1
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Richard A, Berthelet J, Judith D, Advedissian T, Espadas J, Jannot G, Amo A, Loew D, Lombard B, Casanova AG, Reynoird N, Roux A, Berlioz-Torrent C, Echard A, Weitzman JB, Medjkane S. Methylation of ESCRT-III components regulates the timing of cytokinetic abscission. Nat Commun 2024; 15:4023. [PMID: 38740816 PMCID: PMC11091153 DOI: 10.1038/s41467-024-47717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.
Collapse
Affiliation(s)
- Aurélie Richard
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France
| | - Delphine Judith
- Université Paris Cité, Inserm, CNRS, Institut Cochin, F-75014, Paris, France
| | - Tamara Advedissian
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 Rue du Dr Roux, F-75015, Paris, France
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Guillaume Jannot
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France
| | - Angélique Amo
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, F-75005, Paris, France
| | - Berangere Lombard
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, F-75005, Paris, France
| | - Alexandre G Casanova
- Université Grenoble Alpes, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Nicolas Reynoird
- Université Grenoble Alpes, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | | | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 Rue du Dr Roux, F-75015, Paris, France
| | - Jonathan B Weitzman
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France
| | - Souhila Medjkane
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, F-75013, Paris, France.
| |
Collapse
|
3
|
Sun W, Justice I, Green EM. Defining Biological and Biochemical Functions of Noncanonical SET Domain Proteins. J Mol Biol 2024; 436:168318. [PMID: 37863247 PMCID: PMC10957327 DOI: 10.1016/j.jmb.2023.168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Within the SET domain superfamily of lysine methyltransferases, there is a well-conserved subfamily, frequently referred to as the Set3 SET domain subfamily, which contain noncanonical SET domains carrying divergent amino acid sequences. These proteins are implicated in diverse biological processes including stress responses, cell differentiation, and development, and their disruption is linked to diseases including cancer and neurodevelopmental disorders. Interestingly, biochemical and structural analysis indicates that they do not possess catalytic methyltransferase activity. At the molecular level, Set3 SET domain proteins appear to play critical roles in the regulation of gene expression, particularly repression and heterochromatin maintenance, and in some cases, via scaffolding other histone modifying activities at chromatin. Here, we explore the common and unique functions among Set3 SET domain subfamily proteins and analyze what is known about the specific contribution of the conserved SET domain to functional roles of these proteins, as well as propose areas of investigation to improve understanding of this important, noncanonical subfamily of proteins.
Collapse
Affiliation(s)
- Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Isabella Justice
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
4
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Li J, Hong Z, Zhang J, Zheng S, Wan F, Liu Z, Dai B. Lysine methyltransferase SMYD2 enhances androgen receptor signaling to modulate CRPC cell resistance to enzalutamide. Oncogene 2024; 43:744-757. [PMID: 38243079 DOI: 10.1038/s41388-024-02945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Androgen receptors (ARs) play key roles in prostate cancer (PCa) progression and castration-resistant prostate cancer (CRPC) resistance to drug therapy. SET and MYND domain containing protein 2 (SMYD2), a lysine methyltransferase, has been reported to promote tumors by transcriptionally methylating important oncogenes or tumor repressor genes. However, the role of SMYD2 in CRPC drug resistance remains unclear. In this study, we found that SMYD2 expression was significantly upregulated in PCa tissues and cell lines. High SMYD2 expression indicated poor CRPC-free survival and overall survival in patients. SMYD2 knockdown dramatically inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) potential of 22Rv1 and C4-2 cells. Conversely, ectopic overexpression of SMYD2 promoted these effects in 22Rv1 and C4-2 cells. Mechanistically, SMYD2 methylated and phosphorylated ARs to affect AR ubiquitination and proteasome degradation, which further alters the AR transcriptome in CRPC cells. Importantly, the SMYD2 inhibitor AZ505 had a synergistic therapeutic effect with enzalutamide in CRPC cells and mouse models; however, it could also re-sensitize resistant CRPC cells to enzalutamide. Our findings demonstrated that SMYD2 enhances the methylation and phosphorylation of ARs and affects AR ubiquitination and proteasome degradation to modulate CRPC cell resistance to enzalutamide, indicating that SMYD2 serves as a crucial oncogene in PCa and is an ideal therapeutic target for CRPC.
Collapse
Affiliation(s)
- Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| | - Junyu Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
6
|
Zhao Y, Skovgaard Z, Wang Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024; 136:100746. [PMID: 38241884 DOI: 10.1016/j.diff.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.
Collapse
Affiliation(s)
| | | | - Qinyi Wang
- Computer Science Department, California State Polytechnic University Pomona, USA
| |
Collapse
|
7
|
Shen R, Ruan H, Lin S, Liu B, Song H, Li L, Ma T. Lysine succinylation, the metabolic bridge between cancer and immunity. Genes Dis 2023; 10:2470-2478. [PMID: 37554179 PMCID: PMC10404875 DOI: 10.1016/j.gendis.2022.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Abstract
Lysine succinylation is a naturally occurring post-translational modification (PTM) that regulates the stability and function of proteins. It can be regulated by enzymes such as SIRT5 and SIRT7. Recently, the effect and significance of lysine succinylation in cancer and its implication in immunity have been extensively explored. Lysine succinylation is involved in the malignant phenotype of cancer cells. Abnormal regulation of lysine succinylation occurs in different cancers, and inhibitors targeting lysine succinylation regulatory enzymes can be used as potential anti-cancer strategies. Therefore, this review focused on the target protein lysine succinylation and its functions in cancer and immunity, in order to provide a reference for finding more potential clinical cancer targets in the future.
