1
|
Zhai Z, Cui Z, Zhang Y, Song P, Wu J, Tan Z, Lin S, Ma X, Guan F, Kang H. Integrated pan-cancer analysis and experimental verification of the roles of meiotic nuclear divisions 1 in breast cancer. Biochem Biophys Res Commun 2024; 739:150600. [PMID: 39191147 DOI: 10.1016/j.bbrc.2024.150600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The aberrant up-regulation of meiotic nuclear division 1 (MND1) in somatic cells is considered as one of the driving factors of oncogenesis, whereas its expression and role in breast invasive cancer (BRCA) remain unclear. Hence, this study embarked on a comprehensive evaluation of MND1 across various cancers and identified its roles in BRCA. METHODS Based on publicly available databases, including but not limited to UCSC Xena, TCGA, GTEx, GEO, STRING, GeneMANIA, and CancerSEA, we evaluated the expression patterns, genomic features, and biological functions of MND1 from a pan-cancer viewpoint and delved into the implications of MND1 in the prognosis and treatment of BRCA. Further molecular biology experiments were undertaken to identify the role of MND1 in proliferation, migration, and apoptosis in BRCA cells. RESULTS Elevated levels of MND1 were notably observed in a wide array of tumor types, especially in BRCA, COAD, HNSC, LIHC, LUAD, LUSC, STAD, and UCEC. Elevated MND1 expression was markedly associated with shortened OS in several tumors, including BRCA (HR = 1.52 [95%CI, 1.10-2.09], P = 0.011). The up-regulation of MND1 in BRCA was validated in external cohorts and clinical samples. Survival analyses demonstrated that elevated MND1 expression was associated with decreased survival for patients with BRCA. Co-expressed genes of MND1 were identified, and subsequent pathway analyses based on significantly associated genes indicated that MND1 plays key roles in DNA replication, cell cycle regulation, and DNA damage repair. The observed abnormal elevation and activation of MND1 led to increased proliferation and migration, along with decreased apoptosis in BRCA cells. CONCLUSIONS MND1 emerges as a promising biomarker for diagnostic and therapeutic targeting in various cancers, including BRCA. The abnormal up-regulation and activation of MND1 are linked to carcinogenesis and poor prognosis among BRCA patients, which may be attributed to its involvement in HR-dependent ALT, warranting further scrutiny.
Collapse
Affiliation(s)
- Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi' an, China
| | - Yu Zhang
- Department of Infectious Diseases, Honghui-hospital, Xi'an Jiaotong University, Shanghua Road, Xi'an, China
| | - Ping Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 157, West Fifth Road, Xi'an, China
| | - Jinpeng Wu
- College of Life Sciences, Northwest University, No. 229, Taibai North Road, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, No. 229, Taibai North Road, Xi'an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China
| | - Feng Guan
- College of Life Sciences, Northwest University, No. 229, Taibai North Road, Xi'an, China.
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China; Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Fifth Road, Xi'an, China.
| |
Collapse
|
2
|
Mendizabal-Ruiz G, Paredes O, Álvarez Á, Acosta-Gómez F, Hernández-Morales E, González-Sandoval J, Mendez-Zavala C, Borrayo E, Chavez-Badiola A. Artificial Intelligence in Human Reproduction. Arch Med Res 2024; 55:103131. [PMID: 39615376 DOI: 10.1016/j.arcmed.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
The use of artificial intelligence (AI) in human reproduction is a rapidly evolving field with both exciting possibilities and ethical considerations. This technology has the potential to improve success rates and reduce the emotional and financial burden of infertility. However, it also raises ethical and privacy concerns. This paper presents an overview of the current and potential applications of AI in human reproduction. It explores the use of AI in various aspects of reproductive medicine, including fertility tracking, assisted reproductive technologies, management of pregnancy complications, and laboratory automation. In addition, we discuss the need for robust ethical frameworks and regulations to ensure the responsible and equitable use of AI in reproductive medicine.
Collapse
Affiliation(s)
- Gerardo Mendizabal-Ruiz
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Omar Paredes
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK
| | - Ángel Álvarez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fátima Acosta-Gómez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Estefanía Hernández-Morales
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Josué González-Sandoval
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Celina Mendez-Zavala
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Borrayo
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alejandro Chavez-Badiola
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK; New Hope Fertility Center, Deparment of Research, Ciudad de México, Mexico
| |
Collapse
|
3
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Liu Y, Lin Z, Yan J, Zhang X, Tong MH. A Rad50-null mutation in mouse germ cells causes reduced DSB formation, abnormal DSB end resection and complete loss of germ cells. Development 2024; 151:dev202312. [PMID: 38512324 DOI: 10.1242/dev.202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.
Collapse
Affiliation(s)
- Yuefang Liu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyi Yan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Han Tong
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Wan Y, Yang S, Li T, Cai Y, Wu X, Zhang M, Muhammad T, Huang T, Lv Y, Chan WY, Lu G, Li J, Sha QQ, Chen ZJ, Liu H. LSM14B is essential for oocyte meiotic maturation by regulating maternal mRNA storage and clearance. Nucleic Acids Res 2023; 51:11652-11667. [PMID: 37889087 PMCID: PMC10681746 DOI: 10.1093/nar/gkad919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Shuang Yang
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Yuling Cai
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Mingyu Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- Department of Cell Biology and Anatomy, NY Medical College, 15 Dana Road, Valhalla, NY 10595, USA
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Wai-Yee Chan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jingxin Li
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Drury AL, Gout JF, Dapper AL. Modeling Recombination Rate as a Quantitative Trait Reveals New Insight into Selection in Humans. Genome Biol Evol 2023; 15:evad132. [PMID: 37506266 PMCID: PMC10404793 DOI: 10.1093/gbe/evad132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Meiotic recombination is both a fundamental biological process required for proper chromosomal segregation during meiosis and an important genomic parameter that shapes major features of the genomic landscape. However, despite the central importance of this phenotype, we lack a clear understanding of the selective pressures that shape its variation in natural populations, including humans. While there is strong evidence of fitness costs of low rates of recombination, the possible fitness costs of high rates of recombination are less defined. To determine whether a single lower fitness bound can explain the variation in recombination rates observed in human populations, we simulated the evolution of recombination rates as a sexually dimorphic quantitative trait. Under each scenario, we statistically compared the resulting trait distribution with the observed distribution of recombination rates from a published study of the Icelandic population. To capture the genetic architecture of recombination rates in humans, we modeled it as a moderately complex trait with modest heritability. For our fitness function, we implemented a hyperbolic tangent curve with several flexible parameters to capture a wide range of existing hypotheses. We found that costs of low rates of recombination alone are likely insufficient to explain the current variation in recombination rates in both males and females, supporting the existence of fitness costs of high rates of recombination in humans. With simulations using both upper and lower fitness boundaries, we describe a parameter space for the costs of high recombination rates that produces results consistent with empirical observations.
