1
|
Wang X, Qu Y, Li Z, Xia Q. Histone crotonylation in tumors (Review). Mol Clin Oncol 2025; 22:39. [PMID: 40160299 PMCID: PMC11948463 DOI: 10.3892/mco.2025.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Lysine crotonylation (Kcr) refers to a type of modification in which crotonyl groups are transferred to lysine residues by histone crotonyltransferase (HCT) using crotonyl-coenzyme A (CoA) as a substrate. Kcr is distributed in core histones and in some nonhistone proteins. Histone crotonylation is a newly discovered epigenetic modification with a significant ability to regulate gene expression. Crotonylation occurs on the ε-amino group of lysine residues and results in a modification of the histone charge. Similar to acetylation, the substrate for crotonylation is a donor molecule, crotonyl-CoA, which is linked to the sulfhydryl group of CoA by a thioester bond. Crotonylation is involved in regulating a wide range of biological processes and diseases. With advances in detection technologies, the impact of histone crotonylation on tumors has been revealed. The present review examines the recent discoveries of histone crotonylation, its function in tumors and its regulatory mechanism, which will aid in elucidating the mechanisms of malignant tumor development and provide a theoretical foundation for the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252004, P.R. China
| | - Yu Qu
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, P.R. China
- Department of Pediatric Surgery, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
2
|
Carlos JAEG, Tavares MT, Lima K, de Almeida LC, de Barros Waitman K, Costa-Lotufo LV, Parise-Filho R, Machado-Neto JA. Enhancing venetoclax efficacy in leukemia through association with HDAC inhibitors. Cell Death Discov 2025; 11:147. [PMID: 40188101 DOI: 10.1038/s41420-025-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Epigenetic modifications significantly influence gene expression and play crucial roles in various biological processes, including carcinogenesis. This study investigates the effects of novel purine-benzohydroxamate compounds, particularly 4 f, as hybrid kinase/histone deacetylase (HDAC) inhibitors in hematological malignancies, focusing on acute myeloid leukemia (AML). Our results demonstrate that these compounds selectively reduce cell viability in blood cancer cells, with inhibitory concentration values indicating higher potency against neoplastic cells compared to normal leukocytes. Mechanistically, 4 f induces apoptosis and cell cycle arrest, promoting differentiation in leukemia cells, while effectively inhibiting HDAC activity. Furthermore, 4 f enhances the therapeutic efficacy of venetoclax, a BCL2 inhibitor, in AML models sensitive and resistant to this drug. The combination treatment significantly increases apoptosis and reduces cell viability, suggesting a synergistic effect that may overcome drug resistance. This study provides valuable insights into the potential of HDAC inhibitors, particularly 4 f, as a promising therapeutic strategy for treating resistant hematological malignancies. Our findings underscore the importance of further exploring hybrid kinase/HDAC inhibitors in combination therapies to improve outcomes in patients with acute leukemias and other hematological malignancies.
Collapse
Affiliation(s)
| | - Mauricio Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Zrimšek M, Draganić K, Malzer A, Doblmayr V, Mišura K, de Freitas E Silva R, Matthews JD, Iannelli F, Wohlhaupter S, Pérez Malla CU, Fischer H, Schachner H, Schiefer AI, Sheibani-Tezerji R, Chiarle R, Turner SD, Ellmeier W, Seiser C, Egger G. HDAC1 acts as a tumor suppressor in ALK-positive anaplastic large cell lymphoma: implications for HDAC inhibitor therapy. Leukemia 2025:10.1038/s41375-025-02584-9. [PMID: 40175628 DOI: 10.1038/s41375-025-02584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Histone deacetylases (HDACs) are frequently deregulated in cancer, and several HDAC inhibitors (HDACi) have gained approval for treating peripheral T cell lymphomas. Here, we investigated the effects of pharmacological or genetic HDAC inhibition on NPM::ALK positive anaplastic large cell lymphoma (ALCL) development to assess the potential use of HDACi for the treatment of this disease. Short-term systemic pharmacological inhibition of HDACs using the HDACi Entinostat in a premalignant ALCL mouse model postponed or even abolished lymphoma development, despite high expression of the NPM::ALK fusion oncogene. To further disentangle the effects of systemic HDAC inhibition from thymocyte intrinsic effects, conditional genetic deletions of HDAC1 and HDAC2 enzymes were employed. In sharp contrast, T cell-specific deletion of Hdac1 or Hdac2 in the ALCL mouse model significantly accelerated NPM::ALK-driven lymphomagenesis, with Hdac1 loss having a more pronounced effect. Integration of gene expression and chromatin accessibility data revealed that Hdac1 deletion selectively perturbed cell type-specific transcriptional programs, crucial for T cell differentiation and signaling. Moreover, multiple oncogenic signaling pathways, including PDGFRB signaling, were highly upregulated. Our findings underscore the tumor-suppressive function of HDAC1 and HDAC2 in T cells during ALCL development. Nevertheless, systemic pharmacological inhibition of HDACs could still potentially improve current therapeutic outcomes.
Collapse
Affiliation(s)
- Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Malzer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena Doblmayr
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katarina Mišura
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rafael de Freitas E Silva
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Carlos Uziel Pérez Malla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Raheleh Sheibani-Tezerji
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Roberto Chiarle
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzanne Dawn Turner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
4
|
Garnique ADMB, Carlos JAEG, Parducci NS, Tavares MT, Waitman KDB, Lima K, Costa-Lotufo LV, Parise-Filho R, Machado-Neto JA. Hybrid histone deacetylase-kinase inhibitor potentiates venetoclax-induced cell death in chronic lymphocytic leukemia. Hematol Transfus Cell Ther 2025; 47:103757. [PMID: 40179514 DOI: 10.1016/j.htct.2025.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
| | | | - Natalia Sudan Parducci
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mauricio Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Karoline de Barros Waitman
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
He J, He Y, Qian Y, Du S, Sun R, Liu Y, Yu J, Ding Y, Zhou S, Jiang L, Wang S. Design, synthesis, and biological evaluation of novel artemisinin-based HDAC inhibitors with antitumor and antimalarial activities. Bioorg Chem 2025; 157:108312. [PMID: 40022850 DOI: 10.1016/j.bioorg.2025.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In addition to the clinical applications as antimalarial agents, artemisinin and its derivatives have demonstrated significant potential in antitumor drug discovery. To enhance antitumor activity, a novel series of artemisinin-containing histone deacetylase (HDAC) inhibitors was designed using a hybrid strategy that fused the artemisinin moiety with HDAC inhibitory functionality. A triazole ring was incorporated into the linker region to improve water solubility. Among these derivatives, compound Hj-9 exhibited broad spectrum and especially potent antitumor activity against acute myelogenous leukemia cells MV4-11 (IC50 = 0.38 μM). Mechanism studies revealed that Hj-9 effectively arrests the cancer cell cycle at the G0/G1 phase and exhibits significant antiangiogenic activity. Further investigation demonstrated that Hj-9 induces cell autophagy, apoptosis, and mitochondrial membrane potential changes. Enzyme inhibitory activities against HDAC isoforms indicated that Hj-9 broadly inhibits multiple HDAC subtypes, especially showing particularly good inhibition of HDAC6. Furthermore, the antimalarial evaluation revealed derivatives Hj-1, Hj-2 and Hj-9 showed good antimalarial activity.
Collapse
Affiliation(s)
- Jin He
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China; School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Shuaibo Du
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Ruikang Sun
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yujiao Liu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Jiping Yu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siyuan Zhou
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Shengzheng Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
6
|
Li Z, Zhu T, Wu Y, Yu Y, Zang Y, Yu L, Zhang Z. Functions and mechanisms of non-histone post-translational modifications in cancer progression. Cell Death Discov 2025; 11:125. [PMID: 40164592 PMCID: PMC11958777 DOI: 10.1038/s41420-025-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Protein post-translational modifications (PTMs) refer to covalent and enzymatic alterations to folded or nascent proteins during or after protein biosynthesis to alter the properties and functions of proteins. PTMs are modified in a variety of types and affect almost all aspects of cell biology. PTMs have been reported to be involved in cancer progression by influencing multiple signaling pathways. The mechanism of action of histone PTMs in cancer has been extensively studied. Notably, evidence is mounting that PTMs of non-histone proteins also play a vital role in cancer progression. In this review, we provide a systematic description of main non-histone PTMs associated with cancer progression, including acetylation, lactylation, methylation, ubiquitination, phosphorylation, and SUMOylation, based on recent studies.