Collapse
Affiliation(s)
- Rui Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hongyun Ruan
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Shuye Lin
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Lu Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Teng Ma
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
8
|
Butler FM, Utt J, Mathew RO, Casiano CA, Montgomery S, Wiafe SA, Lampe JW, Fraser GE. Plasma metabolomics profiles in Black and White participants of the Adventist Health Study-2 cohort. BMC Med 2023; 21:408. [PMID: 37904137 PMCID: PMC10617178 DOI: 10.1186/s12916-023-03101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Black Americans suffer disparities in risk for cardiometabolic and other chronic diseases. Findings from the Adventist Health Study-2 (AHS-2) cohort have shown associations of plant-based dietary patterns and healthy lifestyle factors with prevention of such diseases. Hence, it is likely that racial differences in metabolic profiles correlating with disparities in chronic diseases are explained largely by diet and lifestyle, besides social determinants of health. METHODS Untargeted plasma metabolomics screening was performed on plasma samples from 350 participants of the AHS-2, including 171 Black and 179 White participants, using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and a global platform of 892 metabolites. Differences in metabolites or biochemical subclasses by race were analyzed using linear regression, considering various models adjusted for known confounders, dietary and/or other lifestyle behaviors, social vulnerability, and psychosocial stress. The Storey permutation approach was used to adjust for false discovery at FDR < 0.05. RESULTS Linear regression revealed differential abundance of over 40% of individual metabolites or biochemical subclasses when comparing Black with White participants after adjustment for false discovery (FDR < 0.05), with the vast majority showing lower abundance in Blacks. Associations were not appreciably altered with adjustment for dietary patterns and socioeconomic or psychosocial stress. Metabolite subclasses showing consistently lower abundance in Black participants included various lipids, such as lysophospholipids, phosphatidylethanolamines, monoacylglycerols, diacylglycerols, and long-chain monounsaturated fatty acids, among other subclasses or lipid categories. Among all biochemical subclasses, creatine metabolism exclusively showed higher abundance in Black participants, although among metabolites within this subclass, only creatine showed differential abundance after adjustment for glomerular filtration rate. Notable metabolites in higher abundance in Black participants included methyl and propyl paraben sulfates, piperine metabolites, and a considerable proportion of acetylated amino acids, including many previously found associated with glomerular filtration rate. CONCLUSIONS Differences in metabolic profiles were evident when comparing Black and White participants of the AHS-2 cohort. These differences are likely attributed in part to dietary behaviors not adequately explained by dietary pattern covariates, besides other environmental or genetic factors. Alterations in these metabolites and associated subclasses may have implications for the prevention of chronic diseases in Black Americans.
Collapse
Affiliation(s)
- Fayth M Butler
- Adventist Health Study, Loma Linda University, Loma Linda, CA, USA.
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, 24951 Circle Drive, NH2031, Loma Linda, CA, 92350, USA.
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jason Utt
- Adventist Health Study, Loma Linda University, Loma Linda, CA, USA
| | - Roy O Mathew
- Division of Nephrology, Department of Medicine, Loma Linda VA Health Care System, Loma Linda, CA, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Suzanne Montgomery
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
- School of Behavioral Health, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Seth A Wiafe
- Center for Leadership in Health Systems, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gary E Fraser
- Adventist Health Study, Loma Linda University, Loma Linda, CA, USA
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, 24951 Circle Drive, NH2031, Loma Linda, CA, 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
9
|
Uguen M, Deng Y, Li F, Shell DJ, Norris-Drouin JL, Stashko MA, Ackloo S, Arrowsmith CH, James LI, Liu P, Pearce KH, Frye SV. SETDB1 Triple Tudor Domain Ligand, ( R, R)-59, Promotes Methylation of Akt1 in Cells. ACS Chem Biol 2023; 18:1846-1853. [PMID: 37556795 PMCID: PMC10718286 DOI: 10.1021/acschembio.3c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yu Deng
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael A Stashko
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Pengda Liu
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Pei MS, Liu HN, Wei TL, Guo DL. Proteome-Wide Identification of Non-histone Lysine Methylation during Grape Berry Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12140-12152. [PMID: 37503871 DOI: 10.1021/acs.jafc.3c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
11
|
Ji Y, Wang A. Recent advances in epigenetic triggering of climacteric fruit ripening. PLANT PHYSIOLOGY 2023; 192:1711-1717. [PMID: 37002826 PMCID: PMC10315304 DOI: 10.1093/plphys/kiad206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
During ripening, fleshy fruits undergo irreversible changes in color, texture, sugar content, aroma, and flavor to appeal to seed-dispersal vectors. The onset of climacteric fruit ripening is accompanied by an ethylene burst. Understanding the factors triggering this ethylene burst is important for manipulating climacteric fruit ripening. Here, we review the current understanding and recent insights into the possible factors triggering climacteric fruit ripening: DNA methylation and histone modification, including methylation and acetylation. Understanding the initiation factors of fruit ripening is important for exploring and accurately regulating the mechanisms of fruit ripening. Lastly, we discuss the potential mechanisms responsible for climacteric fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
12
|
Francis JW, Shao Z, Narkhede P, Trinh AT, Lu J, Song J, Gozani O. The FAM86 domain of FAM86A confers substrate specificity to promote EEF2-Lys525 methylation. J Biol Chem 2023; 299:104842. [PMID: 37209825 PMCID: PMC10285254 DOI: 10.1016/j.jbc.2023.104842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
FAM86A is a class I lysine methyltransferase (KMT) that generates trimethylation on the eukaryotic translation elongation factor 2 (EEF2) at Lys525. Publicly available data from The Cancer Dependency Map project indicate high dependence of hundreds of human cancer cell lines on FAM86A expression. This classifies FAM86A among numerous other KMTs as potential targets for future anticancer therapies. However, selective inhibition of KMTs by small molecules can be challenging due to high conservation within the S-adenosyl methionine (SAM) cofactor binding domain among KMT subfamilies. Therefore, understanding the unique interactions within each KMT-substrate pair can facilitate developing highly specific inhibitors. The FAM86A gene encodes an N-terminal FAM86 domain of unknown function in addition to its C-terminal methyltransferase domain. Here, we used a combination of X-ray crystallography, the AlphaFold algorithms, and experimental biochemistry to identify an essential role of the FAM86 domain in mediating EEF2 methylation by FAM86A. To facilitate our studies, we also generated a selective EEF2K525 methyl antibody. Overall, this is the first report of a biological function for the FAM86 structural domain in any species and an example of a noncatalytic domain participating in protein lysine methylation. The interaction between the FAM86 domain and EEF2 provides a new strategy for developing a specific FAM86A small molecule inhibitor, and our results provide an example in which modeling a protein-protein interaction with AlphaFold expedites experimental biology.
