1
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
2
|
Shultz KD, Al Anbari YF, Wright NT. I told you to stop: obscurin's role in epithelial cell migration. Biochem Soc Trans 2024; 52:1947-1956. [PMID: 39051125 DOI: 10.1042/bst20240564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.
Collapse
Affiliation(s)
- Kamrin D Shultz
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Yasmin F Al Anbari
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
3
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2024:nuae108. [PMID: 39181121 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Gupta PK, Orlovskiy S, Arias-Mendoza F, Nelson DS, Nath K. 1H and 31P Magnetic Resonance Spectroscopic Metabolomic Imaging: Assessing Mitogen-Activated Protein Kinase Inhibition in Melanoma. Cells 2024; 13:1220. [PMID: 39056801 PMCID: PMC11274771 DOI: 10.3390/cells13141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40-60% of melanomas. Inhibitors of this pathway's BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, identifying noninvasive biomarkers to predict treatment responses is essential for personalized medicine in melanoma. Using noninvasive 1H magnetic resonance spectroscopy (1H MRS), we previously showed that BRAF inhibition reduces lactate and alanine tumor levels in the early stages of effective therapy and could be considered as metabolic imaging biomarkers for drug response. The present work demonstrates that these metabolic changes observed by 1H MRS and those assessed by 31P MRS are also found in preclinical human melanoma models treated with MEK inhibitors. Apart from 1H and 31P MRS, additional supporting in vitro biochemical analyses are described. Our results indicate significant early metabolic correlations with response levels to MEK inhibition in the melanoma models and are consistent with our previous study of BRAF inhibition. Given these results, our study supports the potential clinical utility of noninvasive MRS to objectively image metabolic biomarkers for the early prediction of melanoma's response to MEK inhibition.
Collapse
Affiliation(s)
- Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| |
Collapse
|
5
|
Liu Y, Jang H, Nussinov R. SHP2-EGFR States in Dephosphorylation Can Inform Selective SHP2 Inhibitors, Dampening RasGAP Action. J Phys Chem B 2024; 128:5175-5187. [PMID: 38747619 DOI: 10.1021/acs.jpcb.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Erban T, Markovic M, Sopko B. Sublethal acetamiprid exposure induces immunity, suppresses pathways linked to juvenile hormone synthesis in queens and affects cycle-related signaling in emerging bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123901. [PMID: 38556147 DOI: 10.1016/j.envpol.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Acetamiprid is the only neonicotinoid registered in the European Union because the risks of neonicotinoids to honey bees and other pollinators are strictly regulated. Herein, we orally exposed honey bee colonies to sublethal concentrations of acetamiprid (20 μg/L) under isolated conditions. After one month of continuous exposure, the emerging bees and queens were collected and analyzed via high-throughput label-free quantitative proteomics using a data-independent acquisition strategy. Six and 34 significantly differentially expressed proteins (DEPs) were identified in the emerging bees and queens, respectively. Mrjp3 was the only DEP found in both sample types/castes, and its opposite regulation illustrated a differential response. The DEPs in the emerging bees (H/ACA RNP, Rap1GAP, Mrjp3, and JHE) suggested that sublethal exposure to acetamiprid affected cell cycle-related signaling, which may affect the life history of workers in the colony. The DEPs with increased levels in queens, such as Mrjps 1-4 and 6-7, hymenoptaecin, and apidaecin 22, indicated an activated immune response. Additionally, the level of farnesyl pyrophosphate synthase (FPPS), which is essential for the mevalonate pathway and juvenile hormone biosynthesis, was significantly decreased in queens. The impaired utilization of juvenile hormone in queens supported the identification of additional DEPs. Furthermore, the proteome changes suggested the existence of increased neonicotinoid detoxification by UDP-glucuronosyltransferase and increased amino acid metabolism. The results suggest that the continuous exposure of bee colonies to acetamiprid at low doses (nanograms per gram in feed) may pose a threat to the colonies. The different exposure routes and durations for the emerging bees and queens in our experiment must be considered, i.e., the emerging bees were exposed as larvae via feeding royal jelly and beebread provided by workers (nurse bees), whereas the queens were fed royal jelly throughout the experiment. The biological consequences of the proteomic changes resulting from sublethal/chronic exposure require future determination.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Martin Markovic
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| |
Collapse
|
7
|
Becker A, Filipp M, Lantz C, Glinton K, Thorp EB. HIF-1α is Required to Differentiate the Neonatal Macrophage Secretome from Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591000. [PMID: 38712137 PMCID: PMC11071477 DOI: 10.1101/2024.04.24.591000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The immune response to stress diverges with age, with neonatal macrophages implicated in tissue regeneration versus tissue scarring and maladaptive inflammation in adults. Integral to the macrophage stress response is the recognition of hypoxia and pathogen-associated molecular patterns (PAMPs), which are often coupled. The age-specific, cell-intrinsic nature of this stress response remains vague. To uncover age-defined divergences in macrophage crosstalk potential after exposure to hypoxia and PAMPs, we interrogated the secreted proteomes of neonatal versus adult macrophages via non-biased mass spectrometry. Through this approach, we newly identified age-specific signatures in the secretomes of neonatal versus adult macrophages in response to hypoxia and the prototypical PAMP, lipopolysaccharide (LPS). Neonatal macrophages polarized to an anti-inflammatory, regenerative phenotype protective against apoptosis and oxidative stress, dependent on hypoxia inducible transcription factor-1α ( HIF-1α). In contrast, adult macrophages adopted a pro-inflammatory, glycolytic phenotypic signature consistent with pathogen killing. Taken together, these data uncover fundamental age and HIF-1α dependent macrophage programs that may be targeted to calibrate the innate immune response during stress and inflammation.