Collapse
Affiliation(s)
- Zongyang Li
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Tao Zhu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yushu Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Yongbo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yunjiang Zang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Lebo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Zhilei Zhang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China.
| |
Collapse
|
7
|
Yuan X, Rosen JM. Histone acetylation modulators in breast cancer. Breast Cancer Res 2025; 27:49. [PMID: 40165290 PMCID: PMC11959873 DOI: 10.1186/s13058-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
8
|
Jia Y, Li J, Mei W, Zhang H, Wang Z, Xie X, Gao C, Xu X, Li F. Pan-HDAC inhibitor LAQ824 inhibits the progression of pancreatic ductal adenocarcinoma and suppresses immune escape by promoting antigen presentation. Int Immunopharmacol 2025; 154:114528. [PMID: 40158429 DOI: 10.1016/j.intimp.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide, with a dismal 5-year survival rate. New drugs targeting pancreatic ductal adenocarcinoma (PDAC), the primary pathological subtype, are urgently needed. LAQ824, a novel pan-histone deacetylase inhibitor (HDACi), has shown anti-tumor activity in various cancers, but its effects on PDAC remain unexplored. This study investigates the therapeutic potential of LAQ824 in PDAC and its role in modulating immune escape mechanisms. Using a subcutaneous tumor model in C57BL/6 J mice, LAQ824's anti-tumor effects were evaluated. In vitro and in vivo experiments-including IHC, flow cytometry, RNA sequencing, and single-cell RNA sequencing-demonstrated that LAQ824 inhibits tumor proliferation, suppresses the epithelial-mesenchymal transition (EMT), and induces apoptosis. LAQ824 also enhances immunogenicity by upregulating MHC-I-mediated antigen presentation, increasing immune cell infiltration, and promoting CD8+ T cell maturation and differentiation. Mechanistically, LAQ824 upregulated MHC-I expression by enhancing chromatin accessibility of related genes, with HDAC1 identified as a key repressor of MHC-I in PDAC cells. In conclusion, we found that LAQ824 has a significant anti-tumor effect in PDAC. LAQ824 not only directly affects general biological behaviors such as proliferation, apoptosis, and EMT, but also increases the immunogenicity of tumor cells by upregulating the expression of MHC-I in PDAC, which promotes the antigen presentation process and enhances anti-tumor immunity. By showcasing LAQ824's potential as a therapeutic target against PDAC, the present study provides novel insights into the link between epigenetic regulation and immunogenicity in PDAC.
Collapse
Affiliation(s)
- Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China; Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Chongchong Gao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Xiaoqing Xu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| |
Collapse
|
9
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Chen YM, Yang WQ, Fan YY, Chen Z, Liu YZ, Zhao BS. Trichostatin A augments cell migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma through BRD4/ c-Myc endoplasmic reticulum-stress pathway. World J Gastroenterol 2025; 31:103449. [PMID: 40124272 PMCID: PMC11924005 DOI: 10.3748/wjg.v31.i11.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The causes of death in patients with advanced esophageal cancer are multifactorial, with tumor metastasis being one of the important factors. Histone acetylation promotes the migration of esophageal squamous cell carcinoma (ESCC) cells, while the histone deacetylase inhibitor (HDACi) shows complex effects on tumor functions. AIM To comprehensively elucidate the impact and molecular mechanisms of trichostatin A (TSA), an HDACi, on cell migration in ESCC through bromodomain-containing protein (BRD4)/cellular myelocytomatosis oncogene (c-Myc)/endoplasmic reticulum (ER)-stress. METHODS The effects of TSA on ESCC cell lines Eca109 and EC9706 migration were evaluated using Transwell assays, with small interfering transfection and pathway-specific inhibitors to elucidate underlying mechanisms. The mRNA levels involved were examined by quantitative real-time polymerase chain reaction. Protein levels of acetylated histones H3 (acH3) and acetylated histones H4, BRD4, c-Myc, as well as markers of ER stress and epithelial-mesenchymal transition (EMT), were analyzed using western blot. Additionally, this method was also used to examine acH3 levels in esophageal cancer tissues and adjacent tissues. Patient outcomes were subsequently tracked to identify prognostic indicators using Log-Rank tests and Cox multivariate analysis. RESULTS TSA promoted the migration of ESCC cells by stimulating the EMT process. TSA-mediated histone acetylation facilitated the recruitment of BRD4, a bromodomain-containing protein, triggering the expression of c-Myc. This cascade induced ER stress and enhanced EMT in ESCC cells. To further elucidate the underlying mechanism, we employed various interventions including the ER stress inhibitor 4-phenylbutyric acid, knockdown of c-Myc and BRD4 expression, and utilization of the BRD4 inhibitor carboxylic acid as well as the inhibitor of TSA 1. Mechanistically, these studies revealed that TSA-mediated histone acetylation facilitated the recruitment of BRD4, which in turn triggered the expression of c-Myc. This sequential activation induced ER stress and subsequently enhanced EMT, thereby promoting the migration of ESCC cells. Additionally, we examined histone acetylation levels in specimens from 43 patients with ESCC, including both tumor tissues and paired adjacent tissues. Statistical analysis unveiled a negative correlation between the level of histone acetylation and the long-term prognosis of patients with ESCC. CONCLUSION TSA promoted ESCC cell migration through the BRD4/c-Myc/ER stress pathway. Moreover, elevated histone acetylation in ESCC tissues correlated with poor ESCC prognosis. These findings enhance our understanding of ESCC migration and HDACi therapy.
Collapse
Affiliation(s)
- Yan-Min Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Ying-Ying Fan
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Zhi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
11
|
Tang D, Mao Z, Chen S, Su M, Lan S, Yan R, Xiang Q, Zhao X, Zhang J, Wang Y. MS275 induces tumor immunosuppression by upregulating PD-L1 and enhances the efficacy of anti-PD-1 immunotherapy in colorectal cancer. Cancer Immunol Immunother 2025; 74:150. [PMID: 40095110 PMCID: PMC11914531 DOI: 10.1007/s00262-025-04004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
The histone deacetylase inhibitor MS275 (Entinostat) demonstrates anti-tumor effects against various types of solid tumors in vitro. But its effectiveness in clinical trials is limited. The underlying reasons remain to be determined. The purpose of this study was to explore how to enhance the anti-tumor effects of MS275 in colorectal cancer (CRC). Our data showed that MS275 inhibited CRC cell proliferation and induced apoptosis, irrespective of gene mutation status. However, MS275 did not effectively suppress tumor growth in the AOM-DSS CRC model as observed in vitro. MS275 decreased CD3+T cell tumor infiltration and created an immunosuppressive microenvironment in the AOM-DSS CRC model. MS275 also decreased the percentage of CD8+T cells while increasing the percentage of CD4+T cells in mesenteric lymph nodes. Reshaping tumor immune response may contribute to the less pronounced anti-tumor effect of MS275 observed in vivo compared to in vitro. Further study showed that the increased PD-L1 expression in CRC both in vivo and in vitro following MS275 treatment. Moreover, the anti-tumor effects of MS275 were enhanced by combining it with an anti-PD-1 antibody. This combination treatment also increased CD8+T cell tumor infiltration in the AOM-DSS CRC model, thereby leading to an anti-tumor immune response. Therefore, the combination of MS275 and anti-PD-1 immunotherapy represents a potential strategy for low PD-L1 expression tumors and should be considered a promising treatment approach for colon cancer.
