1
|
Lind DJ, Naidoo KC, Tomalin LE, Rohwer JM, Veal EA, Pillay CS. Quantifying redox transcription factor dynamics as a tool to investigate redox signalling. Free Radic Biol Med 2024; 218:16-25. [PMID: 38574974 DOI: 10.1016/j.freeradbiomed.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress.
Collapse
Affiliation(s)
- Diane J Lind
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Kelisa C Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Lewis E Tomalin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| |
Collapse
|
2
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
3
|
Canete JA, Andrés S, Muñoz S, Zamarreño J, Rodríguez S, Díaz-Cuervo H, Bueno A, Sacristán MP. Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Sci Rep 2023; 13:14677. [PMID: 37674027 PMCID: PMC10482896 DOI: 10.1038/s41598-023-41869-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Reactive oxygen species (ROS) are an important source of cellular damage. When ROS intracellular levels increase, oxidative stress takes place affecting DNA stability and metabolic functions. To prevent these effects, stress-activated protein kinases (SAPKs) delay cell cycle progression and induce a transcriptional response that activates antioxidant mechanisms ensuring cell adaptation and survival. Fission yeast Cdc14-like phosphatase Flp1 (also known as Clp1) has a well-established role in cell cycle regulation. Moreover, Flp1 contributes to checkpoint activation during replication stress. Here, we show that Flp1 has a role in fine-tuning the cellular oxidative stress response. Phosphorylation-dependent nucleolar release of Flp1 in response to oxidative stress conditions plays a role in the cellular transcriptional response. Thus, Flp1 ablation increases the transcriptional response to oxidative stress, in both intensity and duration, upregulating both Atf1/Pcr1- and Pap1-dependent stress induced genes. Remarkably, we found that Flp1 interacts with the Atf1/Pcr1 complex with Pcr1 acting as a direct substrate. Our results provide evidence that Flp1 modulates the oxidative stress response by limiting the Atf1/Pcr1-mediated transcription.
Collapse
Affiliation(s)
- Juan A Canete
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Sonia Andrés
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Helena Díaz-Cuervo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Axentiva Solutions SL, 08036, Barcelona, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Takasaki T, Obana R, Fujiwara D, Tomimoto N, Khandakar GI, Satoh R, Sugiura R. ACA-28, an anticancer compound, induces Pap1 nuclear accumulation via ROS-dependent and -independent mechanisms in fission yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000711. [PMID: 37720683 PMCID: PMC10502506 DOI: 10.17912/micropub.biology.000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The nucleocytoplasmic transport of proteins is an important mechanism to control cell fate. Pap1 is a fission yeast nucleocytoplasmic shuttling transcription factor of which localization is redox regulated. The nuclear export factor Crm1/exportin negatively regulates Pap1 by exporting it from the nucleus to the cytoplasm. Here, we describe the effect of an anti-cancer compound ACA-28, an improved derivative of 1'-acetoxychavicol acetate (ACA), on the subcellular distribution of Pap1. ACA-28 induced nuclear accumulation of Pap1 more strongly than did ACA. ROS inhibitor N-acetyl-L-cysteine (NAC) partly antagonized the Pap1 nuclear accumulation induced by ACA-28. NAC almost abolished Pap1 nuclear localization upon H 2 O 2 , whereas leptomycin B (LMB)-mediated inhibition of Pap1 nuclear export was resistant to NAC. Collectively, ACA-28-mediated apoptosis in cancer cells may involve ROS-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Reo Obana
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Daiki Fujiwara
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Naofumi Tomimoto
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | | | - Ryosuke Satoh
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Reiko Sugiura
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
5
|
Wu K, Li H, Wang Y, Liu D, Li H, Zhang Y, Lynch M, Long H. Silver nanoparticles elevate mutagenesis of eukaryotic genomes. G3 (BETHESDA, MD.) 2023; 13:jkad008. [PMID: 36635051 PMCID: PMC9997555 DOI: 10.1093/g3journal/jkad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Metal nanoparticles, especially silver, have been used in various medical scenarios, due to their excellent antimicrobial effects. Recent studies have shown that AgNPs do not exert mutagenic effects on target bacteria, but the degree to which they compromise eukaryotic genomes remains unclear. To study this, we evaluated the mutagenic effects of AgNPs on the fission yeast Schizosaccharomyces pombe ATCC-16979, of which ∼23% genes are homologous to human ones, at single-nucleotide resolution, and whole-genome scale by running 283 mutation accumulation lines for ∼260,000 cell divisions in total. We also explored the action and mutagenesis mechanisms using differential gene-expression analysis based on RNAseq. Upon AgNPs treatment, the genomic base-substitution mutation rate of S. pombe at four-fold degenerate sites increased by 3.46×, and small indels were prone to occur in genomic regions that are not simple sequence repeats. The G:C → T:A transversion rate was also significantly increased, likely mostly from oxidative damage. Thus, in addition to their antimicrobial potency, AgNPs might pose slight genotoxicity threats to eukaryotic and possibly human genomes, though at a low magnitude.