Collapse
|
8
|
Putar D, Čizmar A, Chao X, Šimić M, Šoštar M, Ćutić T, Mijanović L, Smolko A, Tu H, Cosson P, Weber I, Cai H, Filić V. IqgC is a potent regulator of macropinocytosis in the presence of NF1 and its loading to macropinosomes is dependent on RasG. Open Biol 2024; 14:230372. [PMID: 38263885 PMCID: PMC10806400 DOI: 10.1098/rsob.230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
RasG is a major regulator of macropinocytosis in Dictyostelium discoideum. Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure. However, the loss of IqgC induces only a minor enhancement of fluid uptake in axenic cells that already lack another RasGAP, NF1. Here, we show that IqgC plays an important role in the regulation of macropinocytosis in the presence of NF1 by restricting the size of macropinosomes. We further provide evidence that interaction with RasG is indispensable for the recruitment of IqgC to forming macropinocytic cups. We also demonstrate that IqgC interacts with another small GTPase from the Ras superfamily, Rab5A, but is not a GAP for Rab5A. Since mammalian Rab5 plays a key role in early endosome maturation, we hypothesized that IqgC could be involved in macropinosome maturation via its interaction with Rab5A. Although an excessive amount of Rab5A reduces the RasGAP activity of IqgC in vitro and correlates with IqgC dissociation from endosomes in vivo, the physiological significance of the Rab5A-IqgC interaction remains elusive.
Collapse
Affiliation(s)
- Darija Putar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Anja Čizmar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Marija Šimić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Ćutić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Mijanović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Smolko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Boegholm N, Petriman NA, Loureiro‐López M, Wang J, Vela MIS, Liu B, Kanie T, Ng R, Jackson PK, Andersen JS, Lorentzen E. The IFT81-IFT74 complex acts as an unconventional RabL2 GTPase-activating protein during intraflagellar transport. EMBO J 2023; 42:e111807. [PMID: 37606072 PMCID: PMC10505919 DOI: 10.15252/embj.2022111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.
Collapse
Affiliation(s)
- Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Beibei Liu
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
| | - Tomoharu Kanie
- Department of Cell BiologyUniversity of Oklahoma Health Science CenterOklahomaOKUSA
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
10
|
Vish KJ, Stiegler AL, Boggon TJ. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. J Biol Chem 2023; 299:105098. [PMID: 37507023 PMCID: PMC10470053 DOI: 10.1016/j.jbc.2023.105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.
Collapse
Affiliation(s)
- Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Department of Yale Cancer Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
11
|
Attfield PV. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 2023; 43:920-937. [PMID: 35731243 DOI: 10.1080/07388551.2022.2072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The multitude of applications to which Saccharomyces spp. are put makes these yeasts the most prolific of industrial microorganisms. This review considers biological aspects pertaining to the manufacture of industrial yeast biomass. It is proposed that the production of yeast biomass can be considered in two distinct but interdependent phases. Firstly, there is a cell replication phase that involves reproduction of cells by their transitions through multiple budding and metabolic cycles. Secondly, there needs to be a cell conditioning phase that enables the accrued biomass to withstand the physicochemical challenges associated with downstream processing and storage. The production of yeast biomass is not simply a case of providing sugar, nutrients, and other growth conditions to enable multiple budding cycles to occur. In the latter stages of culturing, it is important that all cells are induced to complete their current budding cycle and subsequently enter into a quiescent state engendering robustness. Both the cell replication and conditioning phases need to be optimized and considered in concert to ensure good biomass production economics, and optimum performance of industrial yeasts in food and fermentation applications. Key features of metabolism and cell biology affecting replication and conditioning of industrial Saccharomyces are presented. Alternatives for growth substrates are discussed, along with the challenges and prospects associated with defining the genetic bases of industrially important phenotypes, and the generation of new yeast strains."I must be cruel only to be kind: Thus bad begins, and worse remains behind." William Shakespeare: Hamlet, Act 3, Scene 4.