Collapse
Affiliation(s)
- Austin L Drury
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | | |
Collapse
|
8
|
Valero-Regalón FJ, Solé M, López-Jiménez P, Valerio-de Arana M, Martín-Ruiz M, de la Fuente R, Marín-Gual L, Renfree MB, Shaw G, Berríos S, Fernández-Donoso R, Waters PD, Ruiz-Herrera A, Gómez R, Page J. Divergent patterns of meiotic double strand breaks and synapsis initiation dynamics suggest an evolutionary shift in the meiosis program between American and Australian marsupials. Front Cell Dev Biol 2023; 11:1147610. [PMID: 37181752 PMCID: PMC10166821 DOI: 10.3389/fcell.2023.1147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.
Collapse
Affiliation(s)
| | - Mireia Solé
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Valerio-de Arana
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of The Polish Academy of Sciences, Jastrzębiec, Poland
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
10
|
Female meiosis in plants, and differential recombination in the two sexes: a perspective. THE NUCLEUS 2023. [DOI: 10.1007/s13237-023-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
11
|
Regulation Mechanisms of Meiotic Recombination Revealed from the Analysis of a Fission Yeast Recombination Hotspot ade6-M26. Biomolecules 2022; 12:biom12121761. [PMID: 36551189 PMCID: PMC9775316 DOI: 10.3390/biom12121761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic recombination is a pivotal event that ensures faithful chromosome segregation and creates genetic diversity in gametes. Meiotic recombination is initiated by programmed double-strand breaks (DSBs), which are catalyzed by the conserved Spo11 protein. Spo11 is an enzyme with structural similarity to topoisomerase II and induces DSBs through the nucleophilic attack of the phosphodiester bond by the hydroxy group of its tyrosine (Tyr) catalytic residue. DSBs caused by Spo11 are repaired by homologous recombination using homologous chromosomes as donors, resulting in crossovers/chiasmata, which ensure physical contact between homologous chromosomes. Thus, the site of meiotic recombination is determined by the site of the induced DSB on the chromosome. Meiotic recombination is not uniformly induced, and sites showing high recombination rates are referred to as recombination hotspots. In fission yeast, ade6-M26, a nonsense point mutation of ade6 is a well-characterized meiotic recombination hotspot caused by the heptanucleotide sequence 5'-ATGACGT-3' at the M26 mutation point. In this review, we summarize the meiotic recombination mechanisms revealed by the analysis of the fission ade6-M26 gene as a model system.
Collapse
|
12
|
Impact of Chromosomal Context on Origin Selection and the Replication Program. Genes (Basel) 2022; 13:genes13071244. [PMID: 35886027 PMCID: PMC9318681 DOI: 10.3390/genes13071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic DNA replication is regulated by conserved mechanisms that bring about a spatial and temporal organization in which distinct genomic domains are copied at characteristic times during S phase. Although this replication program has been closely linked with genome architecture, we still do not understand key aspects of how chromosomal context modulates the activity of replication origins. To address this question, we have exploited models that combine engineered genomic rearrangements with the unique replication programs of post-quiescence and pre-meiotic S phases. Our results demonstrate that large-scale inversions surprisingly do not affect cell proliferation and meiotic progression, despite inducing a restructuring of replication domains on each rearranged chromosome. Remarkably, these alterations in the organization of DNA replication are entirely due to changes in the positions of existing origins along the chromosome, as their efficiencies remain virtually unaffected genome wide. However, we identified striking alterations in origin firing proximal to the fusion points of each inversion, suggesting that the immediate chromosomal neighborhood of an origin is a crucial determinant of its activity. Interestingly, the impact of genome reorganization on replication initiation is highly comparable in the post-quiescent and pre-meiotic S phases, despite the differences in DNA metabolism in these two physiological states. Our findings therefore shed new light on how origin selection and the replication program are governed by chromosomal architecture.
Collapse
|
13
|
Homologous chromosome associations in domains before meiosis could facilitate chromosome recognition and pairing in wheat. Sci Rep 2022; 12:10597. [PMID: 35732879 PMCID: PMC9217977 DOI: 10.1038/s41598-022-14843-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
The increasing human population demands an increase in crop yields that must be implemented through breeding programmes to ensure a more efficient and sustainable production of agro-food products. In the framework of breeding, genetic crosses are developed between cultivated species such as wheat and their relative species that are used as genetic donors to transfer desirable agronomic traits into the crop. Unfortunately, interspecific associations between chromosomes from the donor species and the cultivar are rare during meiosis, the process to produce gametes in organisms with sexual reproduction, hampering the transfer of genetic variability into wheat. In addition, little is known about how homologous (equivalent) chromosomes initiate interaction and recognition within the cell nucleus to enter meiosis. In this context, we aim to get insight into wheat chromatin structure, particularly the distribution of homologous chromosomes within the cell nucleus and their putative interactions in premeiotic stages to facilitate chromosome associations and recombination at the beginning of meiosis. Cytogenetics allows the study of both the structure and the behaviour of chromosomes during meiosis and is key in plant breeding. In this study we visualized an extra pair of barley homologous chromosomes in a wheat genetic background to study the spatial distribution, arrangements and interactions occurring exclusively between this pair of homologous chromosomes during premeiosis using fluorescence in situ hybridization (FISH). Our results suggest that homologous chromosomes can initiate interactions in premeiotic stages that could facilitate the processes of specific chromosome recognition and association occurring at the onset of meiosis.
