Po R Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yushu Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Chun Ki Ng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Wu S, Sun X, Hua R, Hu C, Qin L. DDX21 functions as a potential novel oncopromoter in pancreatic ductal adenocarcinoma: a comprehensive analysis of the DExD box family. Discov Oncol 2024; 15:333. [PMID: 39095628 PMCID: PMC11297014 DOI: 10.1007/s12672-024-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumor with an ill-defined pathogenesis. DExD box (DDX) family genes are widely distributed and involved in various RNA metabolism and cellular biogenesis; their dysregulation is associated with aberrant cellular processes and malignancies. However, the prognostic significance and expression patterns of the DDX family in PDAC are not fully understood. The present study aimed to explore the clinical value of DDX genes in PDAC. METHODS Differentially expressed DDX genes were identified. DDX genes related to prognostic signatures were further investigated using LASSO Cox regression analysis. DDX21 protein expression was analyzed using the UALCAN and human protein atlas (HPA) online tools and confirmed in 40 paired PDAC and normal tissues through Tissue Microarrays (TMA). The independent prognostic significance of DDX21 in PDAC was determined through the construction of nomogram models and calibration curves. The functional roles of DDX21 were investigated using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Cell proliferation, invasion, and migration were assessed using Cell Counting Kit-8, colony formation, Transwell, and wound healing assays. RESULTS Upregulation of genes related to prognostic signatures (DDX10, DDX21, DDX60, and DDX60L) was significantly associated with poor prognosis of patients with PDAC based on survival and recurrence time. Considering the expression profile and prognostic values of the signature-related genes, DDX21 was finally selected for further exploration. DDX21 was overexpressed significantly at both the mRNA and protein levels in PDAC compared to normal pancreatic tissues. DDX21 expression, pathological stage, and residual tumor were significant independent prognostic indicators in PDAC. Moreover, functional enrichment analysis revealed that Genes co-expressed with DDX21 are predominantly involved in RNA metabolism, helicase activity, ribosome biogenesis, cell cycle, and various cancer-related pathways, such as PI3K/Akt signaling pathway and TGF-β signaling pathway. Furthermore, in vitro experiments confirmed that the knockdown of DDX21 significantly reduced MIA PaCa-2 cell viability, proliferation, migration, and invasion. CONCLUSIONS Four signature-related genes could relatively precisely predict the prognosis of patients with PDAC. Specifically, DDX21 upregulation may signal an unfavorable prognosis by negatively affecting the biological properties of PDAC cells. DDX21 may be considered as a candidate therapeutic target in PDAC.
Collapse
Affiliation(s)
- Shaohan Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Xiaofang Sun
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Ruheng Hua
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Chundong Hu
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
30
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
31
|
Fischer S, Weber LM, Stielow B, Frech M, Simon C, Geller M, Könnecke J, Finkernagel F, Forné I, Nist A, Bauer UM, Stiewe T, Neubauer A, Liefke R. IRF2BP2 counteracts the ATF7/JDP2 AP-1 heterodimer to prevent inflammatory overactivation in acute myeloid leukemia (AML) cells. Nucleic Acids Res 2024; 52:7590-7609. [PMID: 38801077 PMCID: PMC11260449 DOI: 10.1093/nar/gkae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Miriam Frech
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Julie Könnecke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
32
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
33
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
34
|
Cui L, Liu T, Huang C, Yang F, Luo L, Sun L, Zhao Y, Wang D, Wang M, Ji Y, Zhu W. Gastric Cancer Mesenchymal Stem Cells Trigger Endothelial Cell Functional Changes to Promote Cancer Progression. Stem Cell Rev Rep 2024; 20:1285-1298. [PMID: 38598065 DOI: 10.1007/s12015-024-10720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Our previous studies have highlighted the pivotal role of gastric cancer mesenchymal stem cells (GCMSCs) in tumor initiation, progression, and metastasis. In parallel, it is well-documented that endothelial cells (ECs) undergo functional alterations in response to challenging tumor microenvironment. This study aims to elucidate whether functional changes in ECs might be induced by GCMSCs and thus influence cancer progression. Cell proliferation was assessed through CCK-8 and colony formation assays, while cell migration and invasion capabilities were evaluated by wound-healing and Transwell assays. Immunohistochemistry was employed to examine protein distribution and expression levels. Additionally, quantitative analysis of protein and mRNA expression was carried out through Western blotting and qRT-PCR respectively, with gene knockdown achieved using siRNA. Our findings revealed that GCMSCs effectively stimulate cell proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), both in vitro and in vivo. GCMSCs promote the migration and invasion of gastric cancer cells by inducing the expression of Slit2 in HUVECs. Notably, the inhibition of phosphorylated AKT partially mitigates the aforementioned effects. In conclusion, GCMSCs may exert regulatory control over Slit2 expression in ECs via the AKT signaling pathway, thereby inducing functional changes in ECs that promote tumor progression.