Collapse
|
12
|
Jackson M, Ahmari N, Wu J, Rizvi TA, Fugate E, Kim MO, Dombi E, Arnhof H, Boehmelt G, Düchs MJ, Long CJ, Maier U, Trapani F, Hofmann MH, Ratner N. Combining SOS1 and MEK Inhibitors in a Murine Model of Plexiform Neurofibroma Results in Tumor Shrinkage. J Pharmacol Exp Ther 2023; 385:106-116. [PMID: 36849412 PMCID: PMC10108440 DOI: 10.1124/jpet.122.001431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK. Single agent SOS1 inhibition had no significant effect in the DhhCre;Nf1 fl/fl mouse model of plexiform neurofibroma, but pharmacokinetics (PK)-driven combination of selumetinib with BI-3406 significantly improved tumor parameters. Tumor volumes and neurofibroma cell proliferation, reduced by MEK inhibition, were further reduced by the combination. Neurofibromas are rich in ionized calcium binding adaptor molecule 1 (Iba1)+ macrophages; combination treatment resulted in small and round macrophages, with altered cytokine expression indicative of altered activation. The significant effects of MEK inhibitor plus SOS1 inhibition in this preclinical study suggest potential clinical benefit of dual targeting of the RAS-MAPK pathway in neurofibromas. SIGNIFICANCE STATEMENT: Interfering with the RAS-mitogen-activated protein kinase (RAS-MAPK) cascade upstream of mitogen activated protein kinase kinase (MEK), together with MEK inhibition, augment effects of MEK inhibition on neurofibroma volume and tumor macrophages in a preclinical model system. This study emphasizes the critical role of the RAS-MAPK pathway in controlling tumor cell proliferation and the tumor microenvironment in benign neurofibromas.
Collapse
Affiliation(s)
- Mark Jackson
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Niousha Ahmari
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Elizabeth Fugate
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Mi-Ok Kim
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Eva Dombi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Heribert Arnhof
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Guido Boehmelt
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Matthias J Düchs
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Clive J Long
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Udo Maier
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Francesca Trapani
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Marco H Hofmann
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (M.J., N.A., J.W., T.A.R., N.R.) and Department of Radiology (E.F.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California (M.-O.K.); Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland (E.D.); Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria (H.A., G.B., F.T., M.H.H.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.J.D., C.J.L., U.M.); and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.W., N.R.)
| |
Collapse
|
13
|
Grenda A, Krawczyk P, Targowska-Duda KM, Kieszko R, Paśnik I, Milanowski J. Efficacy of Dabrafenib and Trametinib in a Patient with Squamous-Cell Carcinoma, with Mutation p.D594G in BRAF and p.R461* in NF1 Genes-A Case Report with Literature Review. Int J Mol Sci 2023; 24:ijms24021195. [PMID: 36674722 PMCID: PMC9864135 DOI: 10.3390/ijms24021195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The 3rd class of BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) variants including G466, D594, and A581 mutations cause kinase death or impaired kinase activity. It is unlikely that RAF (Raf Proto-Oncogene, Serine/Threonine Kinase) inhibitors suppress ERK (Extracellular Signal-Regulated Kinase) signaling in class 3 mutant-driven tumors due to the fact that they preferentially inhibit activated BRAF V600 mutants. However, there are suggestions that class 3 mutations are still associated with enhanced RAS/MAPK (RAS Proto-Oncogene, GTPase/Mitogen-Activated Protein Kinase) activation, potentially due to other mechanisms such as the activation of growth factor signaling or concurrent MAPK pathway mutations, e.g., RAS or NF1 (Neurofibromin 1). A 75-year-old male patient with squamous-cell cancer (SqCC) of the lung and with metastases to the kidney and mediastinal lymph nodes received chemoimmunotherapy (expression of Programmed Cell Death 1 Ligand 1 (PD-L1) on 2% of tumor cells). The chemotherapy was limited due to the accompanying myelodysplastic syndrome (MDS), and pembrolizumab monotherapy was continued for up to seven cycles. At the time of progression, next-generation sequencing was performed and a c.1781A>G (p.Asp594Gly) mutation in the BRAF gene, a c.1381C>T (p.Arg461Ter) mutation in the NF1 gene, and a c.37C>T (p.Gln13Ter) mutation in the FANCC gene were identified. Combined therapy with BRAF (dabrafenib) and MEK (trametinib) inhibitors was used, which resulted in the achievement of partial remission of the primary lesion and lung nodules and the stabilization of metastatic lesions in the kidney and bones. The therapy was discontinued after five months due to myelosuppression