1
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Jensen CC, Clements AN, Liou H, Ball LE, Bethard JR, Langlais PR, Toth RK, Chauhan SS, Casillas AL, Daulat SR, Kraft AS, Cress AE, Miranti CK, Mouneimne G, Rogers GC, Warfel NA. PIM1 phosphorylates ABI2 to enhance actin dynamics and promote tumor invasion. J Cell Biol 2023; 222:e202208136. [PMID: 37042842 PMCID: PMC10103708 DOI: 10.1083/jcb.202208136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/13/2023] Open
Abstract
Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Corbin C. Jensen
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Shailender S. Chauhan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Cindy K. Miranti
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Greg C. Rogers
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Jiang P, Tang S, Hudgins H, Smalligan T, Zhou X, Kamat A, Dharmarpandi J, Naguib T, Liu X, Dai Z. The Abl/Abi signaling links WAVE regulatory complex to Cbl E3 ubiquitin ligase and is essential for breast cancer cell metastasis. Neoplasia 2022; 32:100819. [PMID: 35839699 PMCID: PMC9287790 DOI: 10.1016/j.neo.2022.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
A Cbl-TKB binding motif regulates the stability of Abi and WAVE regulatory complex. Abl kinases serve as a switch to activate Cbl-mediated Abi/WRC degradation. Depletion of Abi1 impairs EGFR and Src family kinases signaling. Abi1 is essential for breast cancer cell invasion and lung metastasis.
The family of Abelson interactor (Abi) proteins is a component of WAVE regulatory complex (WRC) and a downstream target of Abelson (Abl) tyrosine kinase. The fact that Abi proteins also interact with diverse membrane proteins and intracellular signaling molecules places these proteins at a central position in the network that controls cytoskeletal functions and cancer cell metastasis. Here, we identified a motif in Abi proteins that conforms to consensus sequences found in a cohort of receptor and non-receptor tyrosine kinases that bind to Cbl-tyrosine kinase binding domain. The phosphorylation of tyrosine 213 in this motif is essential for Abi degradation. Double knockout of c-Cbl and Cbl B in Bcr-Abl-transformed leukemic cells abolishes Abi1, Abi2, and WAVE2 degradation. Moreover, knockout of Abi1 reduces Src family kinase Lyn activation in Bcr-Abl-positive leukemic cells and promotes EGF-induced EGF receptor downregulation in breast cancer cells. Importantly, Abi1 depletion impeded breast cancer cell invasion in vitro and metastasis in mouse xenografts. Together, these studies uncover a novel mechanism by which the WRC and receptor/non-receptor tyrosine kinases are regulated and identify Abi1 as a potential therapeutic target for metastatic breast cancer.
Collapse
Affiliation(s)
- Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Suni Tang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Hogan Hudgins
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Tate Smalligan
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Anuja Kamat
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Janaki Dharmarpandi
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Tarek Naguib
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX 79106, USA.
| |
Collapse
|
4
|
Faulkner J, Jiang P, Farris D, Walker R, Dai Z. CRISPR/CAS9-mediated knockout of Abi1 inhibits p185 Bcr-Abl-induced leukemogenesis and signal transduction to ERK and PI3K/Akt pathways. J Hematol Oncol 2020; 13:34. [PMID: 32276588 PMCID: PMC7147029 DOI: 10.1186/s13045-020-00867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abl interactor 1 (Abi1) is a downstream target of Abl tyrosine kinases and a component of the WAVE regulatory complex (WRC) that plays an important role in regulating actin cytoskeleton remodeling and membrane receptor signaling. While studies using short hairpin RNA (shRNA) have suggested that Abi1 plays a critical role in Bcr-Abl-induced leukemogenesis, the mechanism involved is not clear. Methods In this study, we knocked out Abi1 expression in p185Bcr-Abl-transformed hematopoietic cells using CRISPR/Cas9-mediated gene editing technology. The effects of Abi1 deficiency on actin cytoskeleton remodeling, the Bcr-Abl signaling, IL-3 independent growth, and SDF-induced chemotaxis in these cells were examined by various in vitro assays. The leukemogenic activity of these cells was evaluated by a syngeneic mouse transplantation model. Results We show here that Abi1 deficiency reduced the IL3-independent growth and SDF-1α-mediated chemotaxis in p185Bcr-Abl-transformed hematopoietic cells and inhibited Bcr-Abl-induced abnormal actin remodeling. Depletion of Abi1 also impaired the Bcr-Abl signaling to the ERK and PI3 kinase/Akt pathways. Remarkably, the p185Bcr-Abl-transformed cells with Abi1 deficiency lost their ability to develop leukemia in syngeneic mice. Even though these cells developed drug tolerance in vitro after prolonged selection with imatinib as their parental cells, the imatinib-tolerant cells remain incapable of leukemogenesis in vivo. Conclusions Together, this study highlights an essential role of Abi1 in Bcr-Abl-induced leukemogenesis and provides a model system for dissecting the Abi1 signaling in Bcr-Abl-positive leukemia.
Collapse
Affiliation(s)
- James Faulkner
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Delaney Farris
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Ryan Walker
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
5
|
Li X, Ortiz MA, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med (Maywood) 2020; 245:411-426. [PMID: 31996036 PMCID: PMC7082880 DOI: 10.1177/1535370220901683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the decades, many studies have illustrated the critical roles of Wnt signaling pathways in both developmental processes as well as tumorigenesis. Due to the complexity of Wnt signaling regulation, there are still questions to be addressed about ways cells are able to manipulate different types of Wnt pathways in order to fulfill the requirements for normal or cancer development. In this review, we will describe different types of Wnt signaling pathways and their roles in both normal developmental processes and their role in cancer development and progression. Additionally, we will briefly introduce new strategies currently in clinical trials targeting Wnt signaling pathway components for cancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A Ortiz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
HDAC6-an Emerging Target Against Chronic Myeloid Leukemia? Cancers (Basel) 2020; 12:cancers12020318. [PMID: 32013157 PMCID: PMC7072136 DOI: 10.3390/cancers12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Imatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer. This protein effectively intervenes in cellular activities by its primarily cytoplasmic localization. In this review, we will discuss the molecular characteristics of the HDAC6 protein, as well as its overexpression in CML leukemic stem cells, which make it a promising therapeutic target for the treatment of CML.
Collapse
|
7
|
Wang JL, Yan TT, Long C, Cai WW. Oncogenic function and prognostic significance of Abelson interactor 1 in hepatocellular carcinoma. Int J Oncol 2017; 50:1889-1898. [PMID: 28339046 DOI: 10.3892/ijo.2017.3920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of Abelson interactor 1 (ABI1) has been reported in multiple cancers. However, its clinical significance and potential biological roles in hepatocellular carcinoma (HCC) have not been fully elucidated. In this study, we found that ABI1 was obviously upregulated in HCC tissues compared with non-tumor tissues. Moreover, high ABI1 expression was significantly correlated with tumor size (P=0.041), tumor number (P<0.001), tumor encapsulation (P<0.001) and BCLC stage (P=0.010). Importantly, Kaplan-Meier survival analysis showed that increased ABI1 expression predicted shorter overall survival time (P<0.001) and a higher tendency of tumor recurrence (P=0.001) in HCC patients. Multivariate Cox regression analysis further confirmed high ABI1 expression was an independent predictor for both overall survival (HR=1.795, P=0.025) and early recurrence (HR=1.893, P=0.012) after surgical resection. Furthermore, in vitro studies indicated that overexpression of ABI1 induced an increase in cell proliferation, migration and invasion of HCC cells, whereas knockdown of ABI1 did the opposite. Xenograft mouse models verified the promoting effects of ABI1 on HCC growth and lung metastasis in vivo. Collectively, our findings indicated that ABI1 contributes to the development and progression of HCC as an oncogene and may serve as a valuable prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Ji-Long Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting-Ting Yan
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen-Wu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
8
|
Chorzalska A, Salloum I, Shafqat H, Khan S, Marjon P, Treaba D, Schorl C, Morgan J, Bryke CR, Falanga V, Zhao TC, Reagan J, Winer E, Olszewski AJ, Al-Homsi AS, Kouttab N, Dubielecka PM. Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia. Leukemia 2014; 28:2165-77. [PMID: 24699303 PMCID: PMC4185277 DOI: 10.1038/leu.2014.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells.