Collapse
Affiliation(s)
- Deng Tang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sihan Chen
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Mi Su
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siqi Lan
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ruiting Yan
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qi Xiang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xianxian Zhao
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ji Zhang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yufang Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Sheikh A, Curran MA. The influence of the microbiome on radiotherapy and DNA damage responses. Front Oncol 2025; 15:1552750. [PMID: 40165887 PMCID: PMC11955455 DOI: 10.3389/fonc.2025.1552750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers in terms of diagnosis and mortality. Radiotherapy (RT) remains a mainstay of CRC therapy. As RT relies on DNA damage to promote tumor cell death, the activity of cellular DNA damage repair pathways can modulate cancer sensitivity to therapy. The gut microbiome has been shown to influence intestinal health and is independently associated with CRC development, treatment responses and outcomes. The microbiome can also modulate responses to CRC RT through various mechanisms such as community structure, toxins and metabolites. In this review we explore the use of RT in the treatment of CRC and the molecular factors that influence treatment outcomes. We also discuss how the microbiome can promote radiosensitivity versus radioprotection to modulate RT outcomes in CRC. Understanding the molecular interaction between the microbiome and DNA repair pathways can assist with predicting responses to RT. Once described, these connections between the microbiome and RT response can also be used to identify actionable targets for therapeutic development.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Medical Education, Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Quan J, Ma C, Zhao X, Guo Y, Qu W, Zhou X, Ma E, Xu Y. Discovery of novel selective HDAC6 inhibitors via a scaffold hopping approach for the treatment of idiopathic pulmonary fibrosis (IPF) in vitro and in vivo. Bioorg Chem 2025; 159:108360. [PMID: 40112668 DOI: 10.1016/j.bioorg.2025.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal pulmonary disease. Owing to its complex pathogenesis and lack of effective treatment, patients have a short survival time after diagnosis. Although pirfenidone and nintedanib can mitigate declines in lung function, neither has stopped the progression of IPF nor significantly improved long-term survival in patients. HDAC6 inhibitors have been reported to inhibit TGF-β1-induced collagen expression to protect mice from pulmonary fibrosis, and this pharmacological mechanism has been supported by immunohistochemical studies of HDAC6 overexpression in IPF lung tissue. In this study, a series of novel derivatives were obtained based on the reported active compounds through the ring closure strategy in scaffold hopping theory. Compound W28 was selected from in vitro screening for better HDAC6 selectivity, and it was used for in-depth pharmacokinetic and pharmacodynamic studies. Detailed molecular docking studies, molecular dynamics (MD) simulations and the structure-activity relationship (SAR) discussion will contribute to guiding the design of new molecules. In further studies, the ability of W28 to inhibit the IPF phenotype was confirmed, and the corresponding pharmacological mechanism was also demonstrated. Moreover, the pharmacokinetic characteristics of W28 were also tested to guide pharmacodynamic studies in vivo, and the therapeutic effect of W28 on bleomycin-induced pulmonary fibrosis in mice was found to be satisfactory. The results reported in this paper may provide a reference for promoting the discovery of new selective HDAC6 inhibitors as drug molecules for the treatment of IPF.
Collapse
Affiliation(s)
- Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Xianchen Zhao
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Yuxi Guo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Wenhui Qu
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Xinru Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
| | - Enlong Ma
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China.
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China.
| |
Collapse
|
14
|
Wang Y, Sun L, Xuan W. Genetically Encoded Fluorescent and Bioluminescent Probes for HDAC8. Chembiochem 2025:e202500096. [PMID: 40045791 DOI: 10.1002/cbic.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Protein-based probes constructed via genetically encoding acetyl lysine (AcK) or its close analogs represent an important way to detect protein lysine deacetylases. Existing reported probes exhibit excellent sensitivity to NAD+-dependent sirtuins but lack responsiveness to Zn2+-dependent histone deacetylases (HDACs). Herein, we reformed the probe design by replacing the genetically encoded AcK with trifluoroacetyl lysine (TfAcK) and generated fluorescent and bioluminescent probes that could respond specifically to HDAC8 recombinantly expressed in E. coli and to endogenous HDACs in mammalian cells. We believe these probes would benefit the biological investigation of HDAC8 and promisingly some other HDACs, as well as the discovery of innovative HDAC inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Lin Sun
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Weimin Xuan
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
U S, Basu U, Paira P. Current Context of Designing Phototheranostic Cyclometalated Iridium (III) Complexes to Open a New Avenue in Cancer Therapy. ChemMedChem 2025; 20:e202400649. [PMID: 39495110 DOI: 10.1002/cmdc.202400649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Photo-induced chemotherapy offers the best option for the selective treatment of cancer among all the prevailing modalities. Iridium (III) complexes, flourished with excellent photophysical and photochemical properties, have been considered to be superior for undergoing photo-responsive cancer therapy. Large Stokes shift, long-lived triplet excited state, photostability, and tuneable emission have rendered its excellence as a phototheranostic agent. In particular, the cyclometalated Ir (III) complexes and their respective nanoparticles have made a strong niche in the arena of cancer therapy. In recent years, Ir (III) based complexes have shown promising utilities as both imaging and therapeutic agents as well. Therefore, this review summarises the recent advances in the strategic designing of cyclometalated Ir(III) complexes to augment their phototheranostic applications in precision medicine.
Collapse
Affiliation(s)
- Sreelekha U
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Uttara Basu
- Department of Chemistry, Birla Institute of Technology & Science, Pilani K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
16
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
17
|
Yousefian M, Hashemi M, Eskandarpour V, Zarghi A, Hadizadeh F, Ghodsi R. New indolin-2-ones, possessing sunitinib scaffold as HDAC inhibitors and anti-cancer agents with potential VEGFR inhibition activity; design, synthesis and biological evaluation. Bioorg Chem 2025; 156:108231. [PMID: 39904079 DOI: 10.1016/j.bioorg.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
New series of indolin-2-ones possessing sunitinib scaffold and a hydroxamic acid moiety were designed and synthesized as inhibitors of HDAC, demonstrating significant anti-cancer properties with potential VEGFR inhibition, using sunitinib and vorinostat as the lead compounds. The newly synthesized compounds incorporate the sunitinib framework along with functional groups derived from vorinostat, thus they can be named the rigid analogs of vorinostat. The cytotoxic effects of these compounds were assessed against two cancer cell lines, HCT116 (human colon cancer) and HT29 (human colon adenocarcinoma), as well as NIH (a normal fibroblast cell line). A majority of the compounds displayed notable cytotoxicity towards HT-29 and HCT-116, with IC50 values ranging from 1.78 to 38.54 µM notably, compound 13c exhibited the highest anti-proliferative effect against HT-29, with an IC50 of 1.78 µM, comparable to or exceeding that of the reference drugs, sunitinib and vorinostat. This compound reduced the expression levels of VEGFR-2 and phosphorylated VEGFR-2 (pVEGFR-2) by approximately 80 % and inhibited the HDAC1 enzyme (IC50 = 1.07 µM), indicating its anticancer activity through the targeting of these enzymes. Further cellular mechanism investigations revealed that compound 13c induced substantial apoptosis in HCT-116 cells, with a total apoptotic cell percentage of 41.1 % in treated cells (2.59 µM), compared to negative control (3.68 %)). The CAM assay also indicated that 13c possesses antiangiogenic property similar to that of sunitinib. Additionally, a molecular docking simulation supported the initial design strategy and suggested a common mode of interaction of compound 13c at the binding sites of VEGFR-2 and HDAC1. These findings suggested that 13c could be as a promising lead targeting VEGFR-2 and HDAC1. Therefore, it deserved further investigation for cancer treatment.
Collapse
Affiliation(s)
- Mozhdeh Yousefian
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Hashemi
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Pharmaceutical Biotechnology School of Pharmacy Mashhad University of Medical Sciences Iran
| | - Vahid Eskandarpour
- Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry School of Pharmacy Shaheed Beheshti University of Medical Sciences Tehran Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Razieh Ghodsi
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran; Department of Medicinal Chemistry School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran.
| |
Collapse
|
18
|
Rho H, Hay N. Protein lactylation in cancer: mechanisms and potential therapeutic implications. Exp Mol Med 2025; 57:545-553. [PMID: 40128358 PMCID: PMC11958728 DOI: 10.1038/s12276-025-01410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 03/26/2025] Open
Abstract
Increased glycolysis, which leads to high lactate production, is a common feature of cancer cells. Recent evidence suggests that lactate plays a role in the post-translational modification of histone and nonhistone proteins via lactylation. In contrast to genetic mutations, lactylation in cancer cells is reversible. Thus, reversing lactylation can be exploited as a pharmacological intervention for various cancers. Here we discuss recent advances in histone and nonhistone lactylation in cancer, including L-, D- and S-lactylation, as well as alanyl-tRNA synthetase as a novel lactyltransferase. We also discuss potential approaches for targeting lactylation as a therapeutic opportunity in cancer treatment.