Collapse
Affiliation(s)
- Linjing Cui
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Fumeng Yang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Liqi Luo
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
35
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
36
|
Tigu AB, Tomuleasa C. Exploring Novel Frontiers in Cancer Therapy. Biomedicines 2024; 12:1345. [PMID: 38927551 PMCID: PMC11202039 DOI: 10.3390/biomedicines12061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer progression and initiation are sustained by a series of alterations in molecular pathways because of genetic errors, external stimuli and other factors, which lead to an abnormal cellular function that can be translated into uncontrolled cell growth and metastasis [...].
Collapse
Affiliation(s)
- Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Noonan HR, Thornock AM, Barbano J, Xifaras ME, Baron CS, Yang S, Koczirka K, McConnell AM, Zon LI. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma. eLife 2024; 13:e83527. [PMID: 38874379 PMCID: PMC11178360 DOI: 10.7554/elife.83527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/15/2024] [Indexed: 06/15/2024] Open
Abstract
Developmental signaling pathways associated with growth factors such as TGFb are commonly dysregulated in melanoma. Here we identified a human TGFb enhancer specifically activated in melanoma cells treated with TGFB1 ligand. We generated stable transgenic zebrafish with this TGFb Induced Enhancer driving green fluorescent protein (TIE:EGFP). TIE:EGFP was not expressed in normal melanocytes or early melanomas but was expressed in spatially distinct regions of advanced melanomas. Single-cell RNA-sequencing revealed that TIE:EGFP+ melanoma cells down-regulated interferon response while up-regulating a novel set of chronic TGFb target genes. ChIP-sequencing demonstrated that AP-1 factor binding is required for activation of chronic TGFb response. Overexpression of SATB2, a chromatin remodeler associated with tumor spreading, showed activation of TGFb signaling in early melanomas. Confocal imaging and flow cytometric analysis showed that macrophages localize to TIE:EGFP+ regions and preferentially phagocytose TIE:EGFP+ melanoma cells compared to TIE:EGFP- melanoma cells. This work identifies a TGFb induced immune response and demonstrates the need for the development of chronic TGFb biomarkers to predict patient response to TGFb inhibitors.