Collapse
Affiliation(s)
| | - Zengyu Shao
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Pradnya Narkhede
- Department of Biology, Stanford University, Stanford, California, USA
| | - Annie Truc Trinh
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
13
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Huang C, Ren S, Chen Y, Liu A, Wu Q, Jiang T, Lv P, Song D, Hu F, Lan J, Sun L, Zheng X, Luo X, Chu Q, Jia K, Li Y, Wang J, Zou C, Hu J, Wang G. PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance. SCIENCE ADVANCES 2023; 9:eade4186. [PMID: 37235656 DOI: 10.1126/sciadv.ade4186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1) have enabled some patients with cancer to experience durable, complete treatment responses; however, reliable anti-PD-(L)1 treatment response biomarkers are lacking. Our research found that PD-L1 K162 was methylated by SETD7 and demethylated by LSD2. Furthermore, PD-L1 K162 methylation controlled the PD-1/PD-L1 interaction and obviously enhanced the suppression of T cell activity controlling cancer immune surveillance. We demonstrated that PD-L1 hypermethylation was the key mechanism for anti-PD-L1 therapy resistance, investigated that PD-L1 K162 methylation was a negative predictive marker for anti-PD-1 treatment in patients with non-small cell lung cancer, and showed that the PD-L1 K162 methylation:PD-L1 ratio was a more accurate biomarker for predicting anti-PD-(L)1 therapy sensitivity. These findings provide insights into the regulation of the PD-1/PD-L1 pathway, identify a modification of this critical immune checkpoint, and highlight a predictive biomarker of the response to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingqing Lan
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Zheng
- Wuhan Blood Center, Wuhan 430030, China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Caicun Zou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Uguen M, Deng Y, Li F, Shell DJ, Norris-Drouin JL, Stashko MA, Ackloo S, Arrowsmith CH, James LI, Liu P, Pearce KH, Frye SV. SETDB1 Triple Tudor Domain Ligand, ( R,R )-59, Promotes Methylation of Akt1 in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.539986. [PMID: 37214894 PMCID: PMC10197638 DOI: 10.1101/2023.05.10.539986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( R,R )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, ( R,R )-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with ( R,R )-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. ( R,R )-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide, and that this activity is stimulated by ( R,R )-59 primarily through an increase in catalytic activity rather than a change in SAM binding. Abstract Figure
Collapse
|
16
|
Du Z, Su J, Lin S, Chen T, Gao W, Wang M, Li Y, Wei D, Hu Z, Gao C, Li Q. Hydroxyphenylpyruvate Dioxygenase Is a Metabolic Immune Checkpoint for UTX-deficient Colorectal Cancer. Gastroenterology 2023; 164:1165-1179.e13. [PMID: 36813208 DOI: 10.1053/j.gastro.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND & AIMS Aberrant epigenetic events mediated by histone methyltransferases and demethylases contribute to malignant progression of colorectal cancer (CRC). However, the role of the histone demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in CRC remains poorly understood. METHODS UTX conditional knockout mice and UTX-silenced MC38 cells were used to investigate UTX function in tumorigenesis and development of CRC. We performed time of flight mass cytometry to clarify the functional role of UTX in remodeling immune microenvironment of CRC. To investigate metabolic interaction between myeloid-derived suppressor cells (MDSCs) and CRC, we analyzed metabolomics data to identify metabolites secreted by UTX-deficient cancer cells and taken up by MDSCs. RESULTS We unraveled a tyrosine-mediated metabolic symbiosis between MDSC and UTX-deficient CRC. Loss of UTX in CRC resulted in methylation of phenylalanine hydroxylase, preventing its degradation and subsequently increasing tyrosine synthesis and secretion. Tyrosine taken up by MDSCs was metabolized to homogentisic acid by hydroxyphenylpyruvate dioxygenase. Homogentisic acid modified protein inhibitor of activated STAT3 via carbonylation of Cys 176, and relieved the inhibitory effect of protein inhibitor of activated STAT3 on signal transducer and activator of transcription 5 transcriptional activity. This in turn, promoted MDSC survival and accumulation, enabling CRC cells to acquire invasive and metastatic traits. CONCLUSIONS Collectively, these findings highlight hydroxyphenylpyruvate dioxygenase as a metabolic checkpoint to restrict immunosuppressive MDSCs and to counteract malignant progression of UTX-deficient CRC.
Collapse
Affiliation(s)
- ZunGuo Du
- Department of Pathology, HuaShan Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - JunHui Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - ShengLi Lin
- Endoscopy Center, Endoscopy Research Institute, Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - WenChao Gao
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - MengHui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - YueHeng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong Wei
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - ZhiQian Hu
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - ChunFang Gao
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Yang S, Wang X, Bai J, Duan B. The role of SET domain containing lysine methyltransferase 7 in tumorigenesis and development. Cell Cycle 2023; 22:269-275. [PMID: 36101480 PMCID: PMC9851238 DOI: 10.1080/15384101.2022.2122257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023] Open
Abstract
SET domain containing lysine methyltransferase 7 (SETD7) belongs to the protein lysine methyltransferase family and can catalyze the monomethylation of histone H3K4, which plays a vital role in the regulation of cell cycle, cell differentiation, DNA damage response and chromatin remodeling through K/R-S/T-K (K is lysine residue) sites and the recognition of substrates mediated by SET, i-SET, and n-SET domains and electrostatic action. SETD7 also can regulate the transcription of several genes including β-catenin, Cullin l and lin-28 homolog A (LIN28A), etc. In addition, the abnormal expression of SETD7 can promote the proliferation, migration, invasion of tumor cells, predict the poor prognosis of tumor patients, and may be a potential target for tumor therapy. This paper reviews the structure of SETD7, its role in tumor genesis and development, and the current research progress of relevant targeted drugs to explore its regulatory mechanism in tumor genesis and development and the prospect of targeted therapy.
Collapse
Affiliation(s)
- Shangzhen Yang
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xi Wang
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Jun Bai
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Baojun Duan
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Department of Medical Oncology of Baoji Central Hospital, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|
18
|
Wang Y, Zhang Y, Li Z, Wang J. JMJD8 Functions as a Novel AKT1 Lysine Demethylase. Int J Mol Sci 2022; 24:460. [PMID: 36613903 PMCID: PMC9820096 DOI: 10.3390/ijms24010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
JMJD8 is a protein from the JMJD family that only has the JmjC domain. Studies on the function of JMJD8 indicate that JMJD8 is involved in signaling pathways, including AKT/NF-κB, and thus affects cell proliferation and development. Here, we reported the activity of JMJD8 as a non-histone demethylase. We investigated the demethylation of JMJD8 on trimethylated lysine of AKT1 in vivo and in vitro using trimethylated AKT1 short peptide and AKT1 protein, and we tracked the regulation of JMJD8 on AKT1 activity at the cellular level. The results showed that JMJD8, a mini lysine demethylase, altered AKT1 protein function via changing its degree of methylation.
Collapse
Affiliation(s)
- Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zehua Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
19
|
Azagra A, Cobaleda C. NSD2 as a Promising Target in Hematological Disorders. Int J Mol Sci 2022; 23:11075. [PMID: 36232375 PMCID: PMC9569587 DOI: 10.3390/ijms231911075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.