Collapse
Affiliation(s)
- Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Das T, Bhar S, Ghosh D, Kabi B, Kar K, Chandra A. A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors. Bioorg Chem 2025; 156:108169. [PMID: 39862739 DOI: 10.1016/j.bioorg.2025.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more. They were found to increase the efficacy of the approved drugs when used in combination. In this review we presented bioinformatic analysis using available data from the Cancer Genome Atlas and Genotype-Tissue Expression databases, outlined the recent advancements in the application of HA-based HDACi for BC during preclinical investigation and clinical trials, tried to offer the rationale for targeting HDAC in BC with HA-based HDACi, summarised the challenges faced in the successful clinical application of HDACi, and proposed potential strategies to address these challenges, aiming to enhance treatment outcomes in BC. Abbreviations: ABCG2, ATP-binding cassette super-family G member 2; ABC, ATP-binding cassette; ADP, Adenosine diphosphate; APC, Antigen presenting cell; AML, Acute myeloid leukemia; ARH1, Aplysia ras homolog 1; BCRP, Breast cancer resistance protein; BRCA, Breast invasive carcinoma; Bax, B-cell lymphoma associated X; CK5, Cytokeratin 5; CK14, Cytokeratin 14; CK17, Cytokeratin 17; CoRESTMiDAC, Co-repressor for element-1-silencing transcription factor; CRM1, Chromosomal maintenance 1; CTCL, Cutaneous T-cell lymphoma; DNMT, DNA methyltransferase; DFS, Disease-free survival; ER, Oestrogen receptor; EMT, Epithelial-mesenchymal transition; FGFR1, Fibroblast growth factor receptor 1; GEPIA, Gene Expression Profiling Interactive Analysis; GTEx, Genotype tissue expression; HAT, Histone acetylase; HDAC, Histone deacetylase; HDF, Human dermal fibroblast; HER2, Human epidermal growth factor receptor 2; HDLP, Histone deacetylase-like protein; Hsp90, Heat shock protein 90; HSF1, Heat shock factor 1; HeLa, Henrietta Lacks; HER1, Human epidermal growth factor receptor 1; IARC, International Agency for Research on Cancer; IL-10, Interleukin-10; KAP1, KRAB associated protein 1; MDM2, Mouse double minute 2 homolog; MDR, Multidrug resistance; MCF-7, Michigan cancer foundation-7; MEF-2, Myocyte enhancer factor-2MMP- Matrix metalloproteinase; NAD, Nicotinamide adenine dinucleotide; NuRD, Nucleosome remodelling and deacetylation; NF- κ B, Nuclear factor kappa light chain enhancer of activated B cell; NES, Nuclear export signal; NLS, Nuclear localization signal; NCoR, Nuclear receptor corepressor; NCT, National clinical trial; OS, Overall survival; PR, Progesterone receptor; PI3K, Phosphoinositide 3-kinase; PAX3, Paired box gene 3; P-gp, P-glycoprotein; ROS, Reactive oxygen species; SIRT, Sirtuin; SMRT, Silencing mediator for retinoid and thyroid receptor; STAT3, Signal transducer and activator of transcription-3; SAR, Structure-activity relationship; SHP1, Src homology region 2 domain-containing phosphatase 1; SAHA, Suberoylanilide hydroxamic acid; SMEDDS, Self micro emulsifying drug delivery system; TNBC, Triple-negative breast cancer; TSA, Trichostatin A; ZBG, Zinc binding group.
Collapse
Affiliation(s)
- Tanima Das
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sunandita Bhar
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Diya Ghosh
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Bikash Kabi
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Kanisha Kar
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Arpita Chandra
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
20
|
Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation. Biochem Pharmacol 2025; 233:116761. [PMID: 39855429 DOI: 10.1016/j.bcp.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
Collapse
Affiliation(s)
- Kenly Wuputra
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Chen Ku
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Han Yang
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Kung-Kai Kuo
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kyosuke Nagata
- Professor, Insitutte of Medicine, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Superintendant in Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Kazunari K Yokoyama
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
21
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Morales-Herrejón G, García-Vázquez JB, Fernández-Pomares C, Bakalara N, Correa-Basurto J, Mendoza-Figueroa HL. Computationally Guided Design, Synthesis, and Evaluation of Novel Non-Hydroxamic Histone Deacetylase Inhibitors, Based on N-Trifluoroacetamide as a Zinc-Binding Group, Against Breast Cancer. Pharmaceuticals (Basel) 2025; 18:351. [PMID: 40143128 PMCID: PMC11944851 DOI: 10.3390/ph18030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Histone deacetylases (HDACs) are enzymes that deacetylate histone proteins, impacting the transcriptional repression and activation of cancer-associated genes such as P53 and Ras. The overexpression of HDACs in breast cancer (BC) underscores their significance as therapeutic targets for modulating gene expression through epigenetic regulation. Methods: In this study, a novel series of SAHA (suberoylanilide hydroxamic acid) analogs were designed using an in silico ligand-based strategy. These analogs were then synthesized and evaluated for their HDAC-inhibitory capacity as well as their antiproliferative capacity on breast cancer cells. These compounds retained an aliphatic LINKER, mimicking the natural substrate acetyl-lysine, while differing from the hydroxamic fragment present in SAHA. Results: The synthesized compounds exhibited HDAC inhibitory activity, suggesting potential for binding to these pharmacological targets. Compounds 5b, 6a, and 6b were identified as promising candidates in the evaluation on breast cancer cell lines MCF-7 and MDA-MB-231 at 72 h. Specifically, compound 6b, which contains an N-trifluoroacetyl group as a zinc-binding group (ZBG), demonstrated an IC50 of 76.7 µM in the MDA-MB-231 cell line and 45.7 µM in the MCF-7 cell line. In the non-tumorigenic cell line, the compound exhibited an IC50 of 154.6 µM. Conversely, SAHA exhibited an almost negligible safety margin with regard to its cytotoxic activity when compared to breast cancer cells and healthy cells (MCF-10A). This observation underscores the elevated toxicity exhibited by hydroxamic acid-derived molecules. Conclusions: The bioisosteric modification of ZBG by N-trifluoroacetyl in 6a and 6b demonstrated favorable cytotoxic activity, exhibiting a higher safety margin. This study underscores the challenge of identifying novel ZBGs to replace hydroxamic acid in the development of HDAC inhibitors, with the objective of enhancing their physicochemical and toxicological profile for utilization in BC treatment.
Collapse
Affiliation(s)
- Gerardo Morales-Herrejón
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
- Investigadoras e Investigadores por México CONAHCyT-Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Norbert Bakalara
- University Bordeaux, CNRS, Bordeaux INP-ENSTBB, CBMN, UMR 5248, F-33600 Pessac, France;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| |
Collapse
|
23
|
Tran C, Hamze A. Recent Advancements in the Development of HDAC/Tubulin Dual-Targeting Inhibitors. Pharmaceuticals (Basel) 2025; 18:341. [PMID: 40143119 PMCID: PMC11945613 DOI: 10.3390/ph18030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Histone deacetylases (HDACs) have become one of the main targets in cancer therapy due to their involvement in various biological processes, including gene regulation, cell proliferation, and differentiation. Microtubules, as key elements of the cell cytoskeleton, also represent important therapeutic targets in anticancer drugs research. These proteins are involved in diverse cellular functions, especially mitosis, cell signaling, and intracellular trafficking. With the emergence of multi-target therapy during the last decades, the combination of HDAC and tubulin inhibitors has been envisioned as a practical approach for optimizing the therapeutic efficacy of antitumor molecules. HDAC/tubulin dual-targeting inhibitors offer the advantages of the synergistic action of both compounds, along with a significant decrease in their respective toxicities and drug resistance. This review will detail the major recent advancements in the development of HDAC/tubulin dual inhibitors over the last decade and their impact on anticancer drugs discovery.