associated with MDS. The molecular background was decisive for the patient’s fate. NSCLC patients with non-V600 mutations in the BRAF gene rarely respond to anti-BRAF and anti-MEK therapy. The achieved effectiveness of the treatment could be related to a mutation in the NF1 tumor suppressor gene. The loss of NF1 function causes the excessive activation of KRAS and overactivity of the signaling pathway containing BRAF and MEK, which were the targets of the therapy. Moreover, the mutation in the FANCC gene was probably related to MDS development. The NGS technique was crucial for the qualification to treatment and the prediction of the NSCLC course in our patient. The mutations in two genes—the BRAF oncogene and the NF1 tumor suppressor gene—were the reason for the use of dabrafenib and trametinib treatment. The patients achieved short-term disease stabilization. This proved that coexisting mutations in these genes affect the disease course and treatment efficacy.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Correspondence:
| | - Pawel Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | | | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Iwona Paśnik
- Department of Clinical Pathomorphology, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|
14
|
Xu X, Jin T. Ras inhibitors gate chemoattractant concentration range for chemotaxis through controlling GPCR-mediated adaptation and cell sensitivity. Front Immunol 2022; 13:1020117. [PMID: 36341344 PMCID: PMC9630474 DOI: 10.3389/fimmu.2022.1020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis plays an essential role in recruitment of leukocytes to sites of inflammation. Eukaryotic cells sense chemoattractant with G protein-coupled receptors (GPCRs) and chemotax toward gradients with an enormous concentration range through adaptation. Cells in adaptation no longer respond to the present stimulus but remain sensitive to stronger stimuli. Thus, adaptation provides a fundamental strategy for eukaryotic cells to chemotax through a gradient. Ras activation is the first step in the chemosensing GPCR signaling pathways that displays a transient activation behavior in both model organism Dictyostelium discoideum and mammalian neutrophils. Recently, it has been revealed that C2GAP1 and CAPRI control the GPCR-mediated adaptation in D. discoideum and human neutrophils, respectively. More importantly, both Ras inhibitors regulate the sensitivity of the cells. These findings suggest an evolutionarily conserved molecular mechanism by which eukaryotic cells gate concentration range of chemoattractants for chemotaxis.
Collapse
|
15
|
Volmar AY, Guterres H, Zhou H, Reid D, Pavlopoulos S, Makowski L, Mattos C. Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. Biophys J 2022; 121:3616-3629. [PMID: 35794829 PMCID: PMC9617160 DOI: 10.1016/j.bpj.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.
Collapse
Affiliation(s)
- Alicia Y Volmar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hugo Guterres
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hao Zhou
- Department of Electrical and Computing Engineering, Northeastern University, Boston, Massachusetts
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Spiro Pavlopoulos
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
16
|
Kershner LJ, Choi K, Wu J, Zhang X, Perrino M, Salomonis N, Shern JF, Ratner N. Multiple Nf1 Schwann cell populations reprogram the plexiform neurofibroma tumor microenvironment. JCI Insight 2022; 7:e154513. [PMID: 36134665 PMCID: PMC9675562 DOI: 10.1172/jci.insight.154513] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
To define alterations early in tumor formation, we studied nerve tumors in neurofibromatosis 1 (NF1), a tumor predisposition syndrome. Affected individuals develop neurofibromas, benign tumors driven by NF1 loss in Schwann cells (SCs). By comparing normal nerve cells to plexiform neurofibroma (PN) cells using single-cell and bulk RNA sequencing, we identified changes in 5 SC populations, including a de novo SC progenitor-like (SCP-like) population. Long after Nf1 loss, SC populations developed PN-specific expression of Dcn, Postn, and Cd74, with sustained expression of the injury response gene Postn and showed dramatic expansion of immune and stromal cell populations; in corresponding human PNs, the immune and stromal cells comprised 90% of cells. Comparisons between injury-related and tumor monocytes/macrophages support early monocyte recruitment and aberrant macrophage differentiation. Cross-species analysis verified each SC population and unique conserved patterns of predicted cell-cell communication in each SC population. This analysis identified PROS1-AXL, FGF-FGFR, and MIF-CD74 and its effector pathway NF-κB as deregulated in NF1 SC populations, including SCP-like cells predicted to influence other types of SCs, stromal cells, and/or immune cells in mouse and human. These findings highlight remarkable changes in multiple types of SCs and identify therapeutic targets for PN.