Collapse
Affiliation(s)
| | - César Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CSIC–Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
20
|
D'Amore C, Borgo C, Bosello Travain V, Salvi M. KDM2A and KDM3B as Potential Targets for the Rescue of F508del-CFTR. Int J Mol Sci 2022; 23:ijms23179612. [PMID: 36077010 PMCID: PMC9455907 DOI: 10.3390/ijms23179612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR), an anion-selective plasma membrane channel that mainly regulates chloride transport in a variety of epithelia. More than 2000 mutations, most of which presumed to be disease-relevant, have been identified in the CFTR gene. The single CFTR mutation F508del (deletion of phenylalanine in position 508) is present in about 90% of global CF patients in at least one allele. F508del is responsible for the defective folding and processing of CFTR, failing to traffic to the plasma membrane and undergoing premature degradation via the ubiquitin–proteasome system. CFTR is subjected to different post-translational modifications (PTMs), and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of the disease-associated mutants. Recently, the PTM mapping of CFTR has identified some lysine residues that may undergo methylation or ubiquitination, suggesting a competition between these two PTMs. Our work hypothesis moves from the idea that favors methylation over ubiquitination, e.g., inhibiting demethylation could be a successful strategy for preventing the premature degradation of unstable CFTR mutants. Here, by using a siRNA library against all the human demethylases, we identified the enzymes whose downregulation increases F508del-CFTR stability and channel function. Our results show that KDM2A and KDM3B downregulation increases the stability of F508del-CFTR and boosts the functional rescue of the channel induced by CFTR correctors.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| | | | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| |
Collapse
|
21
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
22
|
Wang Y, Shen Z. Unmasking the mammalian SET domain-containing protein 4. NAR Cancer 2022; 4:zcac021. [PMID: 35854936 PMCID: PMC9277757 DOI: 10.1093/narcan/zcac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
SET domain-containing protein 4 (SETD4) is a member of a unique class of protein lysine methyltransferases. Here, we introduce the basic features of SETD4 and summarize the key findings from recent studies with emphases on its roles in tissue development and tumorigenesis, and its methylation substrates. SETD4 is expressed in stem/progenitor cells. Ablation of Setd4+ cells impedes the repopulation of acinar cells after pancreatic injury. Setd4 deletion in mice promotes the recovery of radiation-induced bone marrow (BM) failure by boosting the function of BM niche, facilitates the generation of endothelial cells and neovascularization of capillary vessels in the heart, enhances the proliferation of BM mesenchymal stem cells and disrupts the TLR4 signaling in BM-derived macrophages. SETD4 expression is also associated with the maintenance of quiescent breast cancer stem cells. While mouse Setd4 knockout delays radiation-induced T-lymphoma formation, elevated SETD4 expression has been observed in some proliferative cancer cells and is associated with a pro-survival potential. Oncogenic fusions of SETD4 have also been identified in cancer, albeit rare. In addition, SETD4 methylates lysine-570 in the C-terminal globular domain of KU70, which enables KU70 translocation to cytoplasm to suppress apoptosis.
Collapse
Affiliation(s)
- Yuan Wang
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School , 195 Little Albany Street , New Brunswick, NJ 08901, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School , 195 Little Albany Street , New Brunswick, NJ 08901, USA
| |
Collapse
|
23
|
Park KS, Xiong Y, Yim H, Velez J, Babault N, Kumar P, Liu J, Jin J. Discovery of the First-in-Class G9a/GLP Covalent Inhibitors. J Med Chem 2022; 65:10506-10522. [PMID: 35763668 DOI: 10.1021/acs.jmedchem.2c00652] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly homologous protein lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in various human diseases. To investigate functions of G9a and GLP in human diseases, we and others reported several noncovalent reversible small-molecule inhibitors of G9a and GLP. Here, we report the discovery of the first-in-class G9a/GLP covalent irreversible inhibitors, 1 and 8 (MS8511), by targeting a cysteine residue at the substrate binding site. We characterized these covalent inhibitors in enzymatic, mass spectrometry based and cellular assays and using X-ray crystallography. Compared to the noncovalent G9a/GLP inhibitor UNC0642, covalent inhibitor 8 displayed improved potency in enzymatic and cellular assays. Interestingly, compound 8 also displayed potential kinetic preference for covalently modifying G9a over GLP. Collectively, compound 8 could be a useful chemical tool for studying the functional roles of G9a and GLP by covalently modifying and inhibiting these methyltransferases.
Collapse
Affiliation(s)
- Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Prashasti Kumar
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
24
|
Wang Y, Liu B, Lu H, Liu J, Romanienko PJ, Montelione GT, Shen Z. SETD4-mediated KU70 methylation suppresses apoptosis. Cell Rep 2022; 39:110794. [PMID: 35545041 PMCID: PMC9201767 DOI: 10.1016/j.celrep.2022.110794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/28/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian KU70 is a pleiotropic protein functioning in DNA repair and cytoplasmic suppression of apoptosis. We report a regulatory mechanism by which KU70’s cytoplasmic function is enabled due to a methylation at K570 of KU70 by SET-domain-containing protein 4 (SETD4). While SETD4 silencing reduces the level of methylated KU70, over-expression of SETD4 enhances methylation of KU70. Mutations of Y272 and Y284 of SETD4 abrogate methylation of KU70. Although SETD4 is predominantly a nuclear protein, the methylated KU70 is enriched in the cytoplasm. SETD4 knockdown enhances staurosporine (STS)-induced apoptosis and cell killing. Over-expression of the wild-type (WT) SETD4, but not the SETD4-Y272/Y284F mutant, suppresses STS-induced apoptosis. The KU70-K570R (mouse Ku70-K568R) mutation dampens the anti-apoptosis activity of KU70. Our study identifies KU70 as a non-histone substrate of SETD4, discovers a post-translational modification of KU70, and uncovers a role for SETD4 and KU70-K570 methylation in the suppression of apoptosis. Wang et al. identify the methylation of mammalian KU70 by SETD4. This post-translational modification is critical for KU70 localization to the cytoplasm and subsequent suppression of apoptosis.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Peter J Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
| | - Zhiyuan Shen
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
25
|
Chopra A, Willmore WG, Biggar KK. Insights into a Cancer-Target Demethylase: Substrate Prediction through Systematic Specificity Analysis for KDM3A. Biomolecules 2022; 12:biom12050641. [PMID: 35625569 PMCID: PMC9139010 DOI: 10.3390/biom12050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Jumonji C (JmjC) lysine demethylases (KDMs) catalyze the removal of methyl (-CH3) groups from modified lysyl residues. Several JmjC KDMs promote cancerous properties and these findings have primarily been in relation to histone demethylation. However, the biological roles of these enzymes are increasingly being shown to also be attributed to non-histone demethylation. Notably, KDM3A has become relevant to tumour progression due to recent findings of this enzyme's role in promoting cancerous phenotypes, such as enhanced glucose consumption and upregulated mechanisms of chemoresistance. To aid in uncovering the mechanism(s) by which KDM3A imparts its oncogenic function(s), this study aimed to unravel KDM3A substrate specificity to predict high-confidence substrates. Firstly, substrate specificity was assessed by monitoring activity towards a peptide permutation library of histone H3 di-methylated at lysine-9 (i.e., H3K9me2). From this, the KDM3A recognition motif was established and used to define a set of high-confidence predictions of demethylation sites from within the KDM3A interactome. Notably, this led to the identification of three in vitro substrates (MLL1, p300, and KDM6B), which are relevant to the field of cancer progression. This preliminary data may be exploited in further tissue culture experiments to decipher the avenues by which KDM3A imparts cancerous phenotypes.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| |