Collapse
|
14
|
Wang L, Wu B, Ma Y, Ren Z, Li W. The blooming of an old story on the bouquet. Biol Reprod 2022; 107:289-300. [PMID: 35470849 DOI: 10.1093/biolre/ioac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily conserved process, the bouquet stage during meiosis was discovered over a century ago, and active research on this important stage continues. Since the discovery of the first bouquet-related protein Taz1p in 1998, several bouquet formation-related proteins have been identified in various eukaryotes. These proteins are involved in the interaction between telomeres and the inner nuclear membrane (INM), and once these interactions are disrupted, meiotic progression is arrested, leading to infertility. Recent studies have provided significant insights into the relationships and interactions among bouquet formation-related proteins. In this review, we summarize the components involved in telomere-INM interactions and focus on their roles in bouquet formation and telomere homeostasis maintenance. In addition, we examined bouquet-related proteins in different species from an evolutionary viewpoint, highlighting the potential interactions among them.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Respiratory, China National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengxing Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
15
|
Kumar G, Mishra R. De Novo Reporting of B Chromosomes with Their Bewildermentic Responses in Eclipta alba (L.) Hassk. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Matveevsky S, Grishaeva T. Heterogeneity in conservation of multifunctional partner enzymes with meiotic importance, CDK2 kinase and BRCA1 ubiquitin ligase. PeerJ 2021; 9:e12231. [PMID: 34692254 PMCID: PMC8483008 DOI: 10.7717/peerj.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The evolution of proteins can be accompanied by changes not only to their amino acid sequences, but also their structural and spatial molecular organization. Comparison of the protein conservation within different taxonomic groups (multifunctional, or highly specific) allows to clarify their specificity and the direction of evolution. Two multifunctional enzymes, cyclin-dependent kinase 2 (CDK2) and BRCA1 ubiquitin ligase, that are partners in some mitotic and meiotic processes were investigated in the present work. Two research methods, bioinformatics and immunocytochemical, were combined to examine the conservation levels of the two enzymes. It has been established that CDK2 is a highly conserved protein in different taxonomic lineages of the eukaryotic tree. Immunocytochemically, a conserved CDK2 pattern was revealed in the meiotic autosomes of five rodent species and partially in domestic turkey and clawed frog. Nevertheless, variable CDK2 distribution was detected at the unsynapsed segments of the rodent X chromosomes. BRCA1 was shown to be highly conserved only within certain mammalian taxa. It was also noted that in those rodent nuclei, where BRCA1 specifically binds to antigens, asynaptic regions of sex chromosomes were positive. BRCA1 staining was not always accompanied by specific binding, and a high nonspecificity in the nucleoplasm was observed. Thus, the studies revealed different conservation of the two enzymes at the level of protein structure as well as at the level of chromosome behavior. This suggests variable rates of evolution due to both size and configuration of the protein molecules and their multifunctionality.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Grishaeva
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
18
|
Sprink T, Hartung F. Heterologous Complementation of SPO11-1 and -2 Depends on the Splicing Pattern. Int J Mol Sci 2021; 22:ijms22179346. [PMID: 34502253 PMCID: PMC8430568 DOI: 10.3390/ijms22179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.
Collapse
|
19
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
20
|
Wang Q, Lin F, He Q, Huang Q, Duan X, Liu X, Xiao S, Yang H, Zhao H. Cloning and characterization of rec8 gene in orange-spotted grouper (Epinephelus coioides) and Dmrt1 regulation of rec8 promoter activity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:393-407. [PMID: 33547601 DOI: 10.1007/s10695-020-00920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Meiosis is a specialized type of cell division critical for gamete production during sexual reproduction in eukaryotes. The meiotic recombination protein Rec8 has been identified as an important factor in germ cell meiotic initiation in vertebrates; however, its equivalent role in teleosts is poorly characterized. In this study, we cloned and sequenced the rec8 gene from orange-spotted grouper (Epinephelus coioides). The cDNA sequence consisted of 2244 base pairs (bp), including a 5' untranslated region (UTR) of 198 bp and a 3'UTR of 284 bp. The open reading frame of grouper rec8 was 1752 bp, encoding 584 amino acids. Expression levels of rec8 were higher in the ovary, intersex gonad, and testis. A neighbor-joining phylogenetic tree based on the deduced amino acid sequence indicated a common origin for grouper and other teleost rec8 molecules. Immunohistochemistry using a polyclonal anti-Rec8 antibody localized the protein in the oogonia and primary oocytes in the ovary and in spermatogonia and spermatocytes in the intersex gonad and testis, suggesting that Rec8 may play an important role in the meiotic division and the development of grouper germ cells. In addition, we found that the transcription factor Dmrt1 increased rec8 promoter activity through the second binding site, based on dual-luciferase assays. Together, these results suggest that Rec8 plays a crucial role in meiosis and may be regulated by Dmrt1 to affect meiosis in groupers.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, People's Republic of China
| | - Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qifeng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - HuiHong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
21
|
Neto FTL, Flannigan R, Goldstein M. Regulation of Human Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:255-286. [PMID: 34453741 DOI: 10.1007/978-3-030-77779-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human spermatogenesis (HS) is an intricate network of sequential processes responsible for the production of the male gamete, the spermatozoon. These processes take place in the seminiferous tubules (ST) of the testis, which are small tubular structures considered the functional units of the testes. Each human testicle contains approximately 600-1200 STs [1], and are capable of producing up to 275 million spermatozoa per day [2].