Collapse
Affiliation(s)
- Kun Wu
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province 266237, China
| | - Haichao Li
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yaohai Wang
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Dan Liu
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hui Li
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yu Zhang
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Hongan Long
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province 266237, China
| |
Collapse
|
6
|
Salat-Canela C, Pérez P, Ayté J, Hidalgo E. Stress-induced cell depolarization through the MAP kinase-Cdc42 axis. Trends Cell Biol 2023; 33:124-137. [PMID: 35773059 DOI: 10.1016/j.tcb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
7
|
Princová J, Salat-Canela C, Daněk P, Marešová A, de Cubas L, Bähler J, Ayté J, Hidalgo E, Převorovský M. Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress. PLoS Genet 2023; 19:e1010582. [PMID: 36626368 PMCID: PMC9870116 DOI: 10.1371/journal.pgen.1010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
Collapse
Affiliation(s)
- Jarmila Princová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Petr Daněk
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Marešová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Martin Převorovský
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Datta S, Ghosal A, Dutta S, Sundaram G. Absence of Wee1 alters global transcriptional response to oxidative stress in Schizosaccharomyces pombe. FEMS Microbiol Lett 2022; 369:6840211. [PMID: 36413467 DOI: 10.1093/femsle/fnac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Stress response and checkpoint activation are the main determinants of cellular survival in adverse conditions. In Schizosaccharomyces pombe, these are controlled by the Mitogen Activated Protein Kinase Spc1 and the Cyclin dependent Kinase Cdc2 respectively. Cdc2 is regulated positively by Cdc25 and negatively by Wee1. Changes in Cdc2 activity can be sensed by Spc1 resulting in the modulation of mitotic timing by Spc1. Functional cross talks between cell cycle regulation and MAPK machinery during regulation of mitotic timing are well characterised but the presence of similar communication during stress response remains unexplored. In this study we report how the checkpoint activator kinase Wee1 can also influence the transcriptional response to oxidative stress. We show that deletion of Wee1 results in changes in gene expression of the cells, especially with respect to genes whose expression is known to be regulated by Spc1. These differences are seen in unperturbed cells as well as during oxidative stress. Moreover, such variations extend beyond what could be expected to occur due to the known enhanced Spc1 activity of these cells. This is the first depiction of the influence of Wee1 and consequently Cdc2 activity on transcriptional response to oxidative stress.
Collapse
Affiliation(s)
- Suchismita Datta
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, WB, India
| | - Agamani Ghosal
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, WB, India
| | - Suparna Dutta
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, WB, India
| | - Geetanjali Sundaram
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, WB, India
| |
Collapse
|
9
|
Choi JE, Heo SH, Chung WH. Yap1-mediated Flr1 expression reveals crosstalk between oxidative stress signaling and caffeine resistance in Saccharomyces cerevisiae. Front Microbiol 2022; 13:1026780. [PMID: 36504777 PMCID: PMC9726721 DOI: 10.3389/fmicb.2022.1026780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Caffeine, a methylxanthine derivative, affects various physiological conditions such as cell growth, proliferation, and energy metabolism. A genome-wide screening for genes required for caffeine resistance in Schizosaccharomyces pombe revealed several candidates, including Pap1 and downstream target genes involved in caffeine efflux. We found that Yap1, a budding yeast AP-1 homolog required for oxidative stress response, has a caffeine tolerance function. Although the Yap1 mutant is not sensitive to caffeine, overexpression of Yap1 renders cells resistant to high concentrations of caffeine. Caffeine sensitivity of mutants lacking two multidrug transporters, Pdr5 or Snq2, is completely recovered by Yap1 overexpression. Among Yap1-dependent target genes, FLR1, a fluconazole-resistant gene, is necessary but not sufficient for caffeine tolerance. Low concentrations of hydrogen peroxide induce Yap1 activation, which restores cell viability against caffeine toxicity. Intriguingly, oxidative stress-mediated cellular adaptation to caffeine toxicity requires Yap1, but not Flr1. Moreover, caffeine is involved in reduction of intracellular reactive oxygen species (ROS), as well as mutation rate and Rad52 foci formation. Altogether, we identified novel reciprocal crosstalk between ROS signaling and caffeine resistance.