Collapse
|
26
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
27
|
Shams H, Matsunaga A, Ma Q, Mofrad MR, Didonna A. Methylation at a conserved lysine residue modulates tau assembly and cellular functions. Mol Cell Neurosci 2022; 120:103707. [DOI: 10.1016/j.mcn.2022.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
|
28
|
Feng Y, Li X, Wang J, Meng L, Tang X, Huang X, Huang J, Jian C. Up-regulation of SETD3 may contribute to post-stroke depression in rat through negatively regulating VEGF expression. Behav Brain Res 2022; 416:113564. [PMID: 34499935 DOI: 10.1016/j.bbr.2021.113564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Post-stroke depression (PSD) is one of the most familiar complications of stroke, which refers to stroke patients who have varying degrees of depression (lasts for >2 weeks). SET domain-containing 3 (SETD3) is a conserved histone H3 methyltransferase, and the role of SETD3 in some diseases is increasingly being explored. However, the effects of SETD3 in PSD remain unclear. In this study, the PSD rat model was firstly constructed by Endothelin-1 injection combined with chronic unpredictable mild stress, and we discovered that SETD3 expression was up-regulated in PSD rat model. Additionally, SETD3 knockdown relieved the depressive symptom of PSD. Moreover, SETD3 knockdown promoted proliferation and differentiation of neural stem cells (NSCs). Due to the critical role of vascular endothelial growth factor (VEGF) in antidepressant and SETD3 can negatively regulate VEGF, we speculated that SETD3 may regulate PSD progression through VEGF. Our results demonstrated that SETD3 knockdown up-regulated VEGF expression. Furthermore, SETD3 modulated the proliferation and differentiation of NSCs through regulating VEGF expression. In conclusion, our study indicated that up-regulation of SETD3 contributed to PSD progression in rats through negatively regulating VEGF expression. The findings of this work suggest that SETD3 may be a promising target for treating PSD in the future.
Collapse
Affiliation(s)
- Yun Feng
- Department of Neurology, Jinan University, Guangzhou City 510000, China; Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| | - Xuebin Li
- Department of Neurology, Youjiang Medical College for Nationalities, No. 98, Chengxiang Road, Baise City, Guangxi Province 533000, China.
| | - Jie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise City, Guangxi Province 533000, China.
| | - Lanqing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| | - Xionglin Tang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| | - Xiaohua Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| | - Jianmin Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province 533000, China
| |
Collapse
|
29
|
Abstract
Protein degradation is a fundamental feature of cellular life, and malfunction of this process is implicated in human disease. Ubiquitin tagging is the best characterized mechanism of targeting a protein for degradation; however, there are a growing number of distinct mechanisms which have also been identified that carry out this essential function. For example, covalent tagging of proteins with sequestosome-1 targets them for selective autophagy. Degradation signals are not exclusively polypeptides such as ubiquitin, NEDD8, and sequestosome-1. Phosphorylation, acetylation, and methylation are small covalent additions that can also direct protein degradation. The diversity of substrate sequences and overlap with other pleotrophic functions for these smaller signaling moieties has made their characterization more challenging. However, these small signals might be responsible for orchestrating a large portion of the protein degradation activity in the cell. As such, there has been increasing interest in lysine methylation and associated lysine methyltransferases (KMTs), beyond canonical histone protein modification, in mediating protein degradation in a variety of contexts. This review focuses on the current evidence for lysine methylation as a protein degradation signal with a detailed discussion of the class of enzymes responsible for this phenomenon.
Collapse
|
30
|
Désert A, Guitot K, Michaud A, Holoch D, Margueron R, Burlina F, Guianvarc'h D. Characterization of SET-Domain Histone Lysine Methyltransferase Substrates Using a Cofactor S-Adenosyl-L-Methionine Surrogate. Methods Mol Biol 2022; 2529:297-311. [PMID: 35733021 DOI: 10.1007/978-1-0716-2481-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification of histone lysine methyltransferase (HKMT) substrates has recently benefited from chemical-biology-based strategies in which artificial S-adenosyl-L-methionine (SAM) cofactors are engineered to allow substrate labeling using either the wild-type target enzyme or designed mutants. Once labeled, substrates can be selectively functionalized with an affinity tag, using a bioorthogonal ligation reaction, to allow their recovery from cell extracts and subsequent identification. In this chapter, we describe steps on how to proceed to set up such an approach to characterize substrates of specific HKMTs of the SET domain superfamily, from the characterization of the HKMT able to accommodate a SAM surrogate containing a bioorthogonal moiety, to the proteomic analysis conducted on a cell extract. We focus in particular on the controls that are necessary to ensure reliable proteomic data analysis. The example of PR-Set7 on which we have implemented this approach is shown.
Collapse
Affiliation(s)
- Alexandre Désert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Karine Guitot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Orsay, France
| | - Audrey Michaud
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
- INSERM U934/CNRS UMR3215, Paris, France
| | - Daniel Holoch
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
- INSERM U934/CNRS UMR3215, Paris, France
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
- INSERM U934/CNRS UMR3215, Paris, France
| | - Fabienne Burlina
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Orsay, France.
| |
Collapse
|
31
|
Younus S, Vinod Chandra SS, Nair ASS. Docking and dynamic simulation study of Crizotinib and Temozolomide drug with Glioblastoma and NSCLC target to identify better efficacy of the drug. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Crizotinib and Temozolomide are the two major chemotherapy drugs used for the treatment of cancers. Crizotinib is used as a target chemotherapy drug in many cancers. It mainly binds on the ATP binding regions of receptor tyrosine kinases (RTKs) targets and inhibits protein phosphorylation, which has already been reported. Temozolomide drug is known as the alkylating agent. Its mechanism of action is the methylation of DNA and thereby inhibiting DNA replication. However, the Temozolomide drug with protein level interaction of Glioblastoma Multiforme (GBM) and Non-small-cell lung carcinoma (NSCLC) of RTKs targets has not been reported so far. In the proposed work, we investigated the molecular level interaction of the Temozolomide drug in C-MET, C-ROS1, and ALK RTKs targets of GBM and NSCLC using an in silico study. We performed comparative analysis studies in both drugs' docked complexes based on their drug properties and complex energy (CE) to identify the better efficacy of the drug.