Collapse
Affiliation(s)
| | - Ryan Flannigan
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.,University of British Columbia, Vancouver, BC, Canada
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Pereira C, Smolka MB, Weiss RS, Brieño-Enríquez MA. ATR signaling in mammalian meiosis: From upstream scaffolds to downstream signaling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:752-766. [PMID: 32725817 PMCID: PMC7747128 DOI: 10.1002/em.22401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 05/03/2023]
Abstract
In germ cells undergoing meiosis, the induction of double strand breaks (DSBs) is required for the generation of haploid gametes. Defects in the formation, detection, or recombinational repair of DSBs often result in defective chromosome segregation and aneuploidies. Central to the ability of meiotic cells to properly respond to DSBs are DNA damage response (DDR) pathways mediated by DNA damage sensor kinases. DDR signaling coordinates an extensive network of DDR effectors to induce cell cycle arrest and DNA repair, or trigger apoptosis if the damage is extensive. Despite their importance, the functions of DDR kinases and effector proteins during meiosis remain poorly understood and can often be distinct from their known mitotic roles. A key DDR kinase during meiosis is ataxia telangiectasia and Rad3-related (ATR). ATR mediates key signaling events that control DSB repair, cell cycle progression, and meiotic silencing. These meiotic functions of ATR depend on upstream scaffolds and regulators, including the 9-1-1 complex and TOPBP1, and converge on many downstream effectors such as the checkpoint kinase CHK1. Here, we review the meiotic functions of the 9-1-1/TOPBP1/ATR/CHK1 signaling pathway during mammalian meiosis.
Collapse
Affiliation(s)
- Catalina Pereira
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Miguel A. Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA
- Corresponding author: ; Phone: 412-641-7531
| |
Collapse
|
23
|
Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. Role of HP1β during spermatogenesis and DNA replication. Chromosoma 2020; 129:215-226. [PMID: 32651609 DOI: 10.1007/s00412-020-00739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1β (HP1β), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1β negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1β from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1β in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.
Collapse
Affiliation(s)
- Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Prieto P, Naranjo T. Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. Methods Mol Biol 2020; 2061:141-168. [PMID: 31583658 DOI: 10.1007/978-1-4939-9818-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
26
|
Salmina K, Gerashchenko BI, Hausmann M, Vainshelbaum NM, Zayakin P, Erenpreiss J, Freivalds T, Cragg MS, Erenpreisa J. When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers. Genes (Basel) 2019; 10:E551. [PMID: 31331093 PMCID: PMC6678365 DOI: 10.3390/genes10070551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ninel M Vainshelbaum
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Juris Erenpreiss
- Riga Stradins University, LV-1007 Riga, Latvia
- Clinic IVF-Riga, LV-1010 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
27
|
Howie JM, Mazzucco R, Taus T, Nolte V, Schlötterer C. DNA Motifs Are Not General Predictors of Recombination in Two Drosophila Sister Species. Genome Biol Evol 2019; 11:1345-1357. [PMID: 30980655 PMCID: PMC6490297 DOI: 10.1093/gbe/evz082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Meiotic recombination is crucial for chromosomal segregation and facilitates the spread of beneficial and removal of deleterious mutations. Recombination rates frequently vary along chromosomes and Drosophila melanogaster exhibits a remarkable pattern. Recombination rates gradually decrease toward centromeres and telomeres, with a dramatic impact on levels of variation in natural populations. Two close sister species, Drosophila simulans and Drosophila mauritiana do not only have higher recombination rates but also exhibit a much more homogeneous recombination rate that only drops sharply very close to centromeres and telomeres. Because certain sequence motifs are associated with recombination rate variation in D. melanogaster, we tested whether the difference in recombination landscape between D. melanogaster and D. simulans can be explained by the genomic distribution of recombination rate–associated sequence motifs. We constructed the first high-resolution recombination map for D. simulans based on 189 haplotypes from a natural D. simulans population and searched for short sequence motifs linked with higher than average recombination in both sister species. We identified five consensus motifs significantly associated with higher than average chromosome-wide recombination rates in at least one species and present in both. Testing fine resolution associations between motif density and recombination, we found strong and positive associations genome-wide over a range of scales in D. melanogaster, while the results were equivocal in D. simulans. Despite the strong association in D. melanogaster, we did not find a decreasing density of these short-repeat motifs toward centromeres and telomeres. We conclude that the density of recombination-associated repeat motifs cannot explain the large-scale recombination landscape in D. melanogaster, nor the differences to D. simulans. The strong association seen for the sequence motifs in D. melanogaster likely reflects their impact influencing local differences in recombination rates along the genome.
Collapse
Affiliation(s)
- James M Howie
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | | - Thomas Taus
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | |
Collapse
|
28
|
Pinheiro APB, Melo RMC, Teixeira DF, Birindelli JLO, Carvalho DC, Rizzo E. Integrative approach detects natural hybridization of sympatric lambaris species and emergence of infertile hybrids. Sci Rep 2019; 9:4333. [PMID: 30867523 PMCID: PMC6416303 DOI: 10.1038/s41598-019-40856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Despite its relevance for ecology, evolution and conservation of species, natural hybridization and hybrids biology are still poorly studied in freshwater fish. Here, we tested the hypothesis that sympatric species Astyanax paranae and A. fasciatus are able to interbreed in the natural environment and presented evidence for the first record of hybridization between these species. We analyzed anatomical traits, gametogenesis, reproductive biology, and genetic variations of the COI and S7 genes of both species and putative hybrids. Intermediate morphometric and meristic features were observed in hybrids when compared to A. paranae and A. fasciatus. Overlap in reproductive season was showed for these species, with greater reproductive activity from August to January, but hybrids did not present any sign of gonadal maturation. Oogonia and perinucleolar follicles as well as spermatogonia and primary spermatocytes were found in hybrids, but previtellogenic and vitellogenic follicles, spermatids, and spermatozoa were absent. Moreover, several alterations in gametogenesis were detected, such as interrupted meiosis in both males and females, vacuolated and degenerated germ cells, increased interstitial tissue, and presence of immune cells. Molecular analyses supported the hypothesis of hybridization between A. paranae and A. fasciatus. Overall, our multidisciplinary approach also provides strong evidence that hybrids are infertile.
Collapse
Affiliation(s)
- Ana Paula Barbosa Pinheiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C. P. 486, 31270-901, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C. P. 486, 31270-901, Minas Gerais, Brazil
| | - Daniel Fonseca Teixeira
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, 30535-610, Minas Gerais, Brazil
| | - José Luís Olivan Birindelli
- Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, UEL, Londrina, C. P. 10.011, 86057-970, Paraná, Brazil
| | - Daniel Cardoso Carvalho
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, 30535-610, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C. P. 486, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Mu X, Wen J, Chen Q, Wang Z, Wang Y, Guo M, Yang Y, Xu J, Wei Z, Xia G, Yang M, Wang C. Retinoic acid-induced CYP51 nuclear translocation promotes meiosis prophase I process and is correlated to the expression of REC8 and STAG3 in mice. Biol Open 2018; 7:bio.035626. [PMID: 30420384 PMCID: PMC6262859 DOI: 10.1242/bio.035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lanosterol 14 α-demethylase (CYP51) plays a crucial role in cholesterol biosynthesis. In gamete development, CYP51 is involved in initiating meiosis resumption in oocytes through its product, meiosis activating sterol (MAS). In this study, CYP51 was observed to localize within the nucleus of germ cells undergoing meiotic prophase I. Following the addition of retinoic acid (RA) to induce meiosis or the RA receptor pan-antagonist AGN193109 to block meiosis in fetal ovaries, the translocation of CYP51 into the nucleus of oocytes was advanced or delayed, respectively. In addition, treatment with Cyp51-siRNA or RS21745, a specific CYP51 inhibitor, significantly delayed the meiotic progression of oocytes in the ovary, with most oocytes arresting at the zygotene stage, and likewise, significantly reduced perinatal primordial follicle formation. Furthermore, inhibition of CYP51 is correlated to significantly decreased expression of REC8 and STAG3, both of which are meiosis-specific cohesin subunits. To sum up, RA-induced CYP51 nuclear translocation is critical for oocytes meiotic progression, and consequently folliculogenesis, which might act through impacting the expression of meiosis-specific cohesins REC8 and STAG3. Summary: CYP51 displays cytoplasm-to-nucleus translocation in germ cells in mice. CYP51 participates in germ cell meiotic progression and folliculogenesis via regulating the expression of cohesin REC8 and STAG3.
Collapse
Affiliation(s)
- Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengpin Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yijing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Guo
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - JinRui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Mengye Yang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Ma G, Zhang W, Liu L, Chao WS, Gu YQ, Qi L, Xu SS, Cai X. Cloning and characterization of the homoeologous genes for the Rec8-like meiotic cohesin in polyploid wheat. BMC PLANT BIOLOGY 2018; 18:224. [PMID: 30305022 PMCID: PMC6180652 DOI: 10.1186/s12870-018-1442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division. The Rec8-like genes and cohesins have been cloned and characterized in diploid models, but not in polyploids. The present study aimed to clone the homoeologous genes (homoeoalleles) for Rec8-like cohesin in polyploid wheat, an important food crop for humans, and to characterize their structure and function under a polyploid condition. RESULTS We cloned two Rec8-like homoeoalleles from tetraploid wheat (TtRec8-A1 and TtRec8-B1) and one from hexaploid wheat (TaRec8-D1), and performed expression and functional analyses of the homoeoalleles. Also, we identified other two Rec8 homoeoalleles in hexaploid wheat (TaRec8-A1 and TaRec8-B1) and the one in Aegilops tauschii (AetRec8-D1) by referencing the DNA sequences of the Rec8 homoeoalleles cloned in this study. The coding DNA sequences (CDS) of these six Rec8 homoeoalleles are all 1,827 bp in length, encoding 608 amino acids. They differed from each other primarily in introns although single nucleotide polymorphisms were detected in CDS. Substantial difference was observed between the homoeoalleles from the subgenome B (TtRec8-B1 and TaRec8-B1) and those from the subgenomes A and D (TtRec8-A1, TaRec8-A1, and TaRec8-D1). TtRec8-A1 expressed dominantly over TtRec8-B1, but comparably to TaRec8-D1, in polyploid wheat. In addition, we developed the antibody against wheat Rec8 and used the antibody to detect Rec8 cohesin in the Western blotting and subcellular localization analyses. CONCLUSIONS The Rec8 homoeoalleles from the subgenomes A and D are transcriptionally more active than the one from the subgenome B in polyploid wheat. The structural variation and differential expression of the Rec8 homoeoalleles indicate a unique cross-genome coordination of the homoeologous genes in polyploid wheat, and imply the distinction of the wheat subgenome B from the subgenomes A and D in the origin and evolution.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Liwang Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- Present address: National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wun S. Chao
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Yong Qiang Gu
- USDA-ARS, Western Regional Research Center, Albany, CA 94710 USA
| | - Lili Qi
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Steven S. Xu
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo, ND 58108 USA
| |
Collapse
|
31
|
Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. FRONTIERS IN PLANT SCIENCE 2018; 9:880. [PMID: 30013585 PMCID: PMC6036140 DOI: 10.3389/fpls.2018.00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Meiosis, the type of cell division that halves the chromosome number, shows a considerable degree of diversity among species. Unraveling molecular mechanisms of the meiotic machinery has been mainly based on meiotic mutants, where the effects of a change were assessed on chromosomes of the particular species. An alternative approach is to study the meiotic behavior of the chromosomes introgressed into different genetic backgrounds. As an allohexaploid, common wheat tolerates introgression of chromosomes from related species, such as rye. The behavior of individual pairs of rye homologues added to wheat has been monitored in meiotic prophase I and metaphase I. Chromosome 4R increased its length in early prophase I much more than other chromosomes studied, implying chromosome specific patterns of chromatin organization. Chromosome conformation affected clustering of telomeres but not their dispersion. Telomeres of the short arm of submetacentric chromosomes 4R, 5R, and 6R failed more often to be included in the telomere cluster either than the telomeres of the long arms or telomeres of metacentrics such as 2R, 3R, and 7R. The disturbed migration of the telomeres of 5RS and 6RS was associated with failure of synapsis and chiasma formation. However, despite the failed convergence of its telomere, the 4RS arm developed normal synapsis, perhaps because the strong increase of its length in early prophase I facilitated homologous encounters in intercalary regions. Surprisingly, chiasma frequencies in both arms of 4R were reduced. Similarly, the short arm of metacentric chromosome 2R often failed to form chiasmata despite normal synapsis. Chromosomes 1R, 3R, and 7R showed a regular meiotic behavior. These observations are discussed in the context of the behavior that these chromosomes show in rye itself.