Collapse
Affiliation(s)
- Haley R Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Biological and Biomedical Sciences Program, Harvard Medical SchoolBostonUnited States
| | - Alexandra M Thornock
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Biological and Biomedical Sciences Program, Harvard Medical SchoolBostonUnited States
| | - Julia Barbano
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
| | - Michael E Xifaras
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Immunology Program, Harvard Medical SchoolBostonUnited States
| | - Chloe S Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Katherine Koczirka
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| |
Collapse
|
38
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
40
|
Nussinov R, Yavuz BR, Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol Sci 2024; 45:503-519. [PMID: 38782689 PMCID: PMC11162304 DOI: 10.1016/j.tips.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
41
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Sayed NH, Hammad M, Abdelrahman SA, Abdelgawad HM. Association of long non-coding RNAs and ABO blood groups with acute lymphoblastic leukemia in Egyptian children. Noncoding RNA Res 2024; 9:307-317. [PMID: 38505304 PMCID: PMC10945145 DOI: 10.1016/j.ncrna.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 03/21/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevailing cancer among children. Despite extensive studies, ALL etiology is still an unsolved puzzle. Long non-coding RNAs (lncRNAs) emerged as key mediators in cancer etiology. Several lncRNAs are dysregulated in ALL, leading to oncogenic or tumor-suppressive activities. Additionally, a relation between ABO blood groups and hematological malignancies was proposed. The current study intended to explore the association of lncRNAs, ANRIL and LINC-PINT, and their downstream targets, CDKN2A and heme oxygenase-1 (HMOX1), with the incidence of ALL and treatment response, and to determine the distribution of blood groups across different childhood ALL phenotypes. Blood samples were taken from 66 ALL patients (at diagnosis and at the end of remission induction phase) and 39 healthy children. Whole blood was used for blood group typing. Expression of ANRIL, LINC-PINT and CDKN2A was analyzed in plasma by qRT-PCR. Serum HMOX1 was measured using ELISA. ANRIL and CDKN2A were upregulated, while LINC-PINT and HMOX1 were downregulated in newly diagnosed patients. All of which showed remarkable diagnostic performance, where HMOX1 was superior. HMOX1 was independent predictor of ALL as well. LINC-PINT and HMOX1 were significantly upregulated after treatment. Notably, ANRIL and LINC-PINT were associated with poor outcome. No significant difference in the distribution of ABO blood groups was observed between patients and controls. In conclusion, our results suggested an association of ANRIL and LINC-PINT with childhood ALL predisposition, at least in part, through altering CDKN2A and HMOX1 production. Furthermore, the impact of remission induction treatment was newly revealed.
Collapse
Affiliation(s)
- Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | | | | |
Collapse
|
43
|
Li F, Yu W, Zhou X, Hou J, Gao Y, Zhang J, Gao X. SIRT6 Inhibits Anoikis of Colorectal Cancer Cells by Down-Regulating NDRG1. Int J Mol Sci 2024; 25:5585. [PMID: 38891773 PMCID: PMC11171779 DOI: 10.3390/ijms25115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Anoikis, a form of apoptosis resulting from the loss of cell-extracellular matrix interaction, is a significant barrier to cancer cell metastasis. However, the epigenetic regulation of this process remains to be explored. Here, we demonstrate that the histone deacetylase sirtuin 6 (SIRT6) plays a pivotal role in conferring anoikis resistance to colorectal cancer (CRC) cells. The protein level of SIRT6 is negatively correlated with anoikis in CRC cells. The overexpression of SIRT6 decreases while the knockdown of SIRT6 increases detachment-induced anoikis. Mechanistically, SIRT6 inhibits the transcription of N-myc downstream-regulated gene 1 (NDRG1), a negative regulator of the AKT signaling pathway. We observed the up-regulation of SIRT6 in advanced-stage CRC samples. Together, our findings unveil a novel epigenetic program regulating the anoikis of CRC cells.
Collapse
Affiliation(s)
- Fengying Li
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wentao Yu
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Xiaoling Zhou
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Jingyu Hou
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Yunyi Gao
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiangwei Gao
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| |
Collapse
|
44
|
Peñate L, Carrillo-Beltrán D, Spichiger C, Cuevas-Zhbankova A, Torres-Arévalo Á, Silva P, Richter HG, Ayuso-Sacido Á, San Martín R, Quezada-Monrás C. The Impact of A3AR Antagonism on the Differential Expression of Chemoresistance-Related Genes in Glioblastoma Stem-like Cells. Pharmaceuticals (Basel) 2024; 17:579. [PMID: 38794149 PMCID: PMC11124321 DOI: 10.3390/ph17050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.