Results
From the docking studies,
we could identify that the Temozolomide drug bounded protein complexes showed the least complex energy. The most stable complexes were identified from these docking studies by Molecular Dynamic simulation. In the proposed study, we found that the docked complex attained a stable conformation and least energy via solid hydrogen bond interactions between the amino acid residues and the drug at the binding sites of the proteins. The least energy and the hydrogen bond interaction of Temozolomide drug with the amino acid residues of the protein complexes of C-MET, C-ROS1 and ALK protein with their id name are: 2WGJ is − 11305.0830 (PRO1158, MET1160), 3ZBF is − 11,659.6814 (MET2029, GLU2027), and 2XP2 is − 11,734.7565 (ARG1275, ASP 1160, GLU1167).
Conclusion
Our studies revealed that the Temozolomide drug bounded protein complex showed the least energy when compared to Crizotinib. So it will give better interaction on the binding sites of proteins and thereby provide better inhibition in the treatment of target therapy of GBM and NSCLC.
Collapse
|
32
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
33
|
Searching for methyllysine-binding aromatic cages. Biochem J 2021; 478:3613-3619. [PMID: 34624071 DOI: 10.1042/bcj20210106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Methylation of lysine residues plays crucial roles in a wide variety of cell signaling processes. While the biological importance of recognition of methylated histones by reader domains in the cell nucleus is well established, the processes associated with methylation of non-histone proteins, particularly in the cytoplasm of the cell, are not well understood. Here, we describe a search for potential methyllysine readers using a rapid structural motif-mining algorithm Erebus, the PDB database, and knowledge of the methyllysine binding mechanisms.
Collapse
|
34
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
35
|
Shu X, Li X, Xiang X, Wang Q, Wu Q. METTL21B is a prognostic biomarker and potential therapeutic target in low-grade gliomas. Aging (Albany NY) 2021; 13:20661-20683. [PMID: 34446611 PMCID: PMC8436898 DOI: 10.18632/aging.203454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022]
Abstract
A considerable amount of literature has demonstrated that eukaryotic translation elongation factor 1A (eEF1A) is closely related to tumors. As a newly identified lysine specific methyltransferase targeting eEF1A at Lys-165, too little attention has been paid to the function of METTL21B. To determine the potential significance and prognostic value of METTL21B in low grade glioma (LGG), we analyzed the expression, methylation level and copy number variations (CNV) of METTL21B and its effect on prognosis in patients with LGG by 4 public databases in conjunction with experimental examination of LGG patient samples. As a result, we found that high expression, hypomethylation and gain/amplification of CNV of METTL21B were associated with poor prognosis in LGG. The potential functions of METTL21B in LGG may be involved in cell adhesion, angiogenesis and cell proliferation of tumor by enrichment analysis. In addition, METTL21B may facilitate immune evasion of tumor and affect prognosis by mediating macrophage polarization from M1 to M2 and regulating expression of immune checkpoints. Nevertheless, patients with high METTL21B level are likely to have better response to immune checkpoints blockage therapy. Because of its substrate specificity, METTL21B is expected to be a promising target for the treatment of glioma.
Collapse
Affiliation(s)
- Xin Shu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
36
|
Rathert P. Structure, Activity and Function of the NSD3 Protein Lysine Methyltransferase. Life (Basel) 2021; 11:726. [PMID: 34440470 PMCID: PMC8398374 DOI: 10.3390/life11080726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
NSD3 is one of six H3K36-specific lysine methyltransferases in metazoans, and the methylation of H3K36 is associated with active transcription. NSD3 is a member of the nuclear receptor-binding SET domain (NSD) family of histone methyltransferases together with NSD1 and NSD2, which generate mono- and dimethylated lysine on histone H3. NSD3 is mutated and hyperactive in some human cancers, but the biochemical mechanisms underlying such dysregulation are barely understood. In this review, the current knowledge of NSD3 is systematically reviewed. Finally, the molecular and functional characteristics of NSD3 in different tumor types according to the current research are summarized.
Collapse
Affiliation(s)
- Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
37
|
Abstract
The genetic information of human cells is stored in the context of chromatin, which is subjected to DNA methylation and various histone modifications. Such a 'language' of chromatin modification constitutes a fundamental means of gene and (epi)genome regulation, underlying a myriad of cellular and developmental processes. In recent years, mounting evidence has demonstrated that miswriting, misreading or mis-erasing of the modification language embedded in chromatin represents a common, sometimes early and pivotal, event across a wide range of human cancers, contributing to oncogenesis through the induction of epigenetic, transcriptomic and phenotypic alterations. It is increasingly clear that cancer-related metabolic perturbations and oncohistone mutations also directly impact chromatin modification, thereby promoting cancerous transformation. Phase separation-based deregulation of chromatin modulators and chromatin structure is also emerging to be an important underpinning of tumorigenesis. Understanding the various molecular pathways that underscore a misregulated chromatin language in cancer, together with discovery and development of more effective drugs to target these chromatin-related vulnerabilities, will enhance treatment of human malignancies.
Collapse
Affiliation(s)
- Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Cheeseman K, Jannot G, Lourenço N, Villares M, Berthelet J, Calegari-Silva T, Hamroune J, Letourneur F, Rodrigues-Lima F, Weitzman JB. Dynamic methylation of histone H3K18 in differentiating Theileria parasites. Nat Commun 2021; 12:3221. [PMID: 34050145 PMCID: PMC8163883 DOI: 10.1038/s41467-021-23477-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.