Collapse
Affiliation(s)
- Ji Eun Choi
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea
| | - Seo-Hee Heo
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea,*Correspondence: Woo-Hyun Chung,
| |
Collapse
|
10
|
Hu Y, Luo Y, Yin D, Zhao L, Wang Y, Yao R, Zhang P, Wu X, Li M, Hidalgo E, Huang Y. Schizosaccharomyces pombe MAP kinase Sty1 promotes survival of Δppr10 cells with defective mitochondrial protein synthesis. Int J Biochem Cell Biol 2022; 152:106308. [PMID: 36174923 DOI: 10.1016/j.biocel.2022.106308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Deletion of the Schizosaccharomyces pombe pentatricopeptide repeat gene ppr10 severely impairs mitochondrial translation, resulting in defective oxidative phosphorylation (OXPHOS). ppr10 deletion also induces iron starvation response, resulting in increased reactive oxygen species (ROS) production and reduced viability under fermentative conditions. S. pombe has two principal stress-response pathways, which are mediated by the mitogen-activated protein kinase Sty1 and the basic leucine zipper transcription factor Pap1, respectively. In this study, we examined the roles of Sty1 and Pap1 in the cellular response to the mitochondrial translation defect caused by ppr10 deletion. We found that ppr10 deletion resulted in two waves of stress protein activation. The early response occurred in exponential phase and resulted in the expression of a subset of stress proteins including Gst2 and Obr1. The upregulation of some of these stress proteins in Δppr10 cells in early response is dependent on the basal nuclear levels of Sty1 or Pap1. The late response occurred in early stationary phase and coincided with the stable localization of Sty1 and Pap1 in the nucleus, presumably resulting in persistent activation of a large set of stress proteins. Deletion of sty1 in Δppr10 cells caused severe defects in cell division and growth, and further impaired cell viability. Deletion of the mitochondrial superoxide dismutase gene sod2 whose expression is controlled by Sty1 severely inhibited the growth of Δppr10 cells. Overexpression of sod2 improves the viability of Δppr10 cells. Our results support an important role for Sty1 in counteracting stress induced by ppr10 deletion under fermentative growth conditions.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Yin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Minjie Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
12
|
Genome-Wide Identification and Expression Analysis of the Basic Leucine Zipper (bZIP) Transcription Factor Gene Family in Fusarium graminearum. Genes (Basel) 2022; 13:genes13040607. [PMID: 35456413 PMCID: PMC9028111 DOI: 10.3390/genes13040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/14/2022] Open
Abstract
The basic leucine zipper (bZIP) is a widely found transcription factor family that plays regulatory roles in a variety of cellular processes including cell growth and development and various stress responses. However, the bZIP gene family has not been well studied at a genome-wide scale in Fusarium graminearum (Fg), a potent pathogen of cereal grains. In the present study, we conducted a genome-wide identification, characterization, and expression profiling of 22 F. graminearum bZIP (FgbZIP) genes at different developmental stages and under various abiotic stresses. All identified FgbZIPs were categorized into nine groups based on their sequence similarity and phylogenetic tree analysis. Furthermore, the gene structure analysis, conserved motif analysis, chromosomal localization, protein network studies, and synteny analysis were performed. The symmetry of the exon and intron varied with the phylogenetic groups. The post-translational modifications (PTMs) analysis also predicted several phosphorylation sites in FgbZIPs, indicating their functional diversity in cellular processes. The evolutionary study identified many orthogroups among eight species and also predicted several gene duplication events in F. graminearum. The protein modeling indicated the presence of a higher number of α-helices and random coils in their structures. The expression patterns of FgbZIP genes showed that 5 FgbZIP genes, including FgbZIP_1.1, FgbZIP_1.3, FgbZIP_2.6 FgbZIP_3.1 and FgbZIP_4.3, had high expression at different growth and conidiogenesis stages. Similarly, eight genes including FgbZIP_1.1, FgbZIP_1.6, FgbZIP_2.3, FgbZIP_2.4, FgbZIP_4.1, FgbZIP_4.2, FgbZIP_4.3 and FgbZIP_4.6 demonstrated their putative role in response to various abiotic stresses. In summary, these results provided basic information regarding FgbZIPs which are helpful for further functional analysis.