Collapse
Affiliation(s)
- A Chorzalska
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - I Salloum
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - H Shafqat
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - S Khan
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P Marjon
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - D Treaba
- Hematopathology Laboratories at Rhode Island Hospital and Miriam Hospital, Providence, RI, USA
| | - C Schorl
- Genomics Core Facility, Brown University, Providence, RI, USA
| | - J Morgan
- Flow Cytometry and Cell Sorting Core Facility, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Providence, RI, USA
| | - C R Bryke
- Cytogenetics, Quest Diagnostics Nichols Institute, Chantilly, VA, USA
| | - V Falanga
- 1] Department of Dermatology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA [2] Departments of Dermatology and Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - T C Zhao
- Cardiovascular Lab, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - J Reagan
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - E Winer
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University Warren Alpert School of Medicine, Providence, RI, USA
| | - A J Olszewski
- Memorial Hospital of Rhode Island, Brown University Warren Alpert School of Medicine, Pawtucket, RI, USA
| | - A S Al-Homsi
- Adult Blood and Marrow Transplantation, Spectrum Health, Michigan State University, Grand Rapids, MI, USA
| | - N Kouttab
- Department of Pathology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - P M Dubielecka
- Signal Transduction Laboratory, NIH Center of Biomedical Excellence (COBRE) for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
9
|
Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis 2014; 3:e90. [PMID: 24590311 PMCID: PMC3940921 DOI: 10.1038/oncsis.2014.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/08/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022] Open
Abstract
The tyrosine kinase inhibitor (TKI) imatinib has transformed the treatment and outlook of chronic myeloid leukemia (CML); however, the development of drug resistance and the persistence of TKI-resistant stem cells remain obstacles to eradicating the disease. Inhibition of proteasome activity with bortezomib has been shown to effectively induce apoptosis in TKI-resistant cells. In this study, we show that exposure to the next generation proteasome inhibitor carfilzomib is associated with a decrease in ERK signaling and increased expression of Abelson interactor proteins 1 and 2 (ABI-1/2). We also investigate the effect of carfilzomib in models of imatinib-sensitive and -resistant CML and demonstrate a potent reduction in proliferation and induction of apoptosis in a variety of models of imatinib-resistant CML, including primitive CML stem cells. Carfilzomib acts synergistically with the TKIs imatinib and nilotinib, even in imatinib-resistant cell lines. In addition, we found that the presence of immunoproteasome subunits is associated with an increased sensitivity to carfilzomib. The present findings provide a rational basis to examine the potential of carfilzomib in combination with TKIs as a potential therapy for CML, particularly in imatinib-resistant disease.
Collapse
|
10
|
Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014; 9:e87684. [PMID: 24523872 PMCID: PMC3921129 DOI: 10.1371/journal.pone.0087684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Kalra
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Beaton-Brown
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edward T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Lee SJ, Seo BR, Choi EJ, Koh JY. The role of reciprocal activation of cAbl and Mst1 in the oxidative death of cultured astrocytes. Glia 2014; 62:639-48. [PMID: 24464935 DOI: 10.1002/glia.22631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 01/05/2023]
Abstract
The protein kinase Mst1 (mammalian Sterile 20-like kinase 1) likely plays a role in oxidative neuronal cell death as a target of its activator, cAbl. We previously found that H2O2-induced death of astrocytes is mediated by cAbl in a metallothionein-3 (Mt3)-dependent manner. In the present study, we examined a possible role for Mst1 in the oxidative death of astrocytes. Treatment of cortical astrocytes with 170 µM H2O2 activated Mst1. Knockdown of Mst1 reduced H2O2-induced cell death, indicating that Mst1 activation contributes to astrocytic cell death. STI571, an inhibitor of cAbl, blocked induction/activation of Mst1 and H2O2-induced cell death. However, Mst1 silencing also inhibited induction/activation of cAbl, suggesting that the two kinases are regulated by a reciprocal activating mechanism. The zinc chelator TPEN blocked induction/activation of cAbl and Mst1, indicating that these phenomena are dependent on the rise of intracellular zinc. Moreover, H2O2 exposure did not increase free zinc levels in Mt3-null astrocytes, suggesting that the increased levels of free zinc were largely from Mt3. Consistent with the involvement of FoxO1/3, which may play a role in the Mst1-cell death cascade, we found an increase in the level of phosphorylated FoxO1/3 in H2O2-treated astrocytes. Moreover, inhibition of cAbl or Mst1 reversed this effect. The present results suggest the interesting possibility that cAbl and Mst1 are reciprocally activated under oxidative stress conditions in astrocytes. Both kinases appear to be regulated by changes in the levels of free zinc originating from Mt3 and contribute to oxidative cell death through a FoxO-dependent mechanism.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 138-736, Korea; Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | | | | | |
Collapse
|
12
|
Magill L, Walker B, Irvine AE. The Proteasome: A Novel Therapeutic Target in Haematopoietic Malignancy. Hematology 2013; 8:275-83. [PMID: 14530169 DOI: 10.1080/10245330310001604755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The proteasome plays a key role in regulating protein degradation in eukaryotic cells. A range of synthetic inhibitors of proteasome activity have been developed which have helped elucidate its role in the cell. These inhibitors have selectively induced apoptosis in malignant cells in vitro suggesting that the proteasome may be a novel therapeutic target. First generation proteasome inhibitors are currently showing promise in phase II/III clinical trials for patients with multiple myeloma.
Collapse
Affiliation(s)
- Laura Magill
- Department of Haemotology, Queen's University of Belfast, UK
| | | | | |
Collapse
|
13
|
Mendoza MC. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Dev Biol 2013; 24:272-9. [PMID: 23354023 DOI: 10.1016/j.semcdb.2013.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
Abstract
The WAVE2 regulatory complex (WRC) induces actin polymerization by activating the actin nucleator Arp2/3. Polymerizing actin pushes against the cell membrane and induces dramatic edge protrusions. In order to properly control such changes in cell morphology and function, cells have evolved multiple methods to tightly regulate WRC and Arp2/3 activity in space and time. Of these mechanisms, phosphorylation plays a fundamental role in transmitting extracellular and intracellular signals to the WRC and the actin cytoskeleton. This review discusses the phosphorylation-based regulatory inputs into the WRC. Signaling pathways that respond to growth factors, chemokines, hormones, and extracellular matrix converge upon the WAVE and ABI components of the WRC. The Abl, Src, ERK, and PKA kinases promote complex activation through a WRC conformation change that permits interaction with the Arp2/3 complex and through WRC translocation to the cell edge. The neuron-specific CDK5 and constitutively active CK2 kinases inhibit WRC activation. These regulatory signals are integrated in space and time as they coalesce upon the WRC. The combination of WRC phosphorylation events and WRC activity is controlled by stimulus, cell type, and cell cycle-specific pathway activation and via pathway cross-inhibition and cross-activation.
Collapse
Affiliation(s)
- Michelle C Mendoza
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
14
|
Coenen EA, Zwaan CM, Meyer C, Marschalek R, Creutzig U, Pieters R, Bradtke J, van den Heuvel-Eibrink MM. Abl-interactor 2 (ABI2): a novel MLL translocation partner in acute myeloid leukemia. Leuk Res 2012; 36:e113-5. [PMID: 22304832 DOI: 10.1016/j.leukres.2012.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/02/2012] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
|
15
|
Zhuang C, Tang H, Dissanaike S, Cobos E, Tao Y, Dai Z. CDK1-mediated phosphorylation of Abi1 attenuates Bcr-Abl-induced F-actin assembly and tyrosine phosphorylation of WAVE complex during mitosis. J Biol Chem 2011; 286:38614-38626. [PMID: 21900237 DOI: 10.1074/jbc.m111.281139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordinated actin remodeling is crucial for cell entry into mitosis. The WAVE regulatory complex is a key regulator of actin assembly, yet how the WAVE signaling is regulated to coordinate actin assembly with mitotic entry is not clear. Here, we have uncovered a novel mechanism that regulates the WAVE complex at the onset of mitosis. We found that the Bcr-Abl-stimulated F-actin assembly is abrogated during mitosis. This mitotic inhibition of F-actin assembly is accompanied by an attenuation of Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex. We identified serine 216 of Abi1 as a target of CDK1/cyclin B kinase that is phosphorylated in cells at the onset of mitosis. The Abi1 phosphorylated on serine 216 displayed greatly reduced tyrosine phosphorylation in the hematopoietic cells transformed by Bcr-Abl. Moreover, a phosphomimetic mutation of serine 216 to aspartic acid in Abi1 was sufficient to attenuate Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex and F-actin assembly. Ectopic expression of Abi1 with serine 216 mutations interfered with cell cycle progression. Together, these data show that CDK1-mediated phosphorylation of serine 216 in Abi1 serves as a regulatory mechanism that may contribute to coordinated actin cytoskeleton remodeling during mitosis.