Collapse
Affiliation(s)
- Kevin Cheeseman
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Guillaume Jannot
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Nelly Lourenço
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Marie Villares
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Jérémy Berthelet
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.,Université de Paris, Functional and Adaptive Biology, CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7. Cell Death Dis 2021; 12:439. [PMID: 33935284 PMCID: PMC8089105 DOI: 10.1038/s41419-021-03720-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The protein methyltransferase SET and MYND domain-containing protein 2 (SMYD2) is a transcriptional regulator that methylates histones and nonhistone proteins. As an oncogene, SMYD2 has been investigated in numerous types of cancer. However, its involvement in lung cancer remains elusive. The prognostic value of SMYD2 expression in lung adenocarcinoma (LUAD) was determined through bioinformatics analysis, reverse-transcription polymerase chain reaction, western blotting, and immunohistochemistry. The effect of SMYD2 on LUAD cell proliferation and metastasis was explored in vivo and in vitro, and the underlying mechanisms were investigated via RNA-seq, and chromatin immunoprecipitation-quantitative PCR. SMYD2 expression was significantly upregulated in LUAD cell lines and tissues. High SMYD2 expression was associated with shorter overall and disease-free survival in LUAD patients. Inhibition of SMYD2 with SMYD2 knockdown or AZ505 dramatically inhibited the proliferation, migration, and invasion ability of GLC-82 and SPC-A1 cells and remarkably reduced tumor growth in mice. Mechanically, SMYD2 may activate the transcription of ribosomal small subunit protein 7 (RPS7) by binding to its promoter. Following overexpression of SMYD2, the proliferation, migration, and invasion of cells increased, which was partially reversed by RPS7. Thus, SMYD2 might modulate tumorigenesis and metastasis mediated by RPS7 LUAD. SMYD2 might be a prognostic biomarker and therapeutic target in LUAD.
Collapse
|
40
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
41
|
Chopra A, Adhikary H, Willmore WG, Biggar KK. Insights into The Function and Regulation of Jumonji C Lysine Demethylases as Hypoxic Responsive Enzymes. Curr Protein Pept Sci 2021; 21:642-654. [PMID: 31889485 DOI: 10.2174/1389203721666191231104225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
Cellular responses to hypoxia (low oxygen) are governed by oxygen sensitive signaling pathways. Such pathways, in part, are controlled by enzymes with oxygen-dependent catalytic activity, of which the role of prolyl 4-hydroxylases has been widely reviewed. These enzymes inhibit hypoxic response by inducing the oxygen-dependent degradation of hypoxia-inducible factor 1α, the master regulator of the transcriptional hypoxic response. Jumonji C domain-containing lysine demethylases are similar enzymes which share the same oxygen-dependent catalytic mechanism as prolyl 4- hydroxylases. Traditionally, the role of lysine demethylases has been studied in relation to demethylation activity against histone substrates, however, within the past decade an increasing number of nonhistone protein targets have been revealed, some of which have a key role in survival in the hypoxic tumor microenvironment. Within this review, we highlight the involvement of methyllysine in the hypoxic response with a focus on the HIF signaling pathway, the regulation of demethylase activity by oxygen, and provide insights into notable areas of future hypoxic demethylase research.
Collapse
Affiliation(s)
- Anand Chopra
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Hemanta Adhikary
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - William G Willmore
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
42
|
Greulich F, Wierer M, Mechtidou A, Gonzalez-Garcia O, Uhlenhaut NH. The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers. Cell Rep 2021; 34:108742. [PMID: 33567280 PMCID: PMC7873837 DOI: 10.1016/j.celrep.2021.108742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) are effective anti-inflammatory drugs; yet, their mechanisms of action are poorly understood. GCs bind to the glucocorticoid receptor (GR), a ligand-gated transcription factor controlling gene expression in numerous cell types. Here, we characterize GR’s protein interactome and find the SETD1A (SET domain containing 1A)/COMPASS (complex of proteins associated with Set1) histone H3 lysine 4 (H3K4) methyltransferase complex highly enriched in activated mouse macrophages. We show that SETD1A/COMPASS is recruited by GR to specific cis-regulatory elements, coinciding with H3K4 methylation dynamics at subsets of sites, upon treatment with lipopolysaccharide (LPS) and GCs. By chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq, we identify subsets of GR target loci that display SETD1A occupancy, H3K4 mono-, di-, or tri-methylation patterns, and transcriptional changes. However, our data on methylation status and COMPASS recruitment suggest that SETD1A has additional transcriptional functions. Setd1a loss-of-function studies reveal that SETD1A/COMPASS is required for GR-controlled transcription of subsets of macrophage target genes. We demonstrate that the SETD1A/COMPASS complex cooperates with GR to mediate anti-inflammatory effects. GR’s transcriptional complex in macrophages includes COMPASS proteins GR ligand changes SETD1A chromatin occupancy in activated macrophages Subsets of GR target sites show COMPASS binding and H3K4 methylation dynamics SETD1A is required for some of GR’s anti-inflammatory actions
Collapse
Affiliation(s)
- Franziska Greulich
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany; Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL - Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Aikaterini Mechtidou
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - Omar Gonzalez-Garcia
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), 85764 Neuherberg (Munich), Germany; Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL - Institute for Food & Health, Technische Universitaet Muenchen (TUM), 85354 Freising, Germany; Metabolic Biochemistry and Genetics, Gene Center, Ludwig-Maximilians-Universitaet LMU, 81377 Munich, Germany.
| |
Collapse
|
43
|
Wang K, Huang W, Chen R, Lin P, Zhang T, Ni YF, Li H, Wu J, Sun XX, Geng JJ, Zhu YM, Nan G, Zhang W, Chen X, Zhu P, Bian H, Chen ZN. Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export. Cell Metab 2021; 33:160-173.e6. [PMID: 33406400 DOI: 10.1016/j.cmet.2020.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology and Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
44
|
Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:681356. [PMID: 34046015 PMCID: PMC8147868 DOI: 10.3389/fendo.2021.681356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance (IR) is largely recognized as a unifying feature that underlies metabolic dysfunction. Both lifestyle and genetic factors contribute to IR. Work from recent years has demonstrated that the epigenome may constitute an interface where different signals may converge to promote IR gene expression programs. Here, we review the current knowledge of the role of epigenetics in hepatic IR, focusing on the roles of DNA methylation and histone post-translational modifications. We discuss the broad epigenetic changes observed in the insulin resistant liver and its associated pathophysiological states and leverage on the wealth of 'omics' studies performed to discuss efforts in pinpointing specific loci that are disrupted by these changes. We envision that future studies, with increased genomic resolution and larger cohorts, will further the identification of biomarkers of early onset hepatic IR and assist the development of targeted interventions. Furthermore, there is growing evidence to suggest that persistent epigenetic marks may be acquired over prolonged exposure to disease or deleterious exposures, highlighting the need for preventative medicine and long-term lifestyle adjustments to avoid irreversible or long-term alterations in gene expression.
Collapse
Affiliation(s)
| | | | - Inês Cebola
- *Correspondence: Hannah Maude, ; Inês Cebola,
| |
Collapse
|
45
|
Cell geometry and the cytoskeleton impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase. Sci Rep 2020; 10:20598. [PMID: 33244033 PMCID: PMC7691988 DOI: 10.1038/s41598-020-75833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.