Collapse
Affiliation(s)
- Christine Tran
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| | - Abdallah Hamze
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
24
|
Suraweera A, O'Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev 2025; 44:37. [PMID: 40011240 PMCID: PMC11865116 DOI: 10.1007/s10555-025-10253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
25
|
Han R, Luo Y, Gao J, Zhou H, Wang Y, Chen J, Zheng G, Ling C. HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization. Vaccines (Basel) 2025; 13:182. [PMID: 40006729 PMCID: PMC11860249 DOI: 10.3390/vaccines13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3's multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types-including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization-are thoroughly examined. These findings underscore HDAC3's capacity to reshape the tumor immune microenvironment, converting immunologically "cold tumors" into "hot tumors" and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Rui Han
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yujun Luo
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jingdong Gao
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou, Suzhou 215009, China
| | - Huiling Zhou
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuqian Wang
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiaojiao Chen
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyin Zheng
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Changquan Ling
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
26
|
Chen IC, Lin HY, Liu ZY, Cheng WJ, Yeh TY, Yang WB, Tran HY, Lai MJ, Wang CH, Kao TY, Hung CY, Huang YL, Liou KC, Hsieh CM, Hsu TI, Liou JP. Repurposing Linezolid in Conjunction with Histone Deacetylase Inhibitor Access in the Realm of Glioblastoma Therapies. J Med Chem 2025; 68:2779-2803. [PMID: 39836457 PMCID: PMC11831592 DOI: 10.1021/acs.jmedchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery. The results indicated that the histone deacetylase modification, referred to as compound 1, demonstrated promising cytotoxic effects in various brain tumor cell lines. Further comprehensive mechanism studies indicated that compound 1 induced acetylation, leading to DNA double-strand breaks, and induced the ubiquitination of RAD51, disrupting the DNA repair process. Furthermore, compound 1 also exhibited dramatic improvement in the orthotopic GBM mouse model, demonstrating its efficacy and satisfying BBB penetration. Therefore, the reported compound 1, provided with an independent therapeutic pathway, satisfying elongation in survival and tumor size reduction, and the ability to penetrate the BBB, was potent to achieve further development.
Collapse
Affiliation(s)
- I-Chung Chen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Taipei
Neuroscience Institute, New Taipei
City 235, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taiwan Brain Disease Foundation, Taipei 100, Taiwan
| | - Zheng-Yang Liu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wei-Jie Cheng
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Tzu-Yi Yeh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Hoang Yen Tran
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 902342, Vietnam
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Chung-Han Wang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Chia-Yang Hung
- Department
of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Ya-Lin Huang
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Ke-Chi Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Chien-Ming Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutics,
School of Pharmacy, University College, London WC1N 1AX, U.K.
| | - Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
27
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
28
|
Sanchez-Martin V, Ruzic D, Tello-Lopez MJ, Ortiz-Morales A, Murciano-Calles J, Soriano M, Nikolic K, Garcia-Salcedo JA. The histone deacetylase inhibitor Scriptaid targets G-quadruplexes. Open Biol 2025; 15:240183. [PMID: 39965659 PMCID: PMC11835489 DOI: 10.1098/rsob.240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/31/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Scriptaid is a chemical compound with anti-tumoural effects due to its role as a histone deacetylase inhibitor. Despite sharing part of the chemical structure with other ligands of G-quadruplexes (G4s), the interaction of Scriptaid with G4s has not been explored before. We synthesized Scriptaid and screened its cytotoxic activity in cellular models of colorectal cancer (CRC). We extensively evaluated its biological activity by cell cycle, immunofluorescence, qRT-PCR and Western blot experiments. To identify the G4 targets of Scriptaid, we conducted a panel of binding assays. Here, we show that Scriptaid induced cytotoxicity, cell cycle arrest and nucleolar stress in CRC cells. Moreover, Scriptaid impaired RNA polymerase I (Pol I) transcription, stabilized G4s and caused DNA damage. Finally, we disclose that these effects were attributable to the binding of Scriptaid to G4s in ribosomal DNA. In conclusion, our work reveals that a primary impact of Scriptaid on human cells is the interaction with G4s.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada18016, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, Granada18014, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada18012, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada18016, Spain
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade11221, Serbia
| | - Maria J. Tello-Lopez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada18016, Spain
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almeria04001, Spain
| | - Andrea Ortiz-Morales
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada18016, Spain
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Unit of Excellence for Chemistry Applied to Biomedicine and the Environment, and Institute of Biotechnology, University of Granada, Granada18071, Spain
| | - Miguel Soriano
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Almeria04001, Spain
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade11221, Serbia
| | - Jose Antonio Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada18016, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, Granada18014, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada18012, Spain
| |
Collapse
|
29
|
Shirbhate E, Singh V, Kore R, Koch B, Veerasamy R, Tiwari AK, Rajak H. Synergistic strategies: histone deacetylase inhibitors and platinum-based drugs in cancer therapy. Expert Rev Anticancer Ther 2025; 25:121-141. [PMID: 39873641 DOI: 10.1080/14737140.2025.2458156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential. AREAS COVERED The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.gov to explore publications on HDAC inhibitors, platinum drugs, and combination cancer therapies, revealing preliminary evidence of innovative treatment strategies involving HDAC inhibitors and platinum chemotherapeutics. Several new platinum (IV) complexes, with HDAC inhibitory moieties and better cytotoxicity profiles than conventional platinum drugs, are also reviewed here. EXPERT OPINION The above combination has great potential in cancer treatment, however managing toxicity, dosage regimens, and patient selection biomarkers are problematic. More selective HDAC inhibitors and innovative delivery techniques are potential areas for future research. An adaptation toward changing cancer therapeutic landscapes, highlights combining HDAC inhibitors with platinum-based medicines serves as a new concept for personalized medicine, however, a deeper research is still needed at this time.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Biplab Koch
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | - Amit Kumar Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| |
Collapse
|
30
|
Sanchez GJ, Liu Z, Hunter S, Xu Q, Westfall JTV, Wheeler GE, Toomey C, Taatjes D, Allen M, Dowell RD, Liu X. Histone Deacetylase Inhibitor Largazole Deactivates A Subset of Superenchancers and Causes Mitotic Chromosome Mis-alignment by Suppressing SP1 and BRD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635612. [PMID: 39975221 PMCID: PMC11838406 DOI: 10.1101/2025.01.29.635612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Histone deacetylase inhibitors have been investigated as potential therapeutic agents for cancer and other diseases. HDIs are known to promote histone acetylation, resulting in an open chromatin conformation and generally increased gene expression. In previous work, we reported that a subset of genes, particularly those regulated by superenhancers, can be suppressed by the HDAC inhibitor largazole. To elucidate the molecular mechanisms underlying gene repression by largazole, we conducted transposase-accessible chromatin sequencing, ChIP-seq, and RNA-seq studies. Our findings revealed that while largazole treatment generally enhances chromatin accessibility, it selectively decreases the accessibility of a subset of superenhancer regions. These genomic regions, showing the most significant changes in the presence of largazole, were enriched with transcription factor binding motifs for SP1, BRD4, CTCF, and YY1. ChIP-seq analysis confirmed reduced binding of BRD4 and SP1 at their respective sites on chromatin, particularly at superenhancers regulating genes such as ID1, c-Myc and MCMs. Largazole exerts its effects by inhibiting DNA replication, RNA processing, and cell cycle progression, partially through the suppression of SP1 expression. Depletion of SP1 by shRNA mimics several key biological effects of largazole and increases cellular sensitivity to the drug. Specific to cell cycle regulation, we demonstrated that largazole disrupts G/M transition by interfering with chromosome alignment during metaphase, a phenotype also observed with SP1 depletion. Our results suggest that largazole exerts its growth-inhibitory effect by suppressing BRD4 and SP1 at super-enhancers, leading to cytostatic responses and mitotic dysfunction.