Collapse
Affiliation(s)
- Leah J. Kershner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Melissa Perrino
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, and
- Departments of Pediatrics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Identification of Germinal Neurofibromin Hotspots. Biomedicines 2022; 10:biomedicines10082044. [PMID: 36009591 PMCID: PMC9405573 DOI: 10.3390/biomedicines10082044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurofibromin is engaged in many cellular processes and when the proper protein functioning is impaired, it causes neurofibromatosis type 1 (NF1), one of the most common inherited neurological disorders. Recent advances in sequencing and screening of the NF1 gene have increased the number of detected variants. However, the correlation of these variants with the clinic remains poorly understood. In this study, we analyzed 4610 germinal NF1 variants annotated in ClinVar and determined on exon level the mutational spectrum and potential pathogenic regions. Then, a binomial and sliding windows test using 783 benign and 938 pathogenic NF1 variants were analyzed against functional and structural regions of neurofibromin. The distribution of synonymous, missense, and frameshift variants are statistically significant in certain regions of neurofibromin suggesting that the type of variant and its associated phenotype may depend on protein disorder. Indeed, there is a negative correlation between the pathogenic fraction prediction and the disorder data, suggesting that the higher an intrinsically disordered region is, the lower the pathogenic fraction is and vice versa. Most pathogenic variants are associated to NF1 and our analysis suggests that GRD, CSRD, TBD, and Armadillo1 domains are hotspots in neurofibromin. Knowledge about NF1 genotype–phenotype correlations can provide prognostic guidance and aid in organ-specific surveillance.
Collapse
|
18
|
Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022; 12:915512. [PMID: 36033504 PMCID: PMC9399772 DOI: 10.3389/fonc.2022.915512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Special oncogenic mutations in the RAS proteins lead to the aberrant activation of RAS and its downstream signaling pathways. AMG510, the first approval drug for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and has shown promising antitumor activity in clinical trials. Recent studies have reported that the clinically acquired Y96D mutation could severely affect the effectiveness of AMG510. However, the underlying mechanism of the drug-resistance remains unclear. To address this, we performed multiple microsecond molecular dynamics simulations on the KRASG12C−AMG510 and KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction between the residue 96 and AMG510 was impaired owing to the Y96D mutation. Moreover, the mutation yielded higher flexibility and more coupled motion of the switch II and α3-helix, which led to the departing motion of the switch II and α3-helix. The resulting departing motion impaired the interaction between the switch II and α3-helix and subsequently induced the opening and loosening of the AMG510 binding pocket, which further disrupted the interaction between the key residues in the pocket and AMG510 and induced an increased solvent exposure of AMG510. These findings reveal the resistance mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for the development of KRAS targeted drugs to overcome acquired resistance.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| |
Collapse
|
19
|
CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain. Int J Mol Sci 2022; 23:ijms23168842. [PMID: 36012107 PMCID: PMC9408373 DOI: 10.3390/ijms23168842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a ‘scaffolding domain’ by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.