Collapse
|
46
|
Lin X, Yang M, Liu X, Cheng Z, Ge F. Characterization of Lysine Monomethylome and Methyltransferase in Model Cyanobacterium Synechocystis sp. PCC 6803. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:289-304. [PMID: 33130100 PMCID: PMC7801250 DOI: 10.1016/j.gpb.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/03/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022]
Abstract
Protein lysine methylation is a prevalent post-translational modification (PTM) and plays critical roles in all domains of life. However, its extent and function in photosynthetic organisms are still largely unknown. Cyanobacteria are a large group of prokaryotes that carry out oxygenic photosynthesis and are applied extensively in studies of photosynthetic mechanisms and environmental adaptation. Here we integrated propionylation of monomethylated proteins, enrichment of the modified peptides, and mass spectrometry (MS) analysis to identify monomethylated proteins in Synechocystis sp. PCC 6803 (Synechocystis). Overall, we identified 376 monomethylation sites in 270 proteins, with numerous monomethylated proteins participating in photosynthesis and carbon metabolism. We subsequently demonstrated that CpcM, a previously identified asparagine methyltransferase in Synechocystis, could catalyze lysine monomethylation of the potential aspartate aminotransferase Sll0480 both in vivo and in vitro and regulate the enzyme activity of Sll0480. The loss of CpcM led to decreases in the maximum quantum yield in primary photosystem II (PSII) and the efficiency of energy transfer during the photosynthetic reaction in Synechocystis. We report the first lysine monomethylome in a photosynthetic organism and present a critical database for functional analyses of monomethylation in cyanobacteria. The large number of monomethylated proteins and the identification of CpcM as the lysine methyltransferase in cyanobacteria suggest that reversible methylation may influence the metabolic process and photosynthesis in both cyanobacteria and plants.
Collapse
Affiliation(s)
- Xiaohuang Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
47
|
Chopra A, Cho WC, Willmore WG, Biggar KK. Hypoxia-Inducible Lysine Methyltransferases: G9a and GLP Hypoxic Regulation, Non-histone Substrate Modification, and Pathological Relevance. Front Genet 2020; 11:579636. [PMID: 33088284 PMCID: PMC7495024 DOI: 10.3389/fgene.2020.579636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Oxygen sensing is inherent among most animal lifeforms and is critical for organism survival. Oxygen sensing mechanisms collectively trigger cellular and physiological responses that enable adaption to a reduction in ideal oxygen levels. The major mechanism by which oxygen-responsive changes in the transcriptome occur are mediated through the hypoxia-inducible factor (HIF) pathway. Upon reduced oxygen conditions, HIF activates hypoxia-responsive gene expression programs. However, under normal oxygen conditions, the activity of HIF is regularly suppressed by cellular oxygen sensors; prolyl-4 and asparaginyl hydroxylases. Recently, these oxygen sensors have also been found to suppress the function of two lysine methyltransferases, G9a and G9a-like protein (GLP). In this manner, the methyltransferase activity of G9a and GLP are hypoxia-inducible and thus present a new avenue of low-oxygen signaling. Furthermore, G9a and GLP elicit lysine methylation on a wide variety of non-histone proteins, many of which are known to be regulated by hypoxia. In this article we aim to review the effects of oxygen on G9a and GLP function, non-histone methylation events inflicted by these methyltransferases, and the clinical relevance of these enzymes in cancer.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - William G Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
48
|
Zoabi M, Zhang L, Li TM, Elias JE, Carlson SM, Gozani O. Methyltransferase-like 21C (METTL21C) methylates alanine tRNA synthetase at Lys-943 in muscle tissue. J Biol Chem 2020; 295:11822-11832. [PMID: 32611769 DOI: 10.1074/jbc.ra120.014505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/26/2020] [Indexed: 12/24/2022] Open
Abstract
Protein-lysine methylation is a common posttranslational modification (PTM) throughout the human proteome that plays important roles in diverse biological processes. In humans, there are >100 known and candidate protein lysine methyltransferases (PKMTs), many of which are linked to human diseases. Methyltransferase-like protein 21C (METTL21C) is a PKMT implicated in muscle biology that has been reported to methylate valosin-containing protein/p97 (VCP) and heat shock 70-kDa protein 8 (HSPA8). However, a clear in vitro methyltransferase activity for METTL21C remains yet to be demonstrated, and whether it is an active enzyme that directly methylates substrate(s) in vivo is unclear. Here, we used an unbiased biochemistry-based screening assay coupled to MS, which identified alanine tRNA synthetase 1 (AARS1) as a direct substrate of METTL21C. We found that METTL21C catalyzes methylation of Lys-943 of AARS1 (AARS1-K943me) both in vitro and in vivo In vitro METTL21C-mediated AARS1 methylation was independent of ATP or tRNA molecules. Unlike for AARS1, and in conflict with previous reports, we did not detect METTL21C methylation of VCP and HSPA8. AARS1-K943 methylation in HEK293T cells depends upon METTL21C levels. Finally, METTL2C was almost exclusively expressed in muscle tissue, and, accordingly, we detected METTL21C-catalyzed methylation of AARS1 in mouse skeletal muscle tissue. These results reveal that AARS1 is a bona fide in vitro substrate of METTL21C and suggest a role for the METTL21C-AARS1 axis in the regulation of protein synthesis in muscle tissue. Moreover, our study describes a straightforward protocol for elucidating the physiological substrates of poorly characterized or uncharacterized PKMTs.
Collapse
Affiliation(s)
- Muhammad Zoabi
- Department of Biology, Stanford University, Stanford, California, USA
| | - Lichao Zhang
- Chan Zuckerberg Biohub, Stanford University, Stanford, California, USA
| | - Tie-Mei Li
- Department of Biology, Stanford University, Stanford, California, USA
| | - Josh E Elias
- Chan Zuckerberg Biohub, Stanford University, Stanford, California, USA
| | - Scott M Carlson
- Department of Biology, Stanford University, Stanford, California, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
49
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
50
|
Dai S, Holt MV, Horton JR, Woodcock CB, Patel A, Zhang X, Young NL, Wilkinson AW, Cheng X. Characterization of SETD3 methyltransferase-mediated protein methionine methylation. J Biol Chem 2020; 295:10901-10910. [PMID: 32503840 DOI: 10.1074/jbc.ra120.014072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310 Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.
Collapse
Affiliation(s)
- Shaobo Dai
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Matthew V Holt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, California, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|