Collapse
|
31
|
Pieniawska M, Rassek K, Skwara B, Żurawek M, Ziółkowska-Suchanek I, Visser L, Lodewijk M, Sokołowska-Wojdyło M, Olszewska B, Nowicki RJ, Stein T, Dańczak-Pazdrowska A, Polańska A, Szymoniak-Lipska M, Rozwadowska N, Iżykowska K. HDAC10 and its implications in Sézary syndrome pathogenesis. Front Cell Dev Biol 2025; 13:1480192. [PMID: 39958888 PMCID: PMC11825767 DOI: 10.3389/fcell.2025.1480192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of rare hematological malignancies characterized by infiltration of malignant T-cells into the skin. Two main types of CTCL constitute of Mycosis Fungoides (MF), a more indolent form of the disease, and Sézary syndrome (SS), the aggressive and leukemic variant with blood involvement. Sézary syndrome presents a significant clinical challenge due to its very aggressive nature, poor prognosis, and treatment resistance, and to date, the disease remains incurable. Histone deacetylase inhibitors have gained attention in CTCL treatment with promising results, but they expose limited specificity and strong side effects. Recent genomic studies underscore the role of epigenetic modifiers in CTCL pathogenesis, prompting an investigation into HDAC10, a member of class IIb HDACs, in SS. HDAC10 was investigated in different cancers, revealing its involvement in cell cycle regulation, apoptosis, and autophagy, but its role in CTCL is unknown. In this study we aimed to determine the role of HDAC10 in SS, focusing on its cellular localization, role in cell growth, and therapeutic potential. We indicated that HDAC10 is overexpressed in SS patients and located mainly in the cytoplasm. Its overexpression leads to an inhibitory effect on apoptosis progression when exposed to the pro-apoptotic compound Camptothecin (CPT). Knockdown of HDAC10 resulted in reduced cell growth and induction of apoptosis and autophagy, highlighting its potential importance in CTCL pathogenesis. Whole transcriptome analysis indicated that HDAC10 is associated with crucial cancer-related pathways, for example, hematopoietic cell lineage, PI3K-Akt signaling pathway, Ras signaling pathway, MAPK signaling pathway or JAK-STAT signaling pathway, which are critical for the survival and proliferation of malignant T cells. Inhibition of HDAC10 with selective HDAC10i increased the sensitivity of Sézary cells to the pro-apoptotic CPT. Our findings demonstrate that HDAC10 plays a key role in the molecular background of Sézary syndrome, highlighting its importance in the cellular mechanisms of the disease.
Collapse
Affiliation(s)
- Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogumiła Skwara
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Monique Lodewijk
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Berenika Olszewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Tomasz Stein
- Department of Dermatology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Adriana Polańska
- Department of Dermatology and Venereology, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
32
|
Hoang Nguyen KH, Le NV, Nguyen PH, Nguyen HHT, Hoang DM, Huynh CD. Human immune system: Exploring diversity across individuals and populations. Heliyon 2025; 11:e41836. [PMID: 39911431 PMCID: PMC11795082 DOI: 10.1016/j.heliyon.2025.e41836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
The immune response is an intricate system that involves the complex connection of cellular and molecular components, each with distinct functional specialisations. It has a distinct capacity to adjust and mould the immune response in accordance with specific stimuli, influenced by both genetic and environmental factors. The presence of genetic diversity, particularly across different ethnic and racial groups, significantly contributes to the impact of incidence of diseases, disease susceptibility, autoimmune disorders, and cancer risks in specific regions and certain populations. Environmental factors, including geography and socioeconomic status, further modulate the variety of the immune system responses. These, in turn, affect the susceptibility to infectious diseases and development of autoimmune disorders. Despite the complexity of the relationship, there remains a gap in understanding the specificity of immune indices across races, immune reference ranges among populations, highlighting the need for deeper understanding of immune diversity for personalized approaches in diagnostics and therapeutics. This review systematically organizes these findings, with the goal of emphasizing the potential of targeted interventions to address health disparities and advance translational research, enabling a more comprehensive strategy. This approach promises significant advancements in identifying specific immunological conditions, focusing on personalized interventions, through both genetic and environmental factors.
Collapse
Affiliation(s)
| | - Nghi Vinh Le
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Hien Hau Thi Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Duy Mai Hoang
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | |
Collapse
|
33
|
Namwan N, Senawong G, Phaosiri C, Kumboonma P, Somsakeesit LO, Samankul A, Leerat C, Senawong T. Synergistic Anti-Cancer Activities of Curcumin Derivative CU17 Combined with Gemcitabine Against A549 Non-Small-Cell Lung Cancer Cells. Pharmaceutics 2025; 17:158. [PMID: 40006525 PMCID: PMC11858881 DOI: 10.3390/pharmaceutics17020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Recently, the curcumin derivative CU17 possessing HDAC inhibitory activity has been shown to synergistically enhance the anti-proliferative activity of Gem against lung cancer cells. Nevertheless, the mechanism(s) underlying the synergistic anti-cancer effect remains to be investigated. This study aimed to investigate the mechanisms that underpin the anti-cancer activity of the combined Gem and CU17 against NSCLC A549 cells both in vitro and in mouse xenograft models. CU17 was successfully synthesized and subsequently investigated for its combination effects with Gem on inductions of cell cycle arrest and apoptosis in A549 cells. The combination treatment substantially decreased cell survival through S phase prolongation and G2/M phase cell cycle arrest via up-regulating the expressions of p21 and p53 proteins. Additionally, CU17 potentiated the apoptotic effect of Gem in A549 cells by increasing the Bax/Bcl-2 ratio. The co-treatment resulted in an up-regulation of pERK1/2 and Ac-H3 expression. An in vivo study demonstrated that CU17 significantly improved the anti-cancer effect of Gem in nude mice utilizing A549 cell xenografts. The hematoxylin and eosin (H&E) staining results indicated that CU17 decreased the toxicity of Gem to the liver, kidneys, and spleen. Overall, CU17 enhanced the effectiveness of Gem while decreasing its toxicity. This compound shows promise as a chemosensitizer for NSCLC treatment with Gem.
Collapse
Affiliation(s)
- Narissara Namwan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Chanokbhorn Phaosiri
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand;
| | - La-or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen 40000, Thailand;
| | - Arunta Samankul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Chadaporn Leerat
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (N.N.); (G.S.); (A.S.); (C.L.)
| |
Collapse
|
34
|
Feller F, Honin I, Miranda M, Weber H, Henze S, Hanl M, Hansen FK. Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders. J Med Chem 2025; 68:1824-1843. [PMID: 39804678 PMCID: PMC11780399 DOI: 10.1021/acs.jmedchem.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders. A set of 12 proteolysis targeting chimeras (PROTACs) was synthesized using a solid-phase supported parallel synthesis approach utilizing a covalent FEM1B ligand as an E3 ligase warhead. The evaluation of the HDAC degradation efficiency revealed substantial HDAC1 degradation by the top-performing degrader FF2049 (1g: Dmax = 85%; DC50 = 257 nM). Unlike our previously published cereblon-recruiting selective HDAC6 degrader, A6, which uses the same HDAC ligand, the FEM1B-based PROTACs achieved selective HDAC1-3 degradation. This unexpected change in the HDAC isoform degradation profile was accompanied by significant enhancement of the antiproliferative properties.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Irina Honin
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Heiko Weber
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svenja Henze
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
35
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
36
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
37
|
Chan SPY, Yeo CPX, Hong BH, Tan EMC, Beh CY, Yeo ELL, Poon DJJ, Chu PL, Soo KC, Chua MLK, Chow EKH. Combinatorial functionomics identifies HDAC6-dependent molecular vulnerability of radioresistant head and neck cancer. Exp Hematol Oncol 2025; 14:5. [PMID: 39800760 PMCID: PMC11727331 DOI: 10.1186/s40164-024-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance. In this study, we utilized a combinatorial functionomics approach, the Quadratic Phenotypic Optimization Platform (QPOP), to rationally design drug pairings that exploit the molecular fingerprint and vulnerability of established in vitro isogenic radioresistant (RR)-HNC models. METHODS A QPOP-specific protocol was applied to RR-HNC models to rank and compare all possible drug combinations from a 12-drug set comprising standard chemotherapy, small molecule inhibitors and targeted therapies specific to HNC. Drug combination efficacy was evaluated by computing combination index scores, and by measuring apoptotic response. Drug targeting was validated by western blot analyses, and the Comet assay was used to quantify DNA damage. Enhanced histone deacetylase inhibitor (HDACi) efficacy in RR models was further examined by in vivo studies, and genetic and chemical inhibition of major Class I/II HDACs. Regulatory roles of HDAC6/SP1 axis were investigated using immunoprecipitation, gel shift and ChIP-qPCR assays. Comparative transcriptomic analyses were employed to determine the prognostic significance of targeting HDAC6. RESULTS We report the therapeutic potential of combining panobinostat (pan-HDAC inhibitor) with AZD7762 (CHK1/2 inhibitor; AstraZeneca) or ionizing radiation (IR) to re-sensitize RR-HNC cells and showed increased DNA damage underlying enhanced synergy. We further refined this RR-specific drug combination and prioritized HDAC6 as a targetable dependency in reversing radioresistance. We provide mechanistic insights into HDAC6-mediated regulation via a crosstalk involving SP1 and oncogenic and repair genes. From two independent patient cohorts, we identified a four-gene signature that may have discriminative ability to predict for radioresistance and amenable to HDAC6 inhibition. CONCLUSION We have uncovered HDAC6 as a promising molecular vulnerability that should be explored to treat RR-HNC.