Collapse
Affiliation(s)
- Chunmei Zhuang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Hongxing Tang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
16
|
Santos FPS, Kantarjian H, McConkey D, O'Brien S, Faderl S, Borthakur G, Ferrajoli A, Wright J, Cortes J. Pilot study of bortezomib for patients with imatinib-refractory chronic myeloid leukemia in chronic or accelerated phase. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2011; 11:355-60. [PMID: 21816374 PMCID: PMC4405186 DOI: 10.1016/j.clml.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/21/2010] [Indexed: 10/17/2022]
Abstract
BACKGROUND Proteasome inhibitors are anticancer compounds that disrupt the proteolytic activity of the proteasome and lead to tumor cell growth arrest and apoptosis. Bortezomib is a proteasome inhibitor that is currently approved for use in multiple myeloma (MM) and mantle-cell lymphoma. It induces apoptosis of chronic myeloid leukemia (CML) cells in vitro, but the activity of bortezomib in patients with imatinib-resistant CML is unknown. METHODS We conducted a pilot trial to evaluate the activity of single-agent bortezomib in CML. Seven patients with imatinib-refractory CML were treated with bortezomib at a dose of 1.5 mg/m2 on days 1, 4, 8, and 11 every 3 weeks. RESULTS The median number of cycles received was 2. No patient had a hematologic or cytogenetic response. Three patients had a temporary decrease in basophil counts associated with therapy with bortezomib. Six patients experienced grade 3/4 nonhematologic toxicities. CONCLUSION Bortezomib had minimal efficacy and considerable toxicity in patients with imatinib-refractory CML. Further studies should focus on alternative approaches to using proteasome inhibitors in the treatment of CML, such as in combination with tyrosine kinase inhibitors (TKIs) or as a strategy to eradicate leukemic stem cells.
Collapse
Affiliation(s)
- Fabio P S Santos
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - David McConkey
- Department of Cancer Biology, University of Texas – M.D. Anderson Cancer, Houston, Texas, USA
| | - Susan O'Brien
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Faderl
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| | - John Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Jorge Cortes
- Department of Leukemia, University of Texas - M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Janas JA, Van Aelst L. Oncogenic tyrosine kinases target Dok-1 for ubiquitin-mediated proteasomal degradation to promote cell transformation. Mol Cell Biol 2011; 31:2552-65. [PMID: 21536658 PMCID: PMC3133381 DOI: 10.1128/mcb.05045-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/20/2011] [Indexed: 01/11/2023] Open
Abstract
Cellular transformation induced by oncogenic tyrosine kinases is a multistep process involving activation of growth-promoting signaling pathways and inactivation of suppressor molecules. Dok-1 is an adaptor protein that acts as a negative regulator of tyrosine kinase-initiated signaling and opposes oncogenic tyrosine kinase-mediated cell transformation. Findings that its loss facilitates transformation induced by oncogenic tyrosine kinases suggest that Dok-1 inactivation could constitute an intermediate step in oncogenesis driven by these oncoproteins. However, whether Dok-1 is subject to regulation by oncogenic tyrosine kinases remained unknown. In this study, we show that oncogenic tyrosine kinases, including p210(bcr-abl) and oncogenic forms of Src, downregulate Dok-1 by targeting it for degradation through the ubiquitin-proteasome pathway. This process is dependent on the tyrosine kinase activity of the oncoproteins and is mediated primarily by lysine-dependent polyubiquitination of Dok-1. Importantly, restoration of Dok-1 levels strongly suppresses transformation of cells expressing oncogenic tyrosine kinases, and this suppression is more pronounced in the context of a Dok-1 mutant that is largely refractory to oncogenic tyrosine kinase-induced degradation. Our findings suggest that proteasome-mediated downregulation of Dok-1 is a key mechanism by which oncogenic tyrosine kinases overcome the inhibitory effect of Dok-1 on cellular transformation and tumor progression.
Collapse
Affiliation(s)
- Justyna A. Janas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| |
Collapse
|
18
|
SH2-containing inositol 5'-phosphatase inhibits transformation of Abelson murine leukemia virus. J Virol 2011; 85:9239-42. [PMID: 21697469 DOI: 10.1128/jvi.05115-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) transforms pre-B cells. Transformation requires the phosphatidylinositol 3-kinase (PI3K) pathway. This pathway is antagonized by SH2-containing inositol 5'-phosphatase (SHIP), raising the possibility that v-Abl modulates PI3K signaling through SHIP. Consistent with this, we show that v-Abl expression reduces levels of full-length p145 SHIP in a v-Abl kinase activity-dependent fashion. This event requires signals from the Abl SH2 domain but not the carboxyl terminus. Forced expression of full-length SHIP significantly reduces Ab-MLV pre-B-cell transformation. Therefore, reduction of SHIP protein by v-Abl is a critical component in Ab-MLV transformation.
Collapse
|
19
|
Expression of Abl interactor 1 and its prognostic significance in breast cancer: a tissue-array-based investigation. Breast Cancer Res Treat 2010; 129:373-86. [PMID: 21046228 DOI: 10.1007/s10549-010-1241-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
Abl interactor 1 (Abi1) is an adaptor protein involved in cell migration. Previous in vitro work suggested that Abi1 is a regulator of breast cancer proliferation, migration, and invasion. In the present study, we explore the expression of Abi1 and its downstream effector phospho-Akt (p-Akt) in a series of breast cancers and correlate their expression with clinicopathological and survival data. Using tissue microarrays, 988 patients with invasive breast carcinoma were evaluated by immunohistochemistry. Statistical correlation was performed to determine associations between Abi1 and p-Akt expression and standard breast clinicopathological factors. The prognostic value of Abi1 and p-Akt for disease-free (DFS) and overall survival (OS) was also evaluated. Abi1 expression was demonstrated in 33.7% (314/933) of invasive carcinomas, while p-Akt was expressed in 46.7% (441/944). There was a significant association between Abi1 and p-Akt expression (P=0.001). Abi1 expression showed significant positive correlation with older age at diagnosis and the Ki67 index. Most importantly, it was demonstrated to be an independent predictor of both DFS and OS (HR = 1.6 and 1.5, P<0.001, respectively). There was no association between p-Akt expression and survival. To the best of our knowledge, this is the first study evaluating Abi1 expression in a large group of breast cancers. Our analysis demonstrated that tumors expressing high levels of Abi1 are significantly associated with early recurrence and worse survival on multivariate analysis. This suggests that Abi1 expression has potential as a molecular marker to refine outcome prediction in breast cancer patients.