Collapse
Affiliation(s)
- Liuba Peñate
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Diego Carrillo-Beltrán
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carlos Spichiger
- Laboratorio de Biología Molecular Aplicada, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alexei Cuevas-Zhbankova
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres-Arévalo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Sede Talca, Universidad Santo Tomás, Talca 347-3620, Chile
| | - Pamela Silva
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Hans G Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
45
|
Guo Y, Wang Z, Zhou H, Pan H, Han W, Deng Y, Li Q, Xue J, Ge X, Wang S, Wang J, Zhang Y, Zhao C, Zhu H, Wang Y, Shen H, Liu D, Li J. First-in-human study of GFH018, a small molecule inhibitor of transforming growth factor-β receptor I inhibitor, in patients with advanced solid tumors. BMC Cancer 2024; 24:444. [PMID: 38600507 PMCID: PMC11007962 DOI: 10.1186/s12885-024-12216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) is a cytokine with multiple functions, including cell growth regulation, extracellular matrix production, angiogenesis homeostasis adjustment and et al. TGF-β pathway activation promotes tumor metastasis/progression and mediates epithelial-mesenchymal transmission suppressing immunosurveillance in advanced tumors. GFH018, a small molecule inhibitor blocking TGF-β signal transduction, inhibits the progression and/or metastasis of advanced cancers. This first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and efficacy of GFH018 monotherapy in patients with advanced solid tumors. METHODS This phase I, open-label, multicenter study used a modified 3+3 dose escalation and expansion design. Adult patients with advanced solid tumors failing the standard of care were enrolled. Starting at 5 mg, eight dose levels up to 85 mg were evaluated. Patients received GFH018 BID (14d-on/14d-off) starting on the 4th day after a single dose on cycle 1, day 1. Subsequent cycles were defined as 28 days. The study also explored the safety of 85 mg BID 7d-on/7d-off. Adverse events were graded using NCI criteria for adverse events (NCI-CTCAE v5.0). PK was analyzed using a noncompartmental method. Efficacy was evaluated using RECIST 1.1. Blood samples were collected for biomarker analysis. RESULTS Fifty patients were enrolled and received at least one dose of GFH018. No dose-limiting toxicity occurred, and the maximum tolerated dose was not reached. Forty-three patients (86.0%) had at least one treatment-related adverse event (TRAE), and three patients (6.0%) had ≥ G3 TRAEs. The most common TRAEs (any grade/grade ≥3) were AST increased (18%/0%), proteinuria (14%/2%), anemia (14%/2%), and ALT increased (12%/0%). No significant cardiotoxicity or bleeding was observed. GFH018 PK was linear and dose-independent, with a mean half-life of 2.25-8.60 h from 5 - 85 mg. Nine patients (18.0%) achieved stable disease, and one patient with thymic carcinoma achieved tumor shrinkage, with the maximum target lesion decreased by 18.4%. Serum TGF-β1 levels were not associated with clinical responses. The comprehensive recommended dose for Phase II was defined as 85 mg BID 14d-on/14d-off. CONCLUSIONS GFH018 monotherapy presented a favorable safety profile without cardiac toxicity or bleeding. Modest efficacy warrants further studies, including combination strategies. TRIAL REGISTRATION ClinicalTrial. gov ( https://www. CLINICALTRIALS gov/ ), NCT05051241. Registered on 2021-09-02.
Collapse
Affiliation(s)
- Ye Guo
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zishu Wang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huan Zhou
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanhong Deng
- Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Qun Li
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junli Xue
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang Wang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Jing Wang
- Translational Science, GenFleet Therapeutics Inc, Shanghai, China
| | - Yue Zhang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Congqiao Zhao
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Huaqiang Zhu
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Yu Wang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Haige Shen
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Dong Liu
- Translational Science, GenFleet Therapeutics Inc, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
47
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
48
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
49
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Liang S, Zheng R, Zuo B, Li J, Wang Y, Han Y, Dong H, Zhao X, Zhang Y, Wang P, Meng R, Jia L, Yang A, Yan B. SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors. Cell Mol Immunol 2024; 21:213-226. [PMID: 38177245 PMCID: PMC10901810 DOI: 10.1038/s41423-023-01120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-β promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-β signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-β-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-β receptor I and abrogated the interplay between the TGF-β and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-β. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.
Collapse
Affiliation(s)
- Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Baile Zuo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yiyi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yujie Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hao Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- School of Medicine Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|