Collapse
Affiliation(s)
- Sharon Pei Yi Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Celestia Pei Xuan Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Boon Hao Hong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Evelyn Mui Cheng Tan
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Chaw Yee Beh
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Eugenia Li Ling Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dennis Jun Jie Poon
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Pek Lim Chu
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Cancer and Stem Cell Biology Programme, Singapore, Singapore
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Melvin Lee Kiang Chua
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Oncology Academic Programme, Singapore, Singapore.
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
39
|
Trecarten S, Liss MA, Hamilton-Reeves J, DiGiovanni J. Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer. Front Immunol 2025; 15:1448116. [PMID: 39840030 PMCID: PMC11747771 DOI: 10.3389/fimmu.2024.1448116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Purpose of review The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer. The purpose of this review is to explore the cross-talk between obesity, dietary interventions, and microbiome alterations in the development and progression of prostate cancer. Recent findings Many possible mechanisms exist linking obesity and dietary interventions to microbiome alterations and prostate cancer. The gut microbiome produces metabolites that could play a role in prostate cancer oncogenesis, including short-chain fatty acids, cholesterol derivatives, and folic acid. The microbiome also plays a pivotal role in the prostate tumor microenvironment (TME), contributing to inflammation, local tissue hypoxia, and epithelial-mesenchymal transition. A bidirectional relationship exists between obesity and the microbiome, and certain diets can enact changes to the microbiome, its associated metabolites, and prostate cancer outcomes. Summary Cross-talk exists between obesity, dietary interventions, and the role of the microbiome in the development and progression of prostate cancer. To further our understanding, future human studies in prostate cancer should investigate microbiome changes and incorporate an assessment of microbiome-derived metabolites and cellular/immune changes in the TME.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, United States
| | - Michael A. Liss
- Department of Urology, University of San Diego, San Diego, CA, United States
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
40
|
Zhang Z, Su R, Liu J, Chen K, Wu C, Sun P, Sun T. Tubulin/HDAC dual-target inhibitors: Insights from design strategies, SARs, and therapeutic potential. Eur J Med Chem 2025; 281:117022. [PMID: 39500063 DOI: 10.1016/j.ejmech.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Microtubules, one of the cytoskeletons in eukaryotic cells, maintain the proper operation of several cellular functions. Additionally, they are regulated by the acetylation of HDAC6 and SIRT2 which affects microtubule dynamics. Given the fact that tubulin and HDAC inhibitors play a synergistic effect in the treatment of many cancers, the development of tubulin/HDAC dual-target inhibitors is conducive to addressing multiple limitations including drug resistance, dose toxicity, and unpredictable pharmacokinetic properties. At present, tubulin/HDAC dual-target inhibitors have been obtained in three main ways: uncleavable linked pharmacophores, cleavable linked pharmacophores, and modification of single-target drugs. Their therapeutic efficacy has been verified in vivo and in vitro assays. In this article, we reviewed the research progress of tubulin/HDAC dual inhibitors from design strategies, SARs, and biological activities, which may provide help for the discovery of novel tubulin/HDAC dual inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Rui Su
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Junao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Keyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| | - Pinghua Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| |
Collapse
|
41
|
Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: recent advances, challenges, and emerging opportunities. Epigenomics 2025; 17:59-74. [PMID: 39601374 DOI: 10.1080/17501911.2024.2430169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Epigenetic dysregulation is an important nexus in the development and maintenance of human cancers. This review provides an overview of how understanding epigenetic dysregulation in cancers has led to insights for novel cancer therapy development. Over the past two decades, significant strides have been made in drug discovery efforts targeting cancer epigenetic mechanisms, leading to successes in clinical development and approval of cancer epigenetic therapeutics. This article will discuss the current therapeutic rationale guiding the discovery and development of epigenetic therapeutics, key learnings from clinical experiences and new opportunities on the horizon.
Collapse
Affiliation(s)
- Rajita Vatapalli
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Alex P Rossi
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
- Biology, Flare Therapeutics, Cambridge, MA, USA
| | - Ho Man Chan
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Jingwen Zhang
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| |
Collapse
|
42
|
Algaissi A, Tabassum H, Khan E, Dwivedi S, Lohani M, Khamjan NA, Farasani A, Ahmad IZ. HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential. J Biomol Struct Dyn 2025; 43:1-19. [PMID: 37948309 DOI: 10.1080/07391102.2023.2279283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
A wide variety of natural products have been widely used in chemoprevention therapy because they have antioxidant, anti-inflammatory, and anticancer activity. In the present study, we shed light on the 5th day germinated sprouts of N. sativa seeds and evaluated them against HDAC inhibition and antioxidant activity. The extract from the seed and sprout was extracted and characterised by LC-MS/MS, FTIR, and NMR to reveal its chemical composition, especially thymol (THY) and thymoquinone (TQ). Hepatocellular carcinoma (HCC) is a global health concern as it is a major lifestyle disease. Hence, incorporating herbal-based therapeutic compounds into everyday routines has become an attractive alternative for preventing hepatic diseases. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy for managing various carcinomas including HCC. Therefore, the 5th day of N. sativa can be used as a potential anticancer agent by inhibiting HDAC activity, as it is reported to have an important role in the management of oxidative stress. The bioactive compound of N. sativa, i.e. thymoquinone, also showed a good binding affinity with the HDAC protein (3MAX) with a stable interaction in an in silico study as compared to the standard drug (Trichostatin A) and thymol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Heena Tabassum
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Pune, Maharashtra, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sonam Dwivedi
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
43
|
Mestermann K, Garitano-Trojaola A, Hudecek M. Accelerating CAR-T Cell Therapies with Small-Molecule Inhibitors. BioDrugs 2025; 39:33-51. [PMID: 39589646 PMCID: PMC11750903 DOI: 10.1007/s40259-024-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Chimeric antigen receptor T-cell therapies have markedly improved the survival rates of patients with B-cell malignancies. However, their efficacy in other hematological cancers, such as acute myeloid leukemia, and in solid tumors has been limited. Key obstacles include the downregulation or loss of antigen expression on cancer cells, restricted accessibility to target cells, and the poor persistence of these "living drugs" because of the highly immunosuppressive tumor microenvironment. Additionally, manufacturing these immunotherapies presents significant challenges, and patients frequently experience side effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This review emphasizes the potential of small-molecule inhibitors, many of which are already approved for clinical use, to facilitate chimeric antigen receptor T-cell manufacturing, enhance their anti-tumor efficacy, and mitigate their side effects. Although substantial work remains, the robust pre-clinical data and the growing clinical interest suggest significant promise for using cancer signaling pathway inhibitors to enhance and refine chimeric antigen receptor T-cell therapy for both hematological and solid tumors. Exploring these combination strategies could lead to more effective therapies, offering new hope for patients with resistant forms of cancer.
Collapse
Affiliation(s)
- Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany.
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany.
| | - Andoni Garitano-Trojaola
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany
| |
Collapse
|
44
|
Yang L, Sui H, Ding Y, Zhu Y, Song X, Zhang Y, Fan G, Wang J, Cui X, Jiang Y, Zhao S, Hong Y, Mu N, Tian Z, Zhao Y, Li P, Zhao X. Disulfiram impairs USP21-mediated MOF-K257 deubiquitination to inhibit esophageal squamous cell carcinoma progression. Cancer Lett 2024; 611:217419. [PMID: 39725149 DOI: 10.1016/j.canlet.2024.217419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Disulfiram (DSF), primarily applied in the therapy for alcohol addiction, has been demonstrated to possess the promising capability of anti-tumor in many human cancers, including esophageal squamous cell carcinoma (ESCC). To date, almost all studies about DSF in ESCC are focusing on investigating either drug combinations or nanoparticle-based delivery systems. However, the exact molecular mechanisms mediating the response to DSF in ESCC are totally unknown. An increasing number of studies reported that aberrant expression of acetylation-related genes is closely involved in regulating the response of cancer cells to anti-tumor drugs. Here, we defined DSF-sensitive and -resistant cells by measuring the half-maximal inhibitory concentration (IC50) of DSF in four ESCC cell lines, followed by detecting the protein expression of nine dysregulated histone acetyltransferase (HAT) genes in ESCC. Our results demonstrate that MOF is responsible for the sensitivity to DSF in ESCC cells. Consistently, DSF treatment markedly abolished MOF-driving ESCC progression and Wnt/β-Catenin signaling activation. Interestingly, DSF decreased MOF protein expression via the ubiquitin-proteasome system. Further exploration verified the essential role of USP21, among three candidates (USP2, USP21, and USP10), in DSF-mediated MOF protein levels. Mechanistically, USP21 binds to MOF protein and decreases the ubiquitination of its K257 site, while DSF notably impedes MOF-mediated ESCC malignant progression and Wnt/β-Catenin signaling activation by blocking USP21-governed MOF-K257 deubiquitination. In conclusion, our study elucidates the USP21/MOF-K257 axis regulating the response to DSF in ESCC, which provides novel and key evidence for the clinical application of DSF in individualized therapy for ESCC patients.
Collapse
Affiliation(s)
- Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Ding
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangqing Song
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyan Fan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfeng Jiang
- Department of Thoracic Surgery, Yan Tai Yu Huang Ding Hospital, Yantai, China
| | | | | | - Ning Mu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| |
Collapse
|
45
|
Wen K, Zhu W, Luo Z, Wang W. Machine learning-based identification of histone deacetylase-associated prognostic factors and prognostic modeling for low-grade glioma. Discov Oncol 2024; 15:824. [PMID: 39714729 DOI: 10.1007/s12672-024-01713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Low-grade glioma (LGG) is a slow-growing but invasive tumor that affects brain function. Histone deacetylases (HDACs) play a critical role in gene regulation and tumor progression. This study aims to develop a prognostic model based on HDAC-related genes to aid in risk stratification and predict therapeutic responses. METHODS Expression data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify an optimal HDAC-related risk signature from 73 genes using 10 machine learning algorithms. Patients were stratified into high- and low-risk groups based on the median risk score. Prognostic accuracy was evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were performed to explore pathways linked to the gene signature. Immune infiltration and tumor microenvironment characteristics were assessed using Single Sample Gene Set Enrichment Analysis (ssGSEA) and ESTIMATE algorithm. SubMap was applied to predict responsiveness to immune checkpoint inhibitors, and chemotherapeutic sensitivity was analyzed via the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS A prognostic model consisting of four HDAC-related genes-SP140, BAZ1B, SP100, and SIRT1-was identified. This signature displayed strong prognostic accuracy, achieving a C-index of 0.945. Individuals with LGG were systematically divided into high-risk and low-risk cohorts based on the median risk value, enabling more precise risk stratification. The survival prognosis was significantly worse in the high-risk cohort compared to the low-risk group, highlighting distinct survival trajectories. Notably, the two cohorts exhibited marked shifts in immune checkpoint gene transcriptional profiles and immune cell infiltration maps, underscoring fundamental biological differences that contribute to these differing prognoses. CONCLUSION We developed an HDAC-related four-gene prognostic model that correlates with survival, immune landscape, and therapeutic response in LGG patients. This model may guide personalized treatment strategies and improve prognostic accuracy, warranting further validation in clinical settings.
Collapse
Affiliation(s)
- Keshan Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weijie Zhu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Ziyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Mahendran G, Shangaradas AD, Romero-Moreno R, Wickramarachchige Dona N, Sarasija SHGS, Perera S, Silva GN. Unlocking the epigenetic code: new insights into triple-negative breast cancer. Front Oncol 2024; 14:1499950. [PMID: 39744000 PMCID: PMC11688480 DOI: 10.3389/fonc.2024.1499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets. This review delves into the therapeutic potential of epigenetic interventions in TNBC, with a focus on DNA methylation, histone modifications, and miRNA therapeutics. We examine the role of DNA methylation in gene silencing within TNBC and the development of DNA methylation inhibitors designed to reactivate silenced tumor suppressor genes. Histone modifications, through histone deacetylation and acetylation in particular, are critical in regulating gene expression. We explore the efficacy of histone deacetylase inhibitors (HDACi), which have shown promise in reversing aberrant histone deacetylation patterns, thereby restoring normal gene function, and suppressing tumor growth. Furthermore, the review highlights the dual role of miRNAs in TNBC as both oncogenes and tumor suppressors and discusses the therapeutic potential of miRNA mimics and inhibitors in modulating these regulatory molecules to inhibit cancer progression. By integrating these epigenetic therapies, we propose a multifaceted approach to target the underlying epigenetic mechanisms that drive TNBC progression. The synergistic use of DNA methylation inhibitors, HDACi, and the miRNA-based therapies offers a promising avenue for personalized treatment strategies, aiming to enhance the clinical outcome for patients with TNBC.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | - Sumeth Perera
- Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Gayathri N. Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
47
|
Theodoropoulou MA, Mantzourani C, Kokotos G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024; 14:1605. [PMID: 39766311 PMCID: PMC11674560 DOI: 10.3390/biom14121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play an essential role in the onset and progression of cancer. As a consequence, a variety of HDAC inhibitors (HDACis) have been developed as potent anticancer agents, several of which have been approved by the FDA for cancer treatment. However, recent accumulated research results have suggested that HDACs are also involved in several other pathophysiological conditions, such as fibrotic, inflammatory, neurodegenerative, and autoimmune diseases. Very recently, the HDAC inhibitor givinostat has been approved by the FDA for an indication beyond cancer: the treatment of Duchenne muscular dystrophy. In recent years, more and more HDACis have been developed as tools to understand the role that HDACs play in various disorders and as a novel therapeutic approach to fight various diseases other than cancer. In the present perspective article, we discuss the development and study of HDACis as anti-fibrotic and anti-inflammatory agents, covering the period from 2020-2024. We envision that the discovery of selective inhibitors targeting specific HDAC isozymes will allow the elucidation of the role of HDACs in various pathological processes and will lead to the development of promising treatments for such diseases.
Collapse
Affiliation(s)
- Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
48
|
Sadanandan J, Thomas S, Mathew IE, Huang Z, Blackburn SL, Tandon N, Lokhande H, McCrea PD, Bresnick EH, Dash PK, McBride DW, Harmanci A, Ahirwar LK, Jose D, Dienel AC, Zeineddine HA, Hong S, Kumar T P. Key epigenetic and signaling factors in the formation and maintenance of the blood-brain barrier. eLife 2024; 12:RP86978. [PMID: 39670988 PMCID: PMC11643625 DOI: 10.7554/elife.86978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator's histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Iny Elizabeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Zhen Huang
- Departments of Neurology & Neuroscience, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | | | - Pierre D McCrea
- Department of Genetics, TheUniversity of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Arif Harmanci
- UTHealth School of Biomedical InformaticsHoustonUnited States
| | - Lalit K Ahirwar
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Dania Jose
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Ari C Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Peeyush Kumar T
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
49
|
Likasitwatanakul P, Li Z, Doan P, Spisak S, Raghawan AK, Liu Q, Liow P, Lee S, Chen D, Bala P, Sahgal P, Aitymbayev D, Thalappillil JS, Papanastasiou M, Hawkins W, Carr SA, Park H, Cleary JM, Qi J, Sethi NS. Chemical perturbations impacting histone acetylation govern colorectal cancer differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.626451. [PMID: 39713466 PMCID: PMC11661112 DOI: 10.1101/2024.12.06.626451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype. Unbiased profiling of histone posttranslational modifications induced by HDAC1/2 inhibition nominated acetylation of specific histone lysine residues as potential regulators of differentiation. Genome-wide assessment of implicated marks indicated that H3K27ac gains at HDAC1/2-bound regions associated with open chromatin and upregulation of differentiation genes upon HDAC1/2 inhibition. Disrupting H3K27ac by degrading acetyltransferase EP300 rescued HDAC1/2 inhibitor-mediated differentiation of a patient-derived CRC model using single cell RNA-sequencing. Genetic screens revealed that DAPK3 contributes to CRC differentiation induced by HDAC1/2 inhibition. These results highlight the importance of specific chemically targetable histone modifications in governing cancer cell states and epigenetic reprogramming as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Pornlada Likasitwatanakul
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Zhixin Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Paul Doan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akhouri Kishore Raghawan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Qi Liu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Priscilla Liow
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sunwoo Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Jennifer S. Thalappillil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malvina Papanastasiou
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - William Hawkins
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Haeseong Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nilay S. Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
50
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|