Collapse
|
20
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
21
|
Cáceres-Gutiérrez RE, Alfaro-Mora Y, Andonegui MA, Díaz-Chávez J, Herrera LA. The Influence of Oncogenic RAS on Chemotherapy and Radiotherapy Resistance Through DNA Repair Pathways. Front Cell Dev Biol 2022; 10:751367. [PMID: 35359456 PMCID: PMC8962660 DOI: 10.3389/fcell.2022.751367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
RAS oncogenes are chief tumorigenic drivers, and their mutation constitutes a universal predictor of poor outcome and treatment resistance. Despite more than 30 years of intensive research since the identification of the first RAS mutation, most attempts to therapeutically target RAS mutants have failed to reach the clinic. In fact, the first mutant RAS inhibitor, Sotorasib, was only approved by the FDA until 2021. However, since Sotorasib targets the KRAS G12C mutant with high specificity, relatively few patients will benefit from this therapy. On the other hand, indirect approaches to inhibit the RAS pathway have revealed very intricate cascades involving feedback loops impossible to overcome with currently available therapies. Some of these mechanisms play different roles along the multistep carcinogenic process. For instance, although mutant RAS increases replicative, metabolic and oxidative stress, adaptive responses alleviate these conditions to preserve cellular survival and avoid the onset of oncogene-induced senescence during tumorigenesis. The resulting rewiring of cellular mechanisms involves the DNA damage response and pathways associated with oxidative stress, which are co-opted by cancer cells to promote survival, proliferation, and chemo- and radioresistance. Nonetheless, these systems become so crucial to cancer cells that they can be exploited as specific tumor vulnerabilities. Here, we discuss key aspects of RAS biology and detail some of the mechanisms that mediate chemo- and radiotherapy resistance of mutant RAS cancers through the DNA repair pathways. We also discuss recent progress in therapeutic RAS targeting and propose future directions for the field.
Collapse
Affiliation(s)
- Rodrigo E. Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco A. Andonegui
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| |
Collapse
|
22
|
The roles of GTPase-activating proteins in regulated cell death and tumor immunity. J Hematol Oncol 2021; 14:171. [PMID: 34663417 PMCID: PMC8524929 DOI: 10.1186/s13045-021-01184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
GTPase-activating protein (GAP) is a negative regulator of GTPase protein that is thought to promote the conversion of the active GTPase-GTP form to the GTPase-GDP form. Based on its ability to regulate GTPase proteins and other domains, GAPs are directly or indirectly involved in various cell requirement processes. We reviewed the existing evidence of GAPs regulating regulated cell death (RCD), mainly apoptosis and autophagy, as well as some novel RCDs, with particular attention to their association in diseases, especially cancer. We also considered that GAPs could affect tumor immunity and attempted to link GAPs, RCD and tumor immunity. A deeper understanding of the GAPs for regulating these processes could lead to the discovery of new therapeutic targets to avoid pathologic cell loss or to mediate cancer cell death.
Collapse
|
23
|
Roskoski R. Blockade of mutant RAS oncogenic signaling with a special emphasis on KRAS. Pharmacol Res 2021; 172:105806. [PMID: 34450320 DOI: 10.1016/j.phrs.2021.105806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
RAS proteins (HRAS, KRAS, NRAS) participate in many physiological signal transduction processes related to cell growth, division, and survival. The RAS proteins are small (188/189 amino acid residues) and they function as GTPases. These proteins toggle between inactive and functional forms; the conversion of inactive RAS-GDP to active RAS-GTP as mediated by guanine nucleotide exchange factors (GEFs) turns the switch on and the intrinsic RAS-GTPase activity stimulated by the GTPase activating proteins (GAPs) turns the switch off. RAS is upstream to the RAS-RAF-MEK-ERK and the PI3-kinase-AKT signaling modules. Importantly, the overall incidence of RAS mutations in all cancers is about 19% and RAS mutants have been a pharmacological target for more than three decades. About 84% of all RAS mutations involve KRAS. Except for the GTP/GDP binding site, the RAS proteins lack other deep surface pockets thereby hindering efforts to identify high-affinity antagonists; thus, they have been considered to be undruggable. KRAS mutations frequently occur in lung, colorectal, and pancreatic cancers, the three most deadly cancers in the United States. Studies within the last decade demonstrated that the covalent modification of KRAS C12, which accounts for about 10% of all RAS mutations, led to the discovery of an adjacent pocket (called the switch II pocket) that accommodated a portion of the drug. This led to the development of sotorasib as a second-line treatment of KRASG12C-mutant non-small cell lung cancer. Considerable effort also has been expended to develop MAP kinase and PI3-kinase pathway inhibitors as indirect RAS antagonists.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
24
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
25
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Zhao Q, Fujimiya R, Kubo S, Marshall CB, Ikura M, Shimada I, Nishida N. Real-Time In-Cell NMR Reveals the Intracellular Modulation of GTP-Bound Levels of RAS. Cell Rep 2021; 32:108074. [PMID: 32846131 DOI: 10.1016/j.celrep.2020.108074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The small guanosine triphosphatase (GTPase) RAS serves as a molecular switch in signal transduction, and its mutation and aberrant activation are implicated in tumorigenesis. Here, we perform real-time, in-cell nuclear magnetic resonance (NMR) analyses of non-farnesylated RAS to measure time courses of the fraction of the active GTP-bound form (fGTP) within cytosol of live mammalian cells. The observed intracellular fGTP is significantly lower than that measured in vitro for wild-type RAS as well as oncogenic mutants, due to both decrease of the guanosine diphosphate (GDP)-GTP exchange rate (kex) and increase of GTP hydrolysis rate (khy). In vitro reconstitution experiments show that highly viscous environments promote a reduction of kex, whereas the increase of khy is stimulated by unidentified cytosolic proteins. This study demonstrates the power of in-cell NMR to directly detect the GTP-bound levels of RAS in mammalian cells, thereby revealing that the khy and kex of RAS are modulated by various intracellular factors.