Collapse
|
13
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
14
|
Kumar A, Nanda JS, Saini S, Singh J. An RNAi-independent role of AP1-like stress response factor Pap1 in centromere and mating-type silencing in Schizosaccaromyces pombe. J Biosci 2021. [DOI: 10.1007/s12038-021-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Tomita K, Yashiroda Y, Matsuo Y, Piotrowski JS, Li SC, Okamoto R, Yoshimura M, Kimura H, Kawamura Y, Kawamukai M, Boone C, Yoshida M, Nojiri H, Okada K. Genome-wide Screening of Genes Associated with Momilactone B Sensitivity in the Fission Yeast. G3-GENES GENOMES GENETICS 2021; 11:6270786. [PMID: 33956138 PMCID: PMC8496333 DOI: 10.1093/g3journal/jkab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/05/2022]
Abstract
Momilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and plays a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and cellular mechanisms underlying its broad bioactivity. In this study, the genetic determinants of momilactone B sensitivity in yeast were explored to gain insight into its mode of action. We screened fission yeast mutants resistant to momilactone B from a pooled culture containing genome-wide gene-overexpressing strains in a drug-hypersensitive genetic background. Overexpression of pmd1, bfr1, pap1, arp9, or SPAC9E9.06c conferred resistance to momilactone B. In addition, a drug-hypersensitive, barcoded deletion library was newly constructed and the genes that imparted altered sensitivity to momilactone B upon deletion were identified. Gene Ontology and fission yeast phenotype ontology enrichment analyses predicted the biological pathways related to the mode of action of momilactone B. The validation of predictions revealed that momilactone B induced abnormal phenotypes such as multiseptated cells and disrupted organization of the microtubule structure. This is the first investigation of the mechanism underlying the antifungal activity of momilactone B against yeast. The results and datasets obtained in this study narrow the possible targets of momilactone B and facilitate further studies regarding its mode of action.
Collapse
Affiliation(s)
- Keisuke Tomita
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Matsuo
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Sheena C Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Reika Okamoto
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiromi Kimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yumi Kawamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Makoto Kawamukai
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol 2020; 124:1039-1051. [PMID: 33213784 DOI: 10.1016/j.funbio.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. We have previously shown that resistant sugarcane plants induce ROS, coinciding with a delay in fungal colonization. Here, we investigated whether the fungus modifies the enzymatic antioxidant system in vitro and when colonizing sugarcane tissues in response to ROS. In vitro, the exposure to ROS did not affect cell integrity, and a combination of superoxide dismutases (SOD) and catalases (CAT) were active. In vitro, the fungus did not alter the expression of the transcriptional regulator Yap1 and the effector Pep1. The fungus activated distinct enzymes when colonizing plant tissues. Instead of CAT, S. scitamineum induced glutathione peroxidase (Gpx) expression only when colonizing smut-resistant plants. Yap1 had an earlier expression in both smut-susceptible and -resistant plants, with no apparent correlation with the expression of antioxidant genes sod, cat, gpx, or external redox imbalance. The expression of the effector pep1 was induced only in smut-resistant plants, potentially in response to ROS. These results collectively suggest that S. scitamineum copes with oxidative stress by inducing different mechanisms depending on the conditions (in vitro/in planta) and intensity of ROS. Moreover, the effector Pep1 is responsive to the stress imposed only by the sugarcane resistant genotype.