Collapse
|
20
|
Cui M, Yu W, Dong J, Chen J, Zhang X, Liu Y. Downregulation of ABI1 expression affects the progression and prognosis of human gastric carcinoma. Med Oncol 2010; 27:632-639. [PMID: 19554484 DOI: 10.1007/s12032-009-9260-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 06/15/2009] [Indexed: 01/24/2023]
Abstract
Abelson interactor protein-1 (ABI1) is a promising candidate tumor suppressor, and plays critical roles both in the pathogenesis of BCR-Abl-induced leukemia and in the spread of several solid tumors. The expression of ABI1 and its role in cancer progression and prognosis are largely unknown in the majority of solid tumors, including gastric cancer. In this study, we analyzed the correlation between ABI1 expression and the clinicopathological characteristics, tumor progression, and prognosis of patients with gastric carcinoma. Tissue specimens were from 103 gastric cancer patients who underwent gastrectomy in our hospital between January 2000 and December 2007. Among them 59 tumor tissue samples were matched with normal tissue samples. The expression of ABI1 protein was measured using immunohistochemical staining of paraffin-embedded tissue specimens. Meanwhile, quantitative real-time RT-PCR and Western blotting were used to identify the expression of ABI1 in human gastric normal mucosal cell line (GES-1) and gastric cancer cell lines (N87, AGS). We performed a statistical analysis of the potential correlation between ABI1 expression and the patients' clinicopathological characteristics, 5-year survival, and median survival time. The immunohistochemical staining results of 59 patients showed that ABI1 was expressed in 28.8% (17/59) of gastric cancer tissues, compared to 91.5% (54/59) of normal samples. ABI1 expression in 103 patients was strongly correlated with tumor differentiation, clinical stage, and lymph node status (P < 0.01). The 5-year survival rate was 15.3% in the ABI1-negative group and 63.7% in the ABI1-positive group. Median survival time in the ABI1-negative and ABI1-positive groups was 25.0 months (95% CI: 19.7-30.3) and 74.0 months (95% CI: 54.6-93.3), respectively. There was a significant difference between the two groups (chi(2) = 10.888, P = 0.001). Furthermore, we found that ABI1 expressed lowly in poor differentiated AGS, whereas highly in GES-1 and well-differentiated N87. Downregulation of ABI1 expression in human gastric carcinoma may play a critical role in tumor progression and in determining patient prognosis. ABI1 may be a useful diagnostic or prognostic molecular biomarker, and might be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Meihua Cui
- Department of Gastroenterology, People's Hospital, Peking University, 100044, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Ciarcia R, d'Angelo D, Pacilio C, Pagnini D, Galdiero M, Fiorito F, Damiano S, Mattioli E, Lucchetti C, Florio S, Giordano A. Dysregulated calcium homeostasis and oxidative stress in chronic myeloid leukemia (CML) cells. J Cell Physiol 2010; 224:443-53. [PMID: 20432440 DOI: 10.1002/jcp.22140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder caused by the oncogenic activity of the Bcr-Abl protein, a deregulated tyrosine kinase. Calcium may act directly on cellular enzymes and in conjunction with other cellular metabolites, such as cyclic nucleotides, to regulate cell functions. Alteration in the ionized calcium concentration in the cytosol has been implicated in the initiation of secretion, contraction, and cell proliferation as well as the production of reactive oxygen species (ROS) has been correlates with normal cell proliferation through activation of growth-related signaling pathways. In this study we evaluated in peripheral blood leukocytes from CML patients the role of the balance between intracellular calcium and oxidative stress in CML disease in order to identify possible therapeutic targets in patients affected by this pathology. Our results demonstrated that peripheral blood mononuclear cells derived from CML patients displayed decreased intracellular calcium [Ca(2+)](i) fluxes both after InsP(3) as well as ATP and ionomycin (IONO) administration. CML cells showed lower levels of superoxide dismutase (SOD) activity and significantly higher malondialdehyde levels (MDA) than peripheral blood mononuclear cells derived from control patients. Finally we showed that resveratrol is able to down-regulate InsP3 and ATP effects on intracellular calcium [Ca(2+)](i) fluxes as well as the effects of ATP and IONO on oxidative stress in CML cells.
Collapse
Affiliation(s)
- Roberto Ciarcia
- Department of Structures, Functions and Biological Technologies, School of Veterinary Medicine, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ruschmann J, Ho V, Antignano F, Kuroda E, Lam V, Ibaraki M, Snyder K, Kim C, Flavell RA, Kawakami T, Sly L, Turhan AG, Krystal G. Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp Hematol 2010; 38:392-402, 402.e1. [PMID: 20304029 DOI: 10.1016/j.exphem.2010.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The activity of the SH2-containing-phosphatidylinositol-5'-phosphatase (SHIP, also known as SHIP1), a critical hematopoietic-restricted negative regulator of the PI3 kinase (PI3K) pathway, is regulated in large part via its protein levels. We sought to determine the mechanism(s) involved in its downregulation by BCR-ABL and by interleukin (IL)-4. MATERIALS AND METHODS We used Ba/F3(p210-tetOFF) cells to study the downregulation of SHIP by BCR-ABL and bone marrow-derived macrophages to study SHIP's downregulation by IL-4. RESULTS We show herein that BCR-ABL downregulates SHIP, but not SHIP2 or PTEN, and this can be blocked with the Src kinase inhibitor PP2, which inhibits the tyrosine phosphorylation of SHIP, or with the proteasomal inhibitor MG-132. We also show, using anti-SHIP immunoprecipitates, that c-Cbl and Cbl-b are associated with SHIP and that BCR-ABL induces SHIP's polyubiquitination. This ubiquitination can be blocked with PP2, consistent with the tyrosine phosphorylation of SHIP acting as a signal for its ubiquitination. In bone marrow-derived macrophages, IL-4 also leads to the proteasomal degradation of SHIP but, unlike in Ba/F3(p210-tetOFF) cells, SHIP2 is also proteasomally degraded and the degradation of both inositol phosphatases can be prevented with PP2 or MG-132. CONCLUSION Our results suggest that SHIP protein levels can be reduced via BCR-ABL and/or Src family member-induced tyrosine phosphorylation of SHIP because this triggers its polyubiquitination and degradation within the proteasome.
Collapse
Affiliation(s)
- Jens Ruschmann
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun X, Li C, Zhuang C, Gilmore WC, Cobos E, Tao Y, Dai Z. Abl interactor 1 regulates Src-Id1-matrix metalloproteinase 9 axis and is required for invadopodia formation, extracellular matrix degradation and tumor growth of human breast cancer cells. Carcinogenesis 2010; 30:2109-16. [PMID: 19843640 DOI: 10.1093/carcin/bgp251] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abl interactor 1 (Abi1) is a key regulator of actin polymerization/depolymerization. The involvement of Abi1 in the development of abnormal cytoskeletal functions of cancer cells has recently been reported. It remains unclear, however, how Abi1 exerts its effects in tumor cells and whether it contributes to tumor progression in vivo. We report here a novel function for Abi1 in the regulation of invadopodia formation and Src-inhibitor of differentiation protein 1 (Id1)-matrix metalloproteinase (MMP)-9 pathway in MDA-MB-231 human breast cancer cells. Abi1 is found in the invadopodia of MDA-MB-231 cells. Epigenetic silencing of the Abi1 gene by short hairpin RNA in MDA-MB-231 cells impaired the formation of invadopodia and resulted in downregulation of the Src activation and Id1/MMP-9 expression. The decreased invadopodia formation and MMP-9 expression correlate with a reduction in the ability of these cells to degrade extracellular matrix. Remarkably, the knockdown of Abi1 expression inhibited tumor cell proliferation and migration in vitro and slowed tumor growth in vivo. Taken together, these results indicate that the Abi1 signaling plays a critical role in breast cancer progression and suggest that this pathway may serve as a therapeutic target for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Xiaolin Sun
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mancini M, Veljkovic N, Corradi V, Zuffa E, Corrado P, Pagnotta E, Martinelli G, Barbieri E, Santucci MA. 14-3-3 ligand prevents nuclear import of c-ABL protein in chronic myeloid leukemia. Traffic 2009; 10:637-47. [PMID: 19220809 DOI: 10.1111/j.1600-0854.2009.00897.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we demonstrated that the 'loss of function' of not-rearranged c-ABL in chronic myeloid leukemia (CML) is promoted by its cytoplasmic compartmentalization bound to 14-3-3 sigma scaffolding protein. In particular, constitutive tyrosine kinase (TK) activity of p210 BCR-ABL blocks c-Jun N-terminal kinase (JNK) phosphorylation leading to 14-3-3 sigma phosphorylation at a critical residue (Ser(186)) for c-ABL binding in response to DNA damage. Moreover, it is associated with 14-3-3 sigma over-expression arising from epigenetic mechanisms (promoter hyper-acetylation). Accordingly, p210 BCR-ABL TK inhibition by the TK inhibitor Imatinib mesylate (IM) evokes multiple events, including JNK phosphorylation at Thr(183), p38 mitogen-activated protein kinase (MAPK) phosphorylation at Thr(180), c-ABL de-phosphorylation at Ser residues involved in 14-3-3 binding and reduction of 14-3-3 sigma expression, that let c-ABL release from 14-3-3 sigma and nuclear import, and address BCR-ABL-expressing cells towards apoptotic death. Informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein interactions based on their structure, and mathematical filtering in cross spectrum (CS) analysis identified 14-3-3 sigma/c-ABL binding sites. Further investigation on CS profiles of c-ABL- and p210 BCR-ABL-containing complexes revealed the mechanism likely involved 14-3-3 precluded phosphorylation in CML cells.
