1
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
3
|
Batterson PM, McGowan EM, Borowik AK, Kinter MT, Miller BF, Newsom SA, Robinson MM. High-fat diet increases electron transfer flavoprotein synthesis and lipid respiration in skeletal muscle during exercise training in female mice. Physiol Rep 2023; 11:e15840. [PMID: 37857571 PMCID: PMC10587055 DOI: 10.14814/phy2.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from β-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFβ, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFβ (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFβ and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.
Collapse
Affiliation(s)
- Philip M. Batterson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Erin M. McGowan
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VAOklahoma CityOklahomaUSA
| | - Sean A. Newsom
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
4
|
Fernandes MSDS, Fidelis DEDS, Aidar FJ, Badicu G, Greco G, Cataldi S, Santos GCJ, de Souza RF, Ardigò LP. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023; 15:3990. [PMID: 37764774 PMCID: PMC10535924 DOI: 10.3390/nu15183990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND To summarize available evidence in the literature on the impacts of CoQ10 supplementation on metabolic, biochemical, and performance outcomes in athletes. METHODS Six databases, Cochrane Library (33 articles), PubMed (90 articles), Scopus (55 articles), Embase (60 articles), SPORTDiscus (1056 articles), and Science Direct (165 articles), were researched. After applying the eligibility criteria, articles were selected for peer review independently as they were identified by June 2022. The protocol for this systematic review was registered on PROSPERO (CRD42022357750). RESULTS Of the 1409 articles found, 16 were selected for this systematic review. After CoQ10 supplementation, a decrease in oxidative stress markers was observed, followed by higher antioxidant activity. On the other hand, lower levels of liver damage markers (ALT); Aspartate aminotransferase (AST); and Gamma-glutamyl transpeptidase (γGT) were identified. Finally, we found a reduction in fatigue indicators such as Creatine Kinase (CK) and an increase in anaerobic performance. CONCLUSIONS This systematic review concludes that supplementation with orally administered CoQ10 (30-300 mg) was able to potentiate plasma antioxidant activity and anaerobic performance, reducing markers linked to oxidative stress and liver damage in athletes from different modalities aged 17 years old and older.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 50740-600, Pernambuco, Brazil;
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Débora Eduarda da Silvia Fidelis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | | | - Raphael Frabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 5812 Oslo, Norway;
| |
Collapse
|
5
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
6
|
Amorese AJ, Minchew EC, Tarpey MD, Readyoff AT, Williamson NC, Schmidt CA, McMillin SL, Goldberg EJ, Terwilliger ZS, Spangenburg QA, Witczak CA, Brault JJ, Abel ED, McClung JM, Fisher-Wellman KH, Spangenburg EE. Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle. FUNCTION 2023; 4:zqad012. [PMID: 37168496 PMCID: PMC10165545 DOI: 10.1093/function/zqad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/13/2023] Open
Abstract
The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O2). Inadequate O2 bioavailability (ie, hypoxia) is detrimental to muscle function and, in chronic cases, can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O2. Using mouse models of in vivo hindlimb ischemia and ex vivo anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB), while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.
Collapse
Affiliation(s)
- Adam J Amorese
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Everett C Minchew
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Andrew T Readyoff
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas C Williamson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Cameron A Schmidt
- Department of Biology, East Carolina University, Greenville, NC 27834, USA
| | - Shawna L McMillin
- Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA
| | - Emma J Goldberg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Zoe S Terwilliger
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Quincy A Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Indiana Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - E Dale Abel
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
7
|
Effects of Citrulline Supplementation on Different Aerobic Exercise Performance Outcomes: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14173479. [PMID: 36079738 PMCID: PMC9460004 DOI: 10.3390/nu14173479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Supplementation with Citrulline (Cit) has been shown to have a positive impact on aerobic exercise performance and related outcomes such as lactate, oxygen uptake (VO2) kinetics, and the rate of perceived exertion (RPE), probably due to its relationship to endogenous nitric oxide production. However, current research has shown this to be controversial. The main objective of this systematic review and meta-analysis was to analyze and assess the effects of Cit supplementation on aerobic exercise performance and related outcomes, as well as to show the most suitable doses and timing of ingestion. A structured literature search was carried out by the PRISMA® (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and PICOS guidelines in the following databases: Pubmed/Medline, Scopus, and Web of Science (WOS). A total of 10 studies were included in the analysis, all of which exclusively compared the effects of Cit supplementation with those of a placebo group on aerobic performance, lactate, VO2, and the RPE. Those articles that used other supplements and measured other outcomes were excluded. The meta-analysis was carried out using Hedges’ g random effects model and pooled standardized mean differences (SMD). The results showed no positive effects of Cit supplementation on aerobic performance (pooled SMD = 0.15; 95% CI (−0.02 to 0.32); I2, 0%; p = 0.08), the RPE (pooled SMD = −0.03; 95% CI (−0.43 to 0.38); I2, 49%; p = 0.9), VO2 kinetics (pooled SMD = 0.01; 95% CI (−0.16 to 0.17); I2, 0%; p = 0.94), and lactate (pooled SMD = 0.25; 95% CI (−0.10 to 0.59); I2, 0%; p = 0.16). In conclusion, Cit supplementation did not prove to have any benefits for aerobic exercise performance and related outcomes. Where chronic protocols seemed to show a positive tendency, more studies in the field are needed to better understand the effects.
Collapse
|
8
|
Kumar RA, Thome T, Sharaf OM, Ryan TE, Arnaoutakis GJ, Jeng EI, Ferreira LF. Reversible Thiol Oxidation Increases Mitochondrial Electron Transport Complex Enzyme Activity but Not Respiration in Cardiomyocytes from Patients with End-Stage Heart Failure. Cells 2022; 11:cells11152292. [PMID: 35892589 PMCID: PMC9330889 DOI: 10.3390/cells11152292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiomyocyte dysfunction in patients with end-stage heart failure with reduced ejection fraction (HFrEF) stems from mitochondrial dysfunction, which contributes to an energetic crisis. Mitochondrial dysfunction reportedly relates to increased markers of oxidative stress, but the impact of reversible thiol oxidation on myocardial mitochondrial function in patients with HFrEF has not been investigated. In the present study, we assessed mitochondrial function in ventricular biopsies from patients with end-stage HFrEF in the presence and absence of the thiol-reducing agent dithiothreitol (DTT). Isolated mitochondria exposed to DTT had increased enzyme activity of complexes I (p = 0.009) and III (p = 0.018) of the electron transport system, while complexes II (p = 0.630) and IV (p = 0.926) showed no changes. However, increased enzyme activity did not carry over to measurements of mitochondrial respiration in permeabilized bundles. Oxidative phosphorylation conductance (p = 0.439), maximal respiration (p = 0.312), and ADP sensitivity (p = 0.514) were unchanged by 5 mM DTT treatment. These results indicate that mitochondrial function can be modulated through reversible thiol oxidation, but other components of mitochondrial energy transfer are rate limiting in end-stage HFrEF. Optimal therapies to normalize cardiac mitochondrial respiration in patients with end-stage HFrEF may benefit from interventions to reverse thiol oxidation, which limits complex I and III activities.
Collapse
Affiliation(s)
- Ravi A. Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - Omar M. Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
| | - George J. Arnaoutakis
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, FL 32611, USA; (G.J.A.); (E.I.J.)
| | - Eric I. Jeng
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, FL 32611, USA; (G.J.A.); (E.I.J.)
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (R.A.K.); (T.T.); (T.E.R.)
- Department of Physiology, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +1-352-294-1724
| |
Collapse
|
9
|
Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol 2021; 11:740720. [PMID: 34722292 PMCID: PMC8554334 DOI: 10.3389/fonc.2021.740720] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the “energetically fittest” cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
10
|
Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021; 297:101140. [PMID: 34461088 PMCID: PMC8479256 DOI: 10.1016/j.jbc.2021.101140] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA; Departments of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
11
|
Verkerke ARP, Kajimura S. Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Dev Cell 2021; 56:1408-1416. [PMID: 34004150 DOI: 10.1016/j.devcel.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Brown and beige adipocytes, or thermogenic fat, were initially thought to be merely a thermogenic organ. However, emerging evidence suggests its multifaceted roles in the regulation of systemic glucose and lipid homeostasis that go beyond enhancing thermogenesis. One of the important functions of thermogenic fat is as a "metabolic sink" for glucose, fatty acids, and amino acids, which profoundly impacts metabolite clearance and oxidation. Importantly, lipids are not only the predominant fuel source used for thermogenesis but are also essential molecules for development, cellular signaling, and structural components. Here, we review the multifaceted role of lipids in thermogenic adipocytes.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Jacobs RA, Lundby C. Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13625. [PMID: 33570804 PMCID: PMC8047922 DOI: 10.1111/apha.13625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Aim This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high‐resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial‐venous O2 differences and 31P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. Methods Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 μmol/L. Results Standard ex vivo‐derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo‐derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context‐specific in vivo measures, eg data collected during maximal 1‐leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole‐body exercise, e.g. maximal cycling efforts. Conclusion This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo‐derived assessments using permeabilized human muscle. These findings detail how cross‐procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.
Collapse
Affiliation(s)
- Robert A. Jacobs
- Department of Human Physiology & Nutrition University of Colorado Colorado Springs (UCCS) Colorado Springs CO USA
| | - Carsten Lundby
- Innland University of Applied Sciences Lillehammer Norway
| |
Collapse
|
13
|
Murashov AK, Pak ES, Lin C, Boykov IN, Buddo KA, Mar J, Bhat KM, Neufer PD. Preference and detrimental effects of high fat, sugar, and salt diet in wild-caught Drosophila simulans are reversed by flight exercise. FASEB Bioadv 2021; 3:49-64. [PMID: 33490883 PMCID: PMC7805546 DOI: 10.1096/fba.2020-00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
High saturated fat, sugar, and salt contents are a staple of a Western diet (WD), contributing to obesity, metabolic syndrome, and a plethora of other health risks. However, the combinatorial effects of these ingredients have not been fully evaluated. Here, using the wild-caught Drosophila simulans, we show that a diet enriched with saturated fat, sugar, and salt is more detrimental than each ingredient separately, resulting in a significantly decreased lifespan, locomotor activity, sleep, reproductive function, and mitochondrial function. These detrimental effects were more pronounced in female than in male flies. Adding regular flight exercise to flies on the WD markedly negated the adverse effects of a WD. At the molecular level, the WD significantly increased levels of triglycerides and caused mitochondrial dysfunction, while exercise counterbalanced these effects. Interestingly, fruit flies developed a preference for the WD after pre-exposure, which was averted by flight exercise. The results demonstrate that regular aerobic exercise can mitigate adverse dietary effects on fly mitochondrial function, physiology, and feeding behavior. Our data establish Drosophila simulans as a novel model of diet-exercise interaction that bears a strong similarity to the pathophysiology of obesity and eating disorders in humans.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Chien‐Te Lin
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ilya N. Boykov
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Katherine A. Buddo
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Jordan Mar
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Krishna M. Bhat
- Department of Molecular MedicineUniversity of South FloridaTampaFLUSA
| | - Peter Darrell Neufer
- Department of Physiology & East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| |
Collapse
|
14
|
Monitoring and modeling of lymphocytic leukemia cell bioenergetics reveals decreased ATP synthesis during cell division. Nat Commun 2020; 11:4983. [PMID: 33020492 PMCID: PMC7536222 DOI: 10.1038/s41467-020-18769-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The energetic demands of a cell are believed to increase during mitosis, but the rates of ATP synthesis and consumption during mitosis have not been quantified. Here, we monitor mitochondrial membrane potential of single lymphocytic leukemia cells and demonstrate that mitochondria hyperpolarize from the G2/M transition until the metaphase-anaphase transition. This hyperpolarization was dependent on cyclin-dependent kinase 1 (CDK1) activity. By using an electrical circuit model of mitochondria, we quantify mitochondrial ATP synthesis rates in mitosis from the single-cell time-dynamics of mitochondrial membrane potential. We find that mitochondrial ATP synthesis decreases by approximately 50% during early mitosis and increases back to G2 levels during cytokinesis. Consistently, ATP levels and ATP synthesis are lower in mitosis than in G2 in synchronized cell populations. Overall, our results provide insights into mitotic bioenergetics and suggest that cell division is not a highly energy demanding process. ATP drives most cellular processes, although ATP production and consumption levels during mitosis remain unreported. Here, the authors combine metabolic measurements and modeling to quantify ATP levels and synthesis dynamics, revealing that ATP synthesis and consumption are lowered during mitosis.
Collapse
|
15
|
Al Fazazi S, Stajer V, Drid P, Maksimovic N, Milosevic Z, Ostojic S. 24-hour dynamics for serum biomarkers of creatine metabolism after an acute session of exhaustive resistance exercise in active men. Sci Sports 2019. [DOI: 10.1016/j.scispo.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Genders AJ, Martin SD, McGee SL, Bishop DJ. A physiological drop in pH decreases mitochondrial respiration, and HDAC and Akt signaling, in L6 myocytes. Am J Physiol Cell Physiol 2019; 316:C404-C414. [PMID: 30649921 DOI: 10.1152/ajpcell.00214.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exercise stimulates mitochondrial biogenesis and increases mitochondrial respiratory function and content. However, during high-intensity exercise muscle pH can decrease below pH 6.8 with a concomitant increase in lactate concentration. This drop in muscle pH is associated with reduced exercise-induced mitochondrial biogenesis, while increased lactate may act as a signaling molecule to affect mitochondrial biogenesis. Therefore, in this study we wished to determine the impact of altering pH and lactate concentration in L6 myotubes on genes and proteins known to be involved in mitochondrial biogenesis. We also examined mitochondrial respiration in response to these perturbations. Differentiated L6 myotubes were exposed to normal (pH 7.5)-, low (pH 7.0)-, or high (pH 8.0)-pH media with and without 20 mM sodium l-lactate for 1 and 6 h. Low pH and 20 mM sodium l-lactate resulted in decreased Akt (Ser473) and AMPK (T172) phosphorylation at 1 h compared with controls, while at 6 h the nuclear localization of histone deacetylase 5 (HDAC5) was decreased. When the pH was increased both Akt (Ser473) and AMPK (T172) phosphorylation was increased at 1 h. Overall increased lactate decreased the nuclear content of HDAC5 at 6 h. Exposure to both high- and low-pH media decreased basal mitochondrial respiration, ATP turnover, and maximum mitochondrial respiratory capacity. These data indicate that muscle pH affects several metabolic signaling pathways, including those required for mitochondrial function.
Collapse
Affiliation(s)
- Amanda J Genders
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Sheree D Martin
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University , Geelong, Victoria , Australia.,Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup, Western Australia , Australia
| |
Collapse
|