Collapse
Affiliation(s)
- Qingci Zhao
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryu Fujimiya
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Kubo
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
27
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
28
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
29
|
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, Liu G, Hong L. Differential MicroRNA Expression Involved in Endometrial Receptivity of Goats. Biomolecules 2021; 11:biom11030472. [PMID: 33810054 PMCID: PMC8004627 DOI: 10.3390/biom11030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial receptivity represents one of the leading factors affecting the successful implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs) to establish goat endometrial receptivity remains unclear. This study was intended to identify potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity through integrating bioinformatics analysis and experimental verification. MiRNA expression profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore, 10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC) analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L) to reduce its expression level. In conclusion, our findings contribute to a better understanding of molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference for improving embryo implantation efficiency.
Collapse
Affiliation(s)
- Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wenjing Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jianyu Gan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| |
Collapse
|
30
|
Meng Y, Wang W, Chen M, Chen K, Xia X, Zhou S, Yang H. GBP1 Facilitates Indoleamine 2,3-Dioxygenase Extracellular Secretion to Promote the Malignant Progression of Lung Cancer. Front Immunol 2021; 11:622467. [PMID: 33552086 PMCID: PMC7857027 DOI: 10.3389/fimmu.2020.622467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 01/14/2023] Open
Abstract
IDO1-mediated immune escape can lead to the malignant progression of tumors. However, the precise mechanism of IDO1 remains unclear. This study showed that IDO1 can bind to GBP1 and increase the extracellular secretion of IDO1 with the assistance of GBP1, thereby promoting the malignant proliferation and metastasis of lung cancer. In vitro study showed that the high expression levels of IDO1 and GBP1 in lung cancer cells promoted cell invasion and migration. In vivo study revealed that knock-down of IDO1 and GBP1 inhibited tumor growth and metastasis. In addition, Astragaloside IV reduces the extracellular secretion of IDO1 by blocking the interaction of IDO1 and GBP1, thereby reducing T cell exhaustion and inhibiting tumor progression. These results suggest that blocking the extracellular secretion of IDO1 may prevent T cell exhaustion and thereby enhance the effect of PD-1 inhibitors on cancer treatment.
Collapse
Affiliation(s)
- Yinnan Meng
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Wei Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Meng Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Kuifei Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Xinhang Xia
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Suna Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
31
|
Neira JL, Vega S, Martínez-Rodríguez S, Velázquez-Campoy A. The isolated GTPase-activating-protein-related domain of neurofibromin-1 has a low conformational stability in solution. Arch Biochem Biophys 2021; 700:108767. [PMID: 33476564 DOI: 10.1016/j.abb.2021.108767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Sonia Vega
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, 18100, Armilla, Granada, Spain; Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071, Granada, Spain.
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50009, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| |
Collapse
|
32
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
33
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
34
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
35
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
36
|
The Rab5-Rab11 Endosomal Pathway is Required for BDNF-Induced CREB Transcriptional Regulation in Hippocampal Neurons. J Neurosci 2020; 40:8042-8054. [PMID: 32928890 DOI: 10.1523/jneurosci.2063-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key regulator of the morphology and connectivity of central neurons. We have previously shown that BDNF/TrkB signaling regulates the activity and mobility of the GTPases Rab5 and Rab11, which in turn determine the postendocytic sorting of signaling TrkB receptors. Moreover, decreased Rab5 or Rab11 activity inhibits BDNF-induced dendritic branching. Whether Rab5 or Rab11 activity is important for local events only or for regulating nuclear signaling and gene expression is unknown. Here, we investigated, in rat hippocampal neuronal cultures derived from embryos of unknown sex, whether BDNF-induced signaling cascades are altered when early and recycling endosomes are disrupted by the expression of dominant-negative mutants of Rab5 and Rab11. The activity of both Rab5 and Rab11 was required for sustained activity of Erk1/2 and nuclear CREB phosphorylation, and increased transcription of a BDNF-dependent program of gene expression containing CRE binding sites, which includes activity-regulated genes such as Arc, Dusp1, c-fos, Egr1, and Egr2, and growth and survival genes such as Atf3 and Gem Based on our results, we propose that early and recycling endosomes provide a platform for the integration of neurotrophic signaling from the plasma membrane to the nucleus in neurons, and that this mechanism is likely to regulate neuronal plasticity and survival.SIGNIFICANCE STATEMENT BDNF is a neurotrophic factor that regulates plastic changes in the brain, including dendritic growth. The cellular and molecular mechanisms underlying this process are not completely understood. Our results uncover the cellular requirements that central neurons possess to integrate the plasma membrane into nuclear signaling in neurons. Our results indicate that the endosomal pathway is required for the signaling cascade initiated by BDNF and its receptors at the plasma membrane to modulate BDNF-dependent gene expression and neuronal dendritic growth mediated by the CREB transcription factor. CREB is a key transcription factor regulating circuit development and learning and memory.