Collapse
Affiliation(s)
- Manuela Mancini
- Istituto di Ematologia e Oncologia Medica Lorenzo e Ariosto Serágnoli, University of Bologna-Medical School, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Proteasome proteolytic profile is linked to Bcr-Abl expression. Exp Hematol 2009; 37:357-66. [PMID: 19157685 DOI: 10.1016/j.exphem.2008.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We have previously demonstrated that proteasome activity is higher in bone marrow from patients with chronic myeloid leukemia (CML) than normal controls. This study investigates whether there is any relationship between Bcr-Abl expression and proteasome activity. MATERIALS AND METHODS Fluorogenic substrate assays and an activity-based probe were used to profile proteasome activity in CML cell-line models and the effect of the proteasome inhibitor BzLLLCOCHO on these cell-line models and primary CML cells was investigated. RESULTS We have demonstrated that oncogenic transformation by BCR-ABL is associated with an increase in proteasome proteolytic activity. Furthermore, small interfering RNA targeted against BCR-ABL reduces proteasome activity. In addition, we have found that Bcr-Abl-positive cells are more sensitive than Bcr-Abl-negative cells to induction of apoptosis by the proteasome inhibitor BzLLLCOCHO, and that sequential addition of imatinib followed by BzLLLCOCHO has an additive effect on the induction of apoptosis in Bcr-Abl-positive cells. Finally, we demonstrate that cell lines that become resistant to imatinib remain sensitive to proteasome inhibition. CONCLUSION This is the first time that a direct relationship has been demonstrated between BCR-ABL transformation and the enzymatic activity of the proteasome. Our results suggest that the proteasome might provide a useful therapeutic target in CML, particularly in those patients who have developed resistance to conventional treatment.
Collapse
|
26
|
Abstract
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Neuro-Oncology and Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer, Houston, Texas 77030;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
27
|
Wang XS, Zhang JW. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia. J Cell Mol Med 2008; 12:1445-55. [PMID: 18554315 PMCID: PMC3918060 DOI: 10.1111/j.1582-4934.2008.00386.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/05/2008] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, functional RNAs that interact with native coding mRNAs to cleave mRNA or repress translation. Several miRNAs contribute to normal haematopoietic processes and some miRNAs act both as tumour suppressors and oncogenes in the pathology of haematological malignancies. While most effort is engaged in identifying and investigating the target genes of miRNAs, miRNA gene promoter methylation or transcriptional regulation is another important field of investigation, since these two main mechanisms can form a regulatory circuit. This review focuses on recent researches on miRNAs with important roles in myeloid cells.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Wu Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Yu W, Sun X, Clough N, Cobos E, Tao Y, Dai Z. Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis 2008; 29:1717-1724. [PMID: 18453543 PMCID: PMC2527646 DOI: 10.1093/carcin/bgn098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 12/28/2022] Open
Abstract
Abl interactor (Abi) 1 was first identified as the downstream target of Abl tyrosine kinases and was found to be dysregulated in leukemic cells expressing oncogenic Bcr-Abl and v-Abl. Although the accumulating evidence supports a role of Abi1 in actin cytoskeleton remodeling and growth factor/receptor signaling, it is not clear how it contributes to Bcr-Abl-induced leukemogenesis. We show here that Abi1 gene silencing by short hairpin RNA attenuated the Bcr-Abl-induced abnormal actin remodeling, membrane-type 1 metalloproteinase clustering and inhibited cell adhesion and migration on fibronectin-coated surfaces. Although the knock down of Abi1 expression did not affect growth factor-independent growth of Bcr-Abl-transformed Ba/F3 cells in vitro, it impeded competitive expansion of these cells in non obese diabetic (NOD)/ severe combined immuno-deficiency (SCID) mice. Remarkably, the knock down of Abi1 expression in Bcr-Abl-transformed Ba/F3 cells impaired the leukemogenic potential of these cells in NOD/SCID mice. Abi1 contributes to Bcr-Abl-induced leukemogenesis in part through Src family kinases, as the knock down of Abi1 expression attenuates Bcr-Abl-stimulated activation of Lyn. Together, these data provide for the first time the direct evidence that supports a critical role of Abi1 pathway in the pathogenesis of Bcr-Abl-induced leukemia.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Cell Adhesion/physiology
- Cell Movement/physiology
- Cell Transformation, Neoplastic
- Cytoskeletal Proteins/antagonists & inhibitors
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Flow Cytometry
- Fusion Proteins, bcr-abl/physiology
- Gene Silencing
- Immunoprecipitation
- Leukemia/genetics
- Leukemia/pathology
- Matrix Metalloproteinase 14/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microscopy, Fluorescence
- Phosphorylation
- Precursor Cells, B-Lymphoid/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tyrosine/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Weidong Yu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Institute of Clinical Molecular Biology, People's Hospital, Peking University, Beijing 100044, People's Republic of China
| | - Xiaolin Sun
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Nancy Clough
- Division of Medical Oncology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80010, USA
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Stem Cell Transplant Program, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
- Stem Cell Transplant Program, Texas Tech University Health Sciences Center, 1400 Wallace Boulevard, Amarillo, TX 79106, USA
| |
Collapse
|
29
|
Wang C, Navab R, Iakovlev V, Leng Y, Zhang J, Tsao MS, Siminovitch K, McCready DR, Done SJ. Abelson interactor protein-1 positively regulates breast cancer cell proliferation, migration, and invasion. Mol Cancer Res 2007; 5:1031-9. [PMID: 17951403 DOI: 10.1158/1541-7786.mcr-06-0391] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abelson interactor protein-1 (ABI-1) is an adaptor protein involved in actin reorganization and lamellipodia formation. It forms a macromolecular complex containing Hspc300/WASP family verprolin-homologous proteins 2/ABI-1/nucleosome assembly protein 1/PIR121 or Abl/ABI-1/WASP family verprolin-homologous proteins 2 in response to Rho family-dependent stimuli. Due to its role in cell mobility, we hypothesized that ABI-1 has a role in invasion and metastasis. In the present study, we found that weakly invasive breast cancer cell lines (MCF-7, T47D, MDA-MB-468, SKBR3, and CAMA1) express lower levels of ABI-1 compared with highly invasive breast cancer cell lines (MDA-MB-231, MDA-MB-157, BT549, and Hs578T), which exhibit high ABI-1 levels. Using RNA interference, ABI-1 was stably down-regulated in MDA-MB-231, which resulted in decreased cell proliferation and anchorage-dependent colony formation and abrogation of lamellipodia formation on fibronectin. Down-regulation of ABI-1 decreased invasiveness and migration ability and decreased adhesion on collagen IV and actin polymerization in MDA-MB-231 cells. Additionally, compared with control parental cells, ABI-1 small interfering RNA-transfected cells showed decreased levels of phospho-PDK1, phospho-Raf, phospho-AKT, total AKT, and AKT1. These data suggest that ABI-1 plays an important role in the spread of breast cancer and that this role may be mediated via the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Chunjie Wang
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang CH, Lin TY, Pan RL, Juang JL. The Involvement of Abl and PTP61F in the Regulation of Abi Protein Localization and Stability and Lamella Formation in Drosophila S2 Cells. J Biol Chem 2007; 282:32442-52. [PMID: 17804420 DOI: 10.1074/jbc.m702583200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most aspects of cellular events are regulated by a series of protein phosphorylation and dephosphorylation processes. Abi (Abl interactor protein) functions as a substrate adaptor protein for Abl and a core member of the WAVE complex, relaying signals from Rac to Arp2/3 complex and regulating actin dynamics. It is known that the recruitment of Abi into the lamella promotes polymerization of actin, although how it does this is unclear. In this study, we found PTP61F, a Drosophila homolog of mammalian PTP1B, can reverse the Abl phosphorylation of Abi and colocalizes with Abi in Drosophila S2 cells. Abi can be translocalized from the cytosol to the cell membrane by either increasing Abl or reducing endogenous PTP61F. This reciprocal regulation of Abi phosphorylation is also involved in modulating Abi protein level, which is thought to affect the stability of the WAVE complex. Using mass spectrometry, we identified several important tyrosine phosphorylation sites in Abi. We compared the translocalization and protein half-life of wild type (wt) and phosphomutant Abi and their abilities to restore the lamellipodia structure of the Abi-reduced cells. We found the phosphomutant to have reduced ability to translocalize and to have a protein half-life shorter than that of wt Abi. We also found that although the wt Abi could fully restore the lamellipodia structure, the phosphomutant could not. Together, these findings suggest that the reciprocal regulation of Abi phosphorylation by Abl and PTP61F may regulate the localization and stability of Abi and may regulate the formation of lamella.
Collapse
Affiliation(s)
- Chiu-Hui Huang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | | | | |
Collapse
|
31
|
Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee CF, Blinco D, Okoniewski MJ, Miller CJ, Bitton DA, Spooncer E, Whetton AD. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 2007; 7:853-63. [PMID: 17951628 DOI: 10.1074/mcp.m700251-mcp200] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are a number of leukemogenic protein-tyrosine kinases (PTKs) associated with leukemic transformation. Although each is linked with a specific disease their functional activity poses the question whether they have a degree of commonality in their effects upon target cells. Exon array analysis of the effects of six leukemogenic PTKs (BCR/ABL, TEL/PDGFRbeta, FIP1/PDGFRalpha, D816V KIT, NPM/ALK, and FLT3ITD) revealed few common effects on the transcriptome. It is apparent, however, that proteome changes are not directly governed by transcriptome changes. Therefore, we assessed and used a new generation of iTRAQ tagging, enabling eight-channel relative quantification discovery proteomics, to analyze the effects of these six leukemogenic PTKs. Again these were found to have disparate effects on the proteome with few common targets. BCR/ABL had the greatest effect on the proteome and had more effects in common with FIP1/PDGFRalpha. The proteomic effects of the four type III receptor kinases were relatively remotely related. The only protein commonly affected was eosinophil-associated ribonuclease 7. Five of six PTKs affected the motility-related proteins CAPG and vimentin, although this did not correspond to changes in motility. However, correlation of the proteomics data with that from the exon microarray not only showed poor levels of correlation between transcript and protein levels but also revealed alternative patterns of regulation of the CAPG protein by different oncogenes, illustrating the utility of such a combined approach.
Collapse
Affiliation(s)
- Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, University of Manchester, Christie Hospital, Kinnaird House, Kinnaird Road, Manchester M204QL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanos BE, Pendergast AM. Abi-1 forms an epidermal growth factor-inducible complex with Cbl: role in receptor endocytosis. Cell Signal 2007; 19:1602-9. [PMID: 17395426 PMCID: PMC2703420 DOI: 10.1016/j.cellsig.2007.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 01/14/2023]
Abstract
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.
Collapse
Affiliation(s)
- Barbara E. Tanos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
33
|
Li Y, Clough N, Sun X, Yu W, Abbott BL, Hogan CJ, Dai Z. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway. J Cell Sci 2007; 120:1436-46. [PMID: 17389688 PMCID: PMC1950936 DOI: 10.1242/jcs.03430] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.
Collapse
Affiliation(s)
- Yingzhu Li
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Nancy Clough
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Xiaolin Sun
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Weidong Yu
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Brian L. Abbott
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Christopher J. Hogan
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Zonghan Dai
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
34
|
Tringali C, Lupo B, Anastasia L, Papini N, Monti E, Bresciani R, Tettamanti G, Venerando B. Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J Biol Chem 2007; 282:14364-72. [PMID: 17374613 DOI: 10.1074/jbc.m700406200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually "switched on" activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% and -80%) of the mRNA of the anti-apoptotic factors Bcl-XL and Bcl-2, respectively, and an almost total disappearance of Bcl-2 protein. In addition, gene expression and activity of Bcr-Abl underwent a 35% diminution, together with a marked decrease of Bcr-Abl-dependent Src and Lyn kinase activity. Thus, the antiapoptotic axis Bcr-Abl, Src, and Lyn, which stimulates the formation of Bcl-XL and Bcl-2, was remarkably weakened. The ultimate consequences of these modifications were an increased susceptibility to apoptosis of K562 cells and a marked reduction of their proliferation rate. The molecular link between Neu2 activity and Bcr-Abl signaling pathway may rely on the desialylation of some cytosolic glycoproteins. In fact, three cytosolic glycoproteins, in the range 45-66 kDa, showed a 50-70% decrease of their sialic acid content upon Neu2 expression, supporting their possible role as modulators of the Bcr-Abl complex.
Collapse
Affiliation(s)
- Cristina Tringali
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, LITA via Fratelli Cervi 93, Segrate, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M, Brors B, Pechtel S, Bork S, Koch A, Baer A, Rohr UP, Kobbe G, von Haeseler A, Gattermann N, Haas R, Kronenwett R. Molecular signature of CD34+ hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007; 21:494-504. [PMID: 17252012 DOI: 10.1038/sj.leu.2404549] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we provide a molecular signature of highly enriched CD34+ cells from bone marrow of untreated patients with chronic myelogenous leukemia (CML) in chronic phase in comparison with normal CD34+ cells using microarrays covering 8746 genes. Expression data reflected several BCR-ABL-induced effects in primary CML progenitors, such as transcriptional activation of the classical mitogen-activated protein kinase pathway and the phosphoinositide-3 kinase/AKT pathway as well as downregulation of the proapoptotic gene IRF8. Moreover, novel transcriptional changes in comparison with normal CD34+ cells were identified. These include upregulation of genes involved in the transforming growth factorbeta pathway, fetal hemoglobin genes, leptin receptor, sorcin, tissue inhibitor of metalloproteinase 1, the neuroepithelial cell transforming gene 1 and downregulation of selenoprotein P. Additionally, genes associated with early hematopoietic stem cells (HSC) and leukemogenesis such as HoxA9 and MEIS1 were transcriptionally activated. Differential expression of differentiation-associated genes suggested an altered composition of the CD34+ cell population in CML. This was confirmed by subset analyses of chronic phase CML CD34+ cells showing an increase of the proportion of megakaryocyte-erythroid progenitors, whereas the proportion of HSC and granulocyte-macrophage progenitors was decreased in CML. In conclusion, our results give novel insights into the biology of CML and could provide the basis for identification of new therapeutic targets.
Collapse
MESH Headings
- Antigens, CD34/analysis
- Apoptosis/genetics
- Cell Adhesion/genetics
- Cell Differentiation/genetics
- Cell Division/genetics
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/chemistry
- Humans
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/metabolism
- Leukemia, Myeloid, Chronic-Phase/pathology
- Neoplasm Proteins/analysis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/chemistry
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Leptin
- Signal Transduction/genetics
- Up-Regulation
Collapse
Affiliation(s)
- E Diaz-Blanco
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen X, Zhang J, Lee J, Lin PS, Ford JM, Zheng N, Zhou P. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol Cell 2006; 22:489-99. [PMID: 16713579 DOI: 10.1016/j.molcel.2006.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/02/2005] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
Damaged DNA binding proteins (DDBs) play a critical role in the initial recognition of UV-damaged DNA and mediate recruitment of nucleotide excision repair factors. Previous studies identified DDB2 as a target of the CUL-4A ubiquitin ligase. However, the biochemical mechanism governing DDB proteolysis and its underlying physiological function in the removal of UV-induced DNA damage are largely unknown. Here, we report that the c-Abl nonreceptor tyrosine kinase negatively regulates the repair of UV-induced photolesions on genomic DNA. Biochemical studies revealed that c-Abl promotes CUL-4A-mediated DDB ubiquitination and degradation in a manner that does not require its tyrosine kinase activity both under normal growth conditions and following UV irradiation. Moreover, c-Abl activates DDB degradation in part by alleviating the inhibitory effect of CAND1/TIP120A on CUL-4A. These results revealed a kinase-independent function of c-Abl in a ubiquitin-proteolytic pathway that regulates the damage recognition step of nucleotide excision repair.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Guerzoni C, Bardini M, Mariani SA, Ferrari-Amorotti G, Neviani P, Panno ML, Zhang Y, Martinez R, Perrotti D, Calabretta B. Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells. Blood 2006; 107:4080-9. [PMID: 16418324 PMCID: PMC1895282 DOI: 10.1182/blood-2005-08-3181] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 01/07/2006] [Indexed: 11/20/2022] Open
Abstract
Translational regulation by oncogenic proteins may be a rapid and efficient mechanism to modulate gene expression. We report here the identification of the CEBPB gene as a target of translational regulation in myeloid precursor cells transformed by the BCR/ABL oncogene. Expression of CEBPB was repressed in 32D-BCR/ABL cells and reinduced by imatinib (STI571) via a mechanism that appears to depend on expression of the CUG-repeat RNA-binding protein CUGBP1 and the integrity of the CUG-rich intercistronic region of c/ebpbeta mRNA. Constitutive expression or conditional activation of wild-type CEBPB induced differentiation and inhibited proliferation of 32D-BCR/ABL cells in vitro and in mice, but a DNA binding-deficient CEBPB mutant had no effect. The proliferation-inhibitory effect of CEBPB was, in part, mediated by the CEBPB-induced GADD45A gene. Because expression of CEBPB (and CEBPA) is low in the blast crisis (BC) stage of chronic myelogenous leukemia (CML) and is inversely correlated with BCR/ABL tyrosine kinase levels, these findings point to the therapeutic potential of restoring C/EBP activity in CML-BC and, perhaps, other types of acute leukemia.
Collapse
Affiliation(s)
- Clara Guerzoni
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, 233 South and 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Luo X, Levens E, Williams RS, Chegini N. The expression of Abl interactor 2 in leiomyoma and myometrium and regulation by GnRH analogue and transforming growth factor-β. Hum Reprod 2006; 21:1380-6. [PMID: 16488906 DOI: 10.1093/humrep/del011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Abelson (Abl) interactor 2 (Abi-2) has been considered as a key regulator of cell/tissue structural organization and is differentially expressed in leiomyomas. The objective of this study was to evaluate the expression of Abi-2 in leiomyoma/myometrium during the menstrual cycle and following GnRH analogue (GnRHa) therapy, as well as regulation by transforming growth factor (TGF)-beta1 in leiomyoma and myometrial smooth muscle cells (LSMC and MSMC). METHODS We used real-time PCR, Western blotting and immunohistochemistry to determine the expression of Abi-2 in paired leiomyoma and myometrium (n = 27) from proliferative (n = 8) and secretory (n = 12) phases of the menstrual cycle and from patients who received GnRHa therapy (n = 7). Time-dependent action of TGF-beta1 (2.5 ng/ml) and GnRHa (0.1 microM) on Abi-2 expression was determined in LSMC and MSMC. RESULTS Leiomyomas express elevated levels of Abi-2 as compared with myometrium from the proliferative but not the secretory phase of the menstrual cycle, with a significant reduction following GnRHa therapy (P < 0.05). Western blotting showed a similar trend in Abi-2 protein expression in leiomyoma/myometrial tissue extracts, which was immunolocalized in LSMC and MSMC, connective tissue fibroblasts and arterial walls. The expression of Abi-2 in LSMC and MSMC was increased by TGF-beta1 (2.5 ng/ml) and was inhibited by GnRHa (0.1 microM) in a time- and cell-dependent manner, and pretreatment with Smad3 SiRNA and U0126, an MEK-1/2 inhibitor, respectively, reversed their actions. CONCLUSION Based on the menstrual cycle-dependent expression, the influence of GnRHa therapy, and regulation by TGF-beta in LSMC/MSMC, we conclude that Abi-2 may have a key regulatory function in leiomyomas cellular/tissue structural organization during growth and regression.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S, Blanco ED, Roes N, Gräf T, Brors B, Eils R, Maercker C, Kobbe G, Gattermann N, Haas R. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 2005; 24:5313-24. [PMID: 15806158 DOI: 10.1038/sj.onc.1208596] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML) is a malignant disorder of the hematopoietic stem cell characterized by the BCR-ABL oncogene. We examined gene expression profiles of highly enriched CD34(+) hematopoietic stem and progenitor cells from patients with CML in chronic phase using cDNA arrays covering 1.185 genes. Comparing CML CD34(+) cells with normal CD34(+) cells, we found 158 genes which were significantly differentially expressed. Gene expression patterns reflected BCR-ABL-induced functional alterations such as increased cell-cycle and proteasome activity. Detoxification enzymes and DNA repair proteins were downregulated in CML CD34(+) cells, which might contribute to genetic instability. Decreased expression of junction plakoglobulin and CXC chemokine receptor 4 (CXCR-4) might facilitate the release of immature precursors from bone marrow in CML. GATA-2 was upregulated in CML CD34(+) cells, suggesting an increased self-renewal in comparison with normal CD34(+) cells. Moreover, we found upregulation of the proto-oncogene SKI and of receptors for neuromediators such as opioid mu1 receptor, GABA B receptor, adenosine A1 receptor, orexin 1 and 2 receptors and corticotropine-releasing hormone receptor. Treatment of CML progenitor cells with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) resulted in a dose-dependent significant inhibition of clonogenic growth by 40% at a concentration of 10(-5) M, which could be reversed by the equimolar addition of the receptor agonist 2-chloro-N6-cyclopentyladenosine (P<0.05). The incubation of normal progenitor cells with DPCPX resulted in an inhibition of clonogenic growth to a significantly lesser extent in comparison with CML cells (P<0.05), suggesting that the adenosine A1 receptor is of functional relevance in CML hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Ralf Kronenwett
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Andreu EJ, Lledó E, Poch E, Ivorra C, Albero MP, Martínez-Climent JA, Montiel-Duarte C, Rifón J, Pérez-Calvo J, Arbona C, Prósper F, Pérez-Roger I. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 2005; 65:3264-72. [PMID: 15833859 DOI: 10.1158/0008-5472.can-04-1357] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia (CML) is characterized by the expression of the BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show in both BCR-ABL cells (Mo7e-p210 and BaF/3-p210) and primary CML CD34+ cells that STI571 inhibition of BCR-ABL tyrosine kinase activity results in a G(1) cell cycle arrest mediated by the PI3K pathway. This arrest is associated with a nuclear accumulation of p27(Kip1) and down-regulation of cyclins D and E. As a result, there is a reduction of the cyclin E/Cdk2 kinase activity and of the retinoblastoma protein phosphorylation. By quantitative reverse transcription-PCR we show that BCR-ABL/PI3K regulates the expression of p27(Kip1) at the level of transcription. We further show that BCR-ABL also regulates p27(Kip1) protein levels by increasing its degradation by the proteasome. This degradation depends on the ubiquitinylation of p27(Kip1) by Skp2-containing SFC complexes: silencing the expression of Skp2 with a small interfering RNA results in the accumulation of p27(Kip1). We also demonstrate that BCR-ABL cells show transcriptional up-regulation of Skp2. Finally, expression of a p27(Kip1) mutant unable of being recognized by Skp2 results in inhibition of proliferation of BCR-ABL cells, indicating that the degradation of p27(Kip1) contributes to the pathogenesis of CML. In conclusion, these results suggest that BCR-ABL regulates cell cycle in CML cells at least in part by inducing proteasome-mediated degradation of the cell cycle inhibitor p27(Kip1) and provide a rationale for the use of inhibitors of the proteasome in patients with BCR-ABL leukemias.
Collapse
MESH Headings
- Benzamides
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle/drug effects
- Cell Growth Processes/physiology
- Cyclin-Dependent Kinase Inhibitor p27
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/physiology
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Piperazines
- Pyrimidines/pharmacology
- Retinoblastoma Protein/metabolism
- S-Phase Kinase-Associated Proteins/biosynthesis
- S-Phase Kinase-Associated Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Enrique J Andreu
- Division of Cancer, Area of Cell Therapy and Hematology Service, Clinica Universitaria/School of Medicine, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Corradini F, Cesi V, Bartella V, Pani E, Bussolari R, Candini O, Calabretta B. Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 2005; 280:30254-62. [PMID: 15927960 DOI: 10.1074/jbc.m504703200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myb gene encodes a transcription factor required for proliferation, differentiation, and survival of hematopoietic cells. Expression of c-Myb is often increased in hematological malignancies, but the underlying mechanisms are poorly understood. We show here that c-Myb has a longer half-life (at least 2-fold) in BCR/ABL-expressing than in normal hematopoietic cells. Such enhanced stability was dependent on a phosphatidylinositol 3-kinase (PI-3K)/Akt/GSKIIIbeta pathway(s) as indicated by the suppression of c-Myb expression upon treatment with PI-3K inhibitors or co-expression with dominant negative Akt or constitutively active GSKIIIbeta. Moreover, inhibition of GSKIIIbeta by LiCl enhanced c-Myb expression in parental 32Dcl3 cells. Compared with wild type c-Myb, three mutants (delta(358-452), delta(389-418), and L389A/L396A c-Myb) of the leucine zipper domain had increased stability. However, only expression of delta(358-452) was not affected by inhibition of the PI-3K/Akt pathway and was not enhanced by a proteasome inhibitor, suggesting that leucine zipper-dependent and -independent mechanisms are involved in the regulation of c-Myb stability. Indeed, delta(389-418) carrying four lysine-to-alanine substitutions (delta(389-418) K387A/K428A/K442A/K445A) was as stable as delta(358-452) c-Myb. Compared with full-length c-Myb, constitutive expression of delta(358-452) and delta(389-418) c-Myb in Lin-Sca-1+ mouse marrow cells increased cytokine-dependent primary and secondary colony formation. In K562 cells, expression of delta(358-452), delta(389-418), and L389A/L396A c-Myb led to enhanced proliferation after STI571 treatment. Thus, enhanced stability of c-Myb by activation of PI-3K-dependent pathway(s) might contribute to the higher proliferative potential of BCR/ABL-expressing and, perhaps, other leukemic cells.
Collapse
Affiliation(s)
- Francesca Corradini
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Unwin RD, Sternberg DW, Lu Y, Pierce A, Gilliland DG, Whetton AD. Global effects of BCR/ABL and TEL/PDGFRbeta expression on the proteome and phosphoproteome: identification of the Rho pathway as a target of BCR/ABL. J Biol Chem 2004; 280:6316-26. [PMID: 15569670 DOI: 10.1074/jbc.m410598200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many leukemic oncogenes form as a consequence of gene fusions or mutation that result in the activation or overexpression of a tyrosine kinase. To identify commonalities and differences in the action of two such kinases, breakpoint cluster region (BCR)/ABL and TEL/PDGFRbeta, two-dimensional gel electrophoresis was employed to characterize their effects on the proteome. While both oncogenes affected expression of specific proteins, few common effects were observed. A number of proteins whose expression is altered by BCR/ABL, including gelsolin and stathmin, are related to cytoskeletal function whereas no such changes were seen in TEL/PDGFRbeta-transfected cells. Treatment of cells with the kinase inhibitor STI571 for 4-h reversed changes in expression of some of these cytoskeletal proteins. Correspondingly, BCR/ABL-transfected cells were less responsive to chemotactic and chemokinetic stimuli than non-transfected cells and TEL/PDGFRbeta-transfected Ba/F3 cells. Decreased motile response was reversed by a 16-h treatment with STI571. A phosphoprotein-specific gel stain was used to identify TEL/PDGFRbeta and BCR/ABL-mediated changes in the phosphoproteome. These included changes on Crkl, Ras-GAP-binding protein 1, and for BCR/ABL, cytoskeletal proteins such as tubulin, and Nedd5. Decreased phosphorylation of Rho-GTPase dissociation inhibitor (Rho GDI) was also observed in BCR/ABL-transfected cells. This results in the activation of the Rho pathway, and treatment of cells with Y27632, an inhibitor of Rho kinase, inhibited DNA synthesis in BCR/ABL-transfected Ba/F3 cells but not TEL/PDGFRbeta-expressing cells. Expression of a dominant-negative RhoA inhibited both DNA synthesis and transwell migration, demonstrating the significance of this pathway in BCR/ABL-mediated transformation.
Collapse
Affiliation(s)
- Richard D Unwin
- Faculty of Medical and Human Sciences, University of Manchester
| | | | | | | | | | | |
Collapse
|
45
|
Melo JV, Deininger MWN. Biology of chronic myelogenous leukemia--signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 2004; 18:545-68, vii-viii. [PMID: 15271392 DOI: 10.1016/j.hoc.2004.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic myeloid leukemia (CML) is caused by the Bcr-Abl oncoprotein,the product of the t(9;22) chromosomal translocation that generates the Philadelphia chromosome. Different disease phenotypes are associated with each of the three Bcr-Abl isoforms: p190Bcr-Abl, p210Bcr-Abl, and p230Bcr-Abl all of which have a constitutively activated tyrosine kinase. Mechanisms associated with malignant transformation include altered cellular adhesion, activation of mitogenic signaling pathways, inhibition of apoptosis, and proteasomal degradation of physiologically important cellular proteins.CML is subject to an inexorable progression from an "indolent" chronic phase to a terminal blast crisis. Disease progression is presumed to be associated with the phenomenon of genomic instability.
Collapse
MESH Headings
- Cell Transformation, Neoplastic/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Oncogene Proteins/metabolism
- Oncogene Proteins/physiology
- Signal Transduction/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Junia V Melo
- Department of Haematology, Imperial College, London & Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
46
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
47
|
Chi S, Chang S, Park D. Pak regulates calpain-dependent degradation of E3b1. Biochem Biophys Res Commun 2004; 319:683-9. [PMID: 15178460 DOI: 10.1016/j.bbrc.2004.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 10/26/2022]
Abstract
E3b1, a binding partner of Eps8, plays a critical role in receptor tyrosine kinase (RTK)-mediated Rac activation by facilitating the interaction of Eps8 with Sos-1 and the consequent activation of the Rac-specific guanine nucleotide exchange factor activity of Sos-1. Here we present evidence that E3b1 levels are regulated by the Ca(2+)-activated protease calpain, and also by Pak, a downstream target of Rac signaling. Serum starvation of Rat2 or COS7 cells resulted in rapid loss of E3b1 that was reversed by calpain inhibitors. Loss was also prevented by expressing the constitutively active Pak1 mutant, Pak1(H83,86L). Activation of endogenous Pak by platelet-derived growth factor or the constitutively active Rac1 mutant, Rac1(G12V), also inhibited degradation. In contrast, inhibition of endogenous Pak activity by expressing the Pak auto-inhibitory domain caused degradation of over-expressed E3b1 even in the presence of serum. Taken together, these findings indicate that E3b1 is down-regulated by calpain activation and stabilized by Pak activation. They also suggest that RTK-mediated Rac activation can be modulated by changes in the level of E3b1 in response to signals that affect the activity of calpain or Pak.
Collapse
Affiliation(s)
- Susan Chi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
48
|
Carragher NO, Frame MC. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 2004; 14:241-9. [PMID: 15130580 DOI: 10.1016/j.tcb.2004.03.011] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin-linked focal adhesion complexes provide the main sites of cell adhesion to extracellular matrix and associate with the actin cytoskeleton to control cell movement. Dynamic regulation of focal adhesions and reorganization of the associated actin cytoskeleton are crucial determinants of cell migration. There are important roles for tyrosine kinases, extracellular signal-regulated protein kinase/mitogen-activated protein kinase signalling, and intracellular and extracellular proteases during actin and adhesion modulation. Dysregulation of these is associated with tumour cell invasion. In this article, we discuss established roles for these signalling pathways, as well as the functional interplay between them in controlling the migratory phenotype.
Collapse
Affiliation(s)
- Neil O Carragher
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK.
| | | |
Collapse
|
49
|
Arnaud L, Ballif BA, Cooper JA. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol Cell Biol 2004; 23:9293-302. [PMID: 14645539 PMCID: PMC309695 DOI: 10.1128/mcb.23.24.9293-9302.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.
Collapse
Affiliation(s)
- Lionel Arnaud
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
50
|
Cochran DAE, Evans CA, Blinco D, Burthem J, Stevenson FK, Gaskell SJ, Whetton AD. Proteomic Analysis of Chronic Lymphocytic Leukemia Subtypes with Mutated or Unmutated Ig VH Genes. Mol Cell Proteomics 2003; 2:1331-41. [PMID: 14557598 DOI: 10.1074/mcp.m300055-mcp200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common hematopoietic malignant disease with variable outcome. CLL has been divided into distinct groups based on whether somatic hypermutation has occurred in the variable region of the immunoglobulin heavy-chain locus or alternatively if the cells express higher levels of the CD38 protein. We have analyzed the proteome of 12 cases of CLL (six mutated (M-CLL) and six unmutated (UM-CLL) immunoglobulin heavy-chain loci; seven CD38-negative and five CD38-positive) using two-dimensional electrophoresis and mass spectrometry. Statistical evaluation using principal component analysis indicated significant differences in patterns of protein expression between the cases with and without somatic mutation. Specific proteins indicated by principal component analysis as varying between the prognostic groups were characterized using mass spectrometry. The levels of F-actin-capping protein beta subunit, 14-3-3 beta protein, and laminin-binding protein precursor were significantly increased in M-CLL relative to UM-CLL. In addition, primary sequence data from tandem mass spectrometry showed that nucleophosmin was present as several protein spots in M-CLL but was not detected in UM-CLL samples, suggesting that several post-translationally modified forms of nucleophosmin vary between these two sample groups. No specific differences were found between CD38-positive and -negative patient samples using the same approach. The results presented show that proteomic analysis can complement other approaches in identifying proteins that may have potential value in the biological and diagnostic distinction between important clinical subtypes of CLL.
Collapse
MESH Headings
- 14-3-3 Proteins/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Microfilament Proteins/metabolism
- Middle Aged
- Mutation
- Nuclear Proteins/metabolism
- Nucleophosmin
- Principal Component Analysis
- Protein Processing, Post-Translational
- Proteome/metabolism
- Receptors, Laminin/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Duncan A E Cochran
- Leukaemia Research Fund Proteomics Facility, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, United Kingdom
| | | | | | | | | | | | | |
Collapse
|