Collapse
|
32
|
Fouché S, Plissonneau C, McDonald BA, Croll D. Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici. Genome Biol Evol 2018; 10:1416-1429. [PMID: 29850789 PMCID: PMC6007412 DOI: 10.1093/gbe/evy100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Meiosis is one of the most conserved molecular processes in eukaryotes. The fidelity of pairing and segregation of homologous chromosomes has a major impact on the proper transmission of genetic information. Aberrant chromosomal transmission can have major phenotypic consequences, yet the mechanisms are poorly understood. Fungi are excellent models to investigate processes of chromosomal transmission, because many species have highly polymorphic genomes that include accessory chromosomes. Inheritance of accessory chromosomes is often unstable and chromosomal losses have little impact on fitness. We analyzed chromosomal inheritance in 477 progeny coming from two crosses of the fungal wheat pathogen Zymoseptoria tritici. For this, we developed a high-throughput screening method based on restriction site-associated DNA sequencing that generated dense coverage of genetic markers along each chromosome. We identified rare instances of chromosomal duplications (disomy) in core chromosomes. Accessory chromosomes showed high overall frequencies of disomy. Chromosomal rearrangements were found exclusively on accessory chromosomes and were more frequent than disomy. Accessory chromosomes present in only one of the parents in an analyzed cross were inherited at significantly higher rates than the expected 1:1 segregation ratio. Both the chromosome and the parental background had significant impacts on the rates of disomy, losses, rearrangements, and distorted inheritance. We found that chromosomes with higher sequence similarity and lower repeat content were inherited more faithfully. The large number of rearranged progeny chromosomes identified in this species will enable detailed analyses of the mechanisms underlying chromosomal rearrangement.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Switzerland
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| |
Collapse
|
33
|
Zeng X, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Wu G, Yan X. Nuclear Envelope-Associated Chromosome Dynamics during Meiotic Prophase I. Front Cell Dev Biol 2018; 5:121. [PMID: 29376050 PMCID: PMC5767173 DOI: 10.3389/fcell.2017.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Chromosome dynamics during meiotic prophase I are associated with a series of major events such as chromosomal reorganization and condensation, pairing/synapsis and recombination of the homologs, and chromosome movements at the nuclear envelope (NE). The NE is the barrier separating the nucleus from the cytoplasm and thus plays a central role in NE-associated chromosomal movements during meiosis. Previous studies have shown in various species that NE-linked chromosome dynamics are actually driven by the cytoskeleton. The linker of nucleoskeleton and cytoskeleton (LINC) complexes are important constituents of the NE that facilitate in the transfer of cytoskeletal forces across the NE to individual chromosomes. The LINCs consist of the inner and outer NE proteins Sad1/UNC-84 (SUN), and Klarsicht/Anc-1/Syne (KASH) domain proteins. Meiosis-specific adaptations of the LINC components and unique modifications of the NE are required during chromosomal movements. Nonetheless, the actual role of the NE in chromosomic dynamic movements in plants remains elusive. This review summarizes the findings of recent studies on meiosis-specific constituents and modifications of the NE and corresponding nucleoplasmic/cytoplasmic adaptors being involved in NE-associated movement of meiotic chromosomes, as well as describes the potential molecular network of transferring cytoplasm-derived forces into meiotic chromosomes in model organisms. It helps to gain a better understanding of the NE-associated meiotic chromosomal movements in plants.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
34
|
Stevison LS, Sefick S, Rushton C, Graze RM. Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160459. [PMID: 29109222 PMCID: PMC5698621 DOI: 10.1098/rstb.2016.0459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit 'plastic' responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscuraThis article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stephen Sefick
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chase Rushton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
35
|
Exiting prophase I: no clear boundary. Curr Genet 2017; 64:423-427. [PMID: 29071381 DOI: 10.1007/s00294-017-0771-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
The meiotic cell cycle provides a unique model to study the relationship between recombinational DNA repair and the cell cycle, since homologous recombination, induced by programmed DNA double-strand breaks (DSBs), is integrated as an essential step during meiosis. The pachytene checkpoint, which is situated towards the end of meiotic prophase I, coordinates homologous recombination and cell cycle progression, similar to the DNA damage checkpoint mechanisms operating in vegetative cells. However, there are a number of features unique to meiosis, making the system optimized for the purpose of meiosis. Our recent work highlights the involvement of three major cell cycle kinases, Dbf4-dependent Cdc7 kinase, Polo kinase and CDK, in coordinating homologous recombination and the meiotic cell cycle. In this review, we will discuss the unique interplay between meiotic cell cycle control and homologous recombination during meiosis I.
Collapse
|
36
|
Wang RJ, Payseur BA. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island. Genetics 2017; 206:1841-1852. [PMID: 28576862 PMCID: PMC5560792 DOI: 10.1534/genetics.117.202382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice (Mus musculus domesticus) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci.
Collapse
Affiliation(s)
- Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
37
|
Argunhan B, Leung WK, Afshar N, Terentyev Y, Subramanian VV, Murayama Y, Hochwagen A, Iwasaki H, Tsubouchi T, Tsubouchi H. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. EMBO J 2017; 36:2488-2509. [PMID: 28694245 DOI: 10.15252/embj.201695895] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4-dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo-like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4-Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double-strand breaks. Taken together, we propose that the concerted action of DDK, Polo-like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.
Collapse
Affiliation(s)
- Bilge Argunhan
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Wing-Kit Leung
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Negar Afshar
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Yaroslav Terentyev
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | | | - Yasuto Murayama
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomomi Tsubouchi
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK .,National Institute for Basic Biology, Okazaki, Japan
| | - Hideo Tsubouchi
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK .,National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
38
|
Suzuki S, Arai K, Munehara H. Karyological evidence of hybridogenesis in Greenlings (Teleostei: Hexagrammidae). PLoS One 2017; 12:e0180626. [PMID: 28678883 PMCID: PMC5498075 DOI: 10.1371/journal.pone.0180626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/18/2017] [Indexed: 11/18/2022] Open
Abstract
Two types of natural hybrids were discovered in populations of three Hexagrammos species (Teleostei: Hexagrammidae) distributed off the southern coast of Hokkaido in the North Pacific Ocean. Both hybrids reproduce by hybridogenesis, in which the maternal haploid genome is transmitted to offspring without recombination and the paternal haploid genome is eliminated during gametogenesis. While natural hybrids are unisexual and reproduce hemiclonally by backcrossing with the paternal species (BC-P), artificial F1-hybrids between the pure species produce recombinant gametes. Thus, despite having the same genome composition, the natural hybrids and the F1-hybrids are not genetically identical. Here, to clarify the differences between both hybrids, we examined the karyotypes of the three Hexagrammos species, their natural hybrids, the artificial F1-hybrids, and several backcrosses. Artificial F1-hybrids have karyotypes and chromosome numbers that are intermediate between those of the parental species. Conversely, the natural hybrids differed from F1-hybrids by having several large metacentric chromosomes and microchromosomes. Since the entire maternal haploid genome is inherited by the natural hybrids, maternal backcrosses (BC-M) between natural hybrids and males of the maternal species (H. octogrammus; Hoc) have a hemiclonal Hoc genome with large chromosomes from the mother and a normal Hoc genome from the father. However, the large chromosomes disappear in offspring of BC-M, probably due to fissuring during gametogenesis. Similarly, microsatellite DNA analysis revealed that chromosomes of BC-M undergo recombination. These findings suggest that genetic factors associated with hemiclonal reproduction may be located on the large metacentric chromosomes of natural hybrids.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Usujiri Fisheries Station, Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan
- * E-mail:
| | - Katsutoshi Arai
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hiroyuki Munehara
- Usujiri Fisheries Station, Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan
| |
Collapse
|
39
|
Lee WY, Lee R, Park HJ, Do JT, Park C, Kim JH, Jhun H, Lee JH, Hur T, Song H. Characterization of male germ cell markers in canine testis. Anim Reprod Sci 2017; 182:1-8. [DOI: 10.1016/j.anireprosci.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/27/2022]
|
40
|
Naseeb S, James SA, Alsammar H, Michaels CJ, Gini B, Nueno-Palop C, Bond CJ, McGhie H, Roberts IN, Delneri D. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. Int J Syst Evol Microbiol 2017. [PMID: 28639933 PMCID: PMC5817255 DOI: 10.1099/ijsem.0.002013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.
Collapse
Affiliation(s)
- Samina Naseeb
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
| | | | - Haya Alsammar
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
| | - Christopher J. Michaels
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
| | - Beatrice Gini
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
| | | | | | - Henry McGhie
- The Manchester Museum, The University of Manchester, Manchester M13 9PL, UK
| | | | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
- *Correspondence: Daniela Delneri,
| |
Collapse
|
41
|
Abstract
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.
Collapse
Affiliation(s)
- Michael J Smith
- Columbia University Medical Center, Department of Genetics and Development, New York, NY 10032, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics and Development, New York, NY 10032, USA.
| |
Collapse
|
42
|
Katsumata K, Nishi E, Afrin S, Narusawa K, Yamamoto A. Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis. Curr Genet 2017; 63:1037-1052. [PMID: 28493118 DOI: 10.1007/s00294-017-0699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.
Collapse
Affiliation(s)
- Kazuhiro Katsumata
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Eriko Nishi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sadia Afrin
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kaoru Narusawa
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ayumu Yamamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
43
|
Modulating Crossover Frequency and Interference for Obligate Crossovers in Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2017; 7:1511-1524. [PMID: 28315832 PMCID: PMC5427503 DOI: 10.1534/g3.117.040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiotic crossover frequencies show wide variation among organisms. But most organisms maintain at least one crossover per homolog pair (obligate crossover). In Saccharomyces cerevisiae, previous studies have shown crossover frequencies are reduced in the mismatch repair related mutant mlh3Δ and enhanced in a meiotic checkpoint mutant pch2Δ by up to twofold at specific chromosomal loci, but both mutants maintain high spore viability. We analyzed meiotic recombination events genome-wide in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ mutants to test the effect of variation in crossover frequency on obligate crossovers. mlh3Δ showed ∼30% genome-wide reduction in crossovers (64 crossovers per meiosis) and loss of the obligate crossover, but nonexchange chromosomes were efficiently segregated. pch2Δ showed ∼50% genome-wide increase in crossover frequency (137 crossovers per meiosis), elevated noncrossovers as well as loss of chromosome size dependent double-strand break formation. Meiotic defects associated with pch2∆ did not cause significant increase in nonexchange chromosome frequency. Crossovers were restored to wild-type frequency in the double mutant mlh3Δ pch2Δ (100 crossovers per meiosis), but obligate crossovers were compromised. Genetic interference was reduced in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ. Triple mutant analysis of mlh3Δ pch2Δ with other resolvase mutants showed that most of the crossovers in mlh3Δ pch2Δ are made through the Mus81-Mms4 pathway. These results are consistent with a requirement for increased crossover frequencies in the absence of genetic interference for obligate crossovers. In conclusion, these data suggest crossover frequencies and the strength of genetic interference in an organism are mutually optimized to ensure obligate crossovers.
Collapse
|
44
|
Abstract
The eukaryotic nucleus is enclosed by the nuclear envelope, which is perforated by the nuclear pores, the gateways of macromolecular exchange between the nucleoplasm and cytoplasm. The nucleoplasm is organized in a complex three-dimensional fashion that changes over time and in response to stimuli. Within the cell, the nucleus must be viewed as an organelle (albeit a gigantic one) that is a recipient of cytoplasmic forces and capable of morphological and positional dynamics. The most dramatic reorganization of this organelle occurs during mitosis and meiosis. Although many of these aspects are less well understood for the nuclei of plants than for those of animals or fungi, several recent discoveries have begun to place our understanding of plant nuclei firmly into this broader cell-biological context.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| | | | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
45
|
Construction of a High-Density American Cranberry ( Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage Mapping. G3-GENES GENOMES GENETICS 2017; 7:1177-1189. [PMID: 28250016 PMCID: PMC5386866 DOI: 10.1534/g3.116.037556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.
Collapse
|
46
|
Chaudhary N, Kumar G. Cytogenetical Study of Induced Desynaptic Variants in <i>Phaseolus vulgaris</i> L. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nitu Chaudhary
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| | - Girjesh Kumar
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| |
Collapse
|
47
|
Cavero S, Herruzo E, Ontoso D, San-Segundo PA. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. MICROBIAL CELL 2016; 3:606-620. [PMID: 28357333 PMCID: PMC5348980 DOI: 10.15698/mic2016.12.548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is
a surveillance mechanism that monitors critical processes, such as recombination
and chromosome synapsis, which are essential for proper distribution of
chromosomes to the meiotic progeny. Failures in these processes lead to the
formation of aneuploid gametes. Meiotic recombination occurs in the context of
chromatin; in fact, the histone methyltransferase Dot1 and the histone
deacetylase Sir2 are known regulators of the pachytene checkpoint in
Saccharomyces cerevisiae. We report here that Sas2-mediated
acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets,
modulates meiotic checkpoint activity in response to synaptonemal complex
defects. We show that, like sir2, the H4-K16Q
mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in
meiotic cell cycle progression imposed by the checkpoint in the
synapsis-defective zip1 mutant. We also demonstrate that, like
in dot1, zip1-induced phosphorylation of the
Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are
impaired in H4-K16 mutants. However, in contrast to
sir2 and dot1, the
H4-K16R and H4-K16Q mutations have only a
minor effect in checkpoint activation and localization of the nucleolar Pch2
checkpoint factor in ndt80-prophase-arrested cells. We also
provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and
H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic
chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this
meiotic quality control mechanism and that Sir2 impinges on additional targets
to fully activate the checkpoint.
Collapse
Affiliation(s)
- Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Department of Experimental and Health Sciences, Pompeu Fabra University, 08003-Barcelona, Spain
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
48
|
Lefrançois P, Rockmill B, Xie P, Roeder GS, Snyder M. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern. PLoS Genet 2016; 12:e1006347. [PMID: 27768699 PMCID: PMC5074576 DOI: 10.1371/journal.pgen.1006347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition.
Collapse
Affiliation(s)
- Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
- Faculty of Medicine University of Montreal, Montreal, CANADA
- * E-mail: (PL); (MS)
| | - Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
- Department of Molecular and Cell Biology University of California Berkeley, Berkeley, United States of America
| | - Pingxing Xie
- Faculty of Medicine McGill University Montreal, CANADA
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
| | - Michael Snyder
- Department of Genetics Stanford University School of Medicine Stanford, United States of America
- * E-mail: (PL); (MS)
| |
Collapse
|
49
|
Redgrove KA, Bernstein IR, Pye VJ, Mihalas BP, Sutherland JM, Nixon B, McCluskey A, Robinson PJ, Holt JE, McLaughlin EA. Dynamin 2 is essential for mammalian spermatogenesis. Sci Rep 2016; 6:35084. [PMID: 27725702 PMCID: PMC5057128 DOI: 10.1038/srep35084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
The dynamin family of proteins play important regulatory roles in membrane remodelling and endocytosis, especially within brain and neuronal tissues. In the context of reproduction, dynamin 1 (DNM1) and dynamin 2 (DNM2) have recently been shown to act as key mediators of sperm acrosome formation and function. However, little is known about the roles that these proteins play in the developing testicular germ cells. In this study, we employed a DNM2 germ cell-specific knockout model to investigate the role of DNM2 in spermatogenesis. We demonstrate that ablation of DNM2 in early spermatogenesis results in germ cell arrest during prophase I of meiosis, subsequent loss of all post-meiotic germ cells and concomitant sterility. These effects become exacerbated with age, and ultimately result in the demise of the spermatogonial stem cells and a Sertoli cell only phenotype. We also demonstrate that DNM2 activity may be temporally regulated by phosphorylation of DNM2 via the kinase CDK1 in spermatogonia, and dephosphorylation by phosphatase PPP3CA during meiotic and post-meiotic spermatogenesis.
Collapse
Affiliation(s)
- Kate A Redgrove
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Victoria J Pye
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessie M Sutherland
- School of Biomedical Sciences &Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Janet E Holt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
50
|
Nielsen AY, Gjerstorff MF. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. Int J Mol Sci 2016; 17:E890. [PMID: 27275820 PMCID: PMC4926424 DOI: 10.3390/ijms17060890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aaraby Yoheswaran Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| |
Collapse
|