Collapse
|
37
|
Twenty Years of SynGAP Research: From Synapses to Cognition. J Neurosci 2020; 40:1596-1605. [PMID: 32075947 DOI: 10.1523/jneurosci.0420-19.2020] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
SynGAP is a potent regulator of biochemical signaling in neurons and plays critical roles in neuronal function. It was first identified in 1998, and has since been extensively characterized as a mediator of synaptic plasticity. Because of its involvement in synaptic plasticity, SynGAP has emerged as a critical protein for normal cognitive function. In recent years, mutations in the SYNGAP1 gene have been shown to cause intellectual disability in humans and have been linked to other neurodevelopmental disorders, such as autism spectrum disorders and schizophrenia. While the structure and biochemical function of SynGAP have been well characterized, a unified understanding of the various roles of SynGAP at the synapse and its contributions to neuronal function remains to be achieved. In this review, we summarize and discuss the current understanding of the multifactorial role of SynGAP in regulating neuronal function gathered over the last two decades.
Collapse
|
38
|
Oh M, Kim SY, Gil JE, Byun JS, Cha DW, Ku B, Lee W, Kim WK, Oh KJ, Lee EW, Bae KH, Lee SC, Han BS. Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Sci Rep 2020; 10:10755. [PMID: 32612143 PMCID: PMC7329810 DOI: 10.1038/s41598-020-67549-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson’ disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson’s disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1’s mediated inflammation signaling.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sun Young Kim
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jung-Eun Gil
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Su Byun
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dong-Wook Cha
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | | | - Won-Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
40
|
Nussinov R, Tsai CJ, Jang H. Why Are Some Driver Mutations Rare? Trends Pharmacol Sci 2019; 40:919-929. [PMID: 31699406 DOI: 10.1016/j.tips.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Understanding why driver mutations that promote cancer are sometimes rare is important for precision medicine since it would help in their identification. Driver mutations are largely discovered through their frequencies. Thus, rare mutations often escape detection. Unlike high-frequency drivers, low-frequency drivers can be tissue specific; rare drivers have extremely low frequencies. Here, we discuss rare drivers and strategies to discover them. We suggest that allosteric driver mutations shift the protein ensemble from the inactive to the active state. Rare allosteric drivers are statistically rare since, to switch the protein functional state, they cooperate with additional mutations, and these are not considered in the patient cancer-specific protein sequence analysis. A complete landscape of mutations that drive cancer will reveal tumor-specific therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
41
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
42
|
Bai RY, Esposito D, Tam AJ, McCormick F, Riggins GJ, Wade Clapp D, Staedtke V. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019; 26:277-286. [PMID: 31127187 PMCID: PMC6588423 DOI: 10.1038/s41434-019-0080-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1, including the highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), is featured by the loss of functional neurofibromin 1 (NF1) protein resulting from genetic alterations. A major function of NF1 is suppressing Ras activities, which is conveyed by an intrinsic GTPase-activating protein-related domain (GRD). In this study, we explored the feasibility of restoring Ras GTPase via exogenous expression of various GRD constructs, via gene delivery using a panel of adeno-associated virus (AAV) vectors in MPNST and human Schwann cells (HSCs). We demonstrated that several AAV serotypes achieved favorable transduction efficacies in those cells and a membrane-targeting GRD fused with an H-Ras C-terminal motif (C10) dramatically inhibited the Ras pathway and MPNST cells in a NF1-specific manner. Our results opened up a venue of gene replacement therapy in NF1-related tumors.
Collapse
Affiliation(s)
- Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|