Collapse
|
18
|
The Antiaging Effect of Active Fractions and Ent-11α-Hydroxy-15-Oxo-Kaur-16-En-19-Oic Acid Isolated from Adenostemma lavenia (L.) O. Kuntze at the Cellular Level. Antioxidants (Basel) 2020; 9:antiox9080719. [PMID: 32784463 PMCID: PMC7464069 DOI: 10.3390/antiox9080719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The extract of Adenostemma lavenia (L.) O. Kuntze leaves has anti-inflammatory activities and is used as a folk medicine to treat patients with hepatitis and pneumonia in China and Taiwan. The diterpenoid ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA) is the major ingredient in the extract and has wide-spectrum biological activities, such as antitumor and antimelanogenic activities, as well as anti-inflammatory activity. However, the physical and biological properties of this compound as an antioxidant or antiaging agent have not been reported yet. Methods: In addition to in vitro assays, we monitored antioxidative and antiaging signals in Schizosaccharomyces pombe (yeast) and mouse melanoma B16F10 cells. Results: A. lavenia water and chloroform fractions showed antioxidant properties in vitro. The A. lavenia extracts and 11αOH-KA conferred resistance to H2O2 to S. pombe and B16F10 cells and extended the yeast lifespan in a concentration-dependent manner. These materials maintained the yeast mitochondrial activity, even in a high-glucose medium, and induced an antioxidant gene program, the transcriptional factor pap1+ and its downstream ctt1+. Accordingly, 11αOH-KA activated the antioxidative transcription factor NF-E2-related factor 2, NRF2, the mammalian ortholog of pap1+, in B16F10 cells, which was accompanied by enhanced hemeoxygenase expression levels. These results suggest that 11αOH-KA and A. lavenia extracts may protect yeast and mammalian cells from oxidative stress and aging. Finally, we hope that these materials could be helpful in treating COVID-19 patients, because A. lavenia extracts and NRF2 activators have been reported to alleviate the symptoms of pneumonia in model animals.
Collapse
|
19
|
Ghosal A, Sarkar P, Sundaram G. Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe. Biol Open 2020; 9:bio053322. [PMID: 32554481 PMCID: PMC7390630 DOI: 10.1242/bio.053322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 11/20/2022] Open
Abstract
Checkpoint activation and gene expression modulation represent key determinants of cellular survival in adverse conditions. The former is regulated by cyclin-dependent kinases (CDKs) while the latter can be controlled by mitogen-activated protein kinases (MAPKs). Association between cell-cycle progression and MAPK-dependent gene expression exists in cells growing in optimal environments. While MAPK-mediated regulation of the cell cycle is well characterised, the reciprocal influence of mitotic CDK on stress response is not well studied. We present evidence that CDK activity can regulate the extent of MAPK activation in Schizosaccharomyces pombe cells. We show that increasing or decreasing mitotic CDK (Cdc2) activity in S. pombe cells can affect the activation of stress responsive MAPK (Spc1) even in the absence of stress stimuli. Our results indicate that the strong correlation between Cdc2 activity and Spc1 MAPK-activity in S. pombe is important in regulating mitotic timing.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Agamani Ghosal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, WB, India
| | - Priyanka Sarkar
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, WB, India
| | - Geetanjali Sundaram
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, WB, India
| |
Collapse
|
20
|
Álvarez-Herrera C, Maisanaba S, Repetto G. Investigation of mechanisms of toxicity and exclusion by transporters of the preservatives triclosan and propylparaben using batteries of Schizosaccharomyces pombe strains. ENVIRONMENTAL RESEARCH 2020; 183:108983. [PMID: 31810592 DOI: 10.1016/j.envres.2019.108983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) and propylparaben (PPB) are antimicrobials widely used. They present many similarities in their applications and also in their human and environmental health risks. In order to investigate the mechanisms of toxic action and the efflux pumps involved in their detoxication, we used a strategy with batteries of Schizosaccharomyces pombe yeast strains, either defective in cell signalling, in detoxification pumps, or in cell surveillance mechanisms. Yeast were exposed up to 20 h in solid medium or in liquid medium in 96-well plates. The mechanisms of action investigated were spindle defects (mph1), stress (pmk1), DNA interference (rad3) or diverse effects (MDR-sup). The efflux pumps investigated were Bfr1, Pmd1, Mfs1 and Caf5 or the Pap1 transcription factor. Here we show that TCS was 75 times more toxic than PPB in the wild type fission yeast. More oxidative stress and less protection by exclusion pumps were observed for TCS than for PPB. The cytotoxicity produced by TCS decreased from bfr1>mfs1>pmd1 > pap1 and caf5A deficient strains. In contrast, cytotoxic concentrations of PPB caused only a mild stress. The protection provided for PPB by the transporters was more marked than for TCS, decreasing from Pmd1, Caf5, Mfs1 and Bfr1. Furthermore, microtubule and DNA interferences were revealed for PPB, according to the cytotoxicity of mph1 and rad3 defective cells, respectively. As both compounds present complex adverse effects at concentrations close to exposure, and their combination clearly causes a strong potentiation, more exhaustive controls and regulations in their use should be considered.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| |
Collapse
|
21
|
Brown AJP, Larcombe DE, Pradhan A. Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal Biol 2020; 124:475-481. [PMID: 32389310 PMCID: PMC7232023 DOI: 10.1016/j.funbio.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental Responses (CERs) that include the induction of a core set of stress genes in response to diverse environmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one type of stress can provide protection against subsequent exposure to a second type of stress. CERs have probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses (“adaptive prediction”). CERs have been observed in other evolutionarily divergent fungi but, interestingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has evolved a CER that reflects the environmental challenges it faces in host niches. We review Core Environmental Responses (CERs) in domesticated and pathogenic yeasts. CERs probably evolved through the accumulation of protective anticipatory responses. Evolutionarily diverse yeasts display CERs, but the pathogen, Candida albicans, does not. C. albicans has evolved an alternative CER that protects against immune clearance. This has implications for the investigation of CERs in other fungi.
Collapse
Affiliation(s)
- Alistair J P Brown
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Daniel E Larcombe
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
22
|
Marte L, Boronat S, García-Santamarina S, Ayté J, Kitamura K, Hidalgo E. Identification of ubiquitin-proteasome system components affecting the degradation of the transcription factor Pap1. Redox Biol 2019; 28:101305. [PMID: 31514053 PMCID: PMC6742857 DOI: 10.1016/j.redox.2019.101305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023] Open
Abstract
Signaling cascades respond to specific inputs, but also require active interventions to be maintained in their basal/inactive levels in the absence of the activating signal(s). In a screen to search for protein quality control components required for wild-type tolerance to oxidative stress in fission yeast, we have isolated eight gene deletions conferring resistance not only to H2O2 but also to caffeine. We show that dual resistance acquisition is totally or partially dependent on the transcription factor Pap1. Some gene products, such as the ribosomal-ubiquitin fusion protein Ubi1, the E2 conjugating enzyme Ubc2 or the E3 ligase Ubr1, participate in basal ubiquitin labeling of Pap1, and others, such as Rpt4, are non-essential constituents of the proteasome. We demonstrate here that basal nucleo-cytoplasmic shuttling of Pap1, occurring even in the absence of stress, is sufficient for the interaction of the transcription factor with nuclear Ubr1, and we identify a 30 amino acids peptide in Pap1 as the degron for this important E3 ligase. The isolated gene deletions increase only moderately the concentration of the transcription factor, but it is sufficient to enhance basal tolerance to stress, probably by disturbing the inactive stage of this signaling cascade.
Collapse
Affiliation(s)
- Luis Marte
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sarela García-Santamarina
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
23
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
24
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
25
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Thodberg M, Thieffry A, Bornholdt J, Boyd M, Holmberg C, Azad A, Workman CT, Chen Y, Ekwall K, Nielsen O, Sandelin A. Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Res 2019; 47:1671-1691. [PMID: 30566651 PMCID: PMC6393241 DOI: 10.1093/nar/gky1227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fission yeast, Schizosaccharomyces pombe, is an attractive model organism for transcriptional and chromatin biology research. Such research is contingent on accurate annotation of transcription start sites (TSSs). However, comprehensive genome-wide maps of TSSs and their usage across commonly applied laboratory conditions and treatments for S. pombe are lacking. To this end, we profiled TSS activity genome-wide in S. pombe cultures exposed to heat shock, nitrogen starvation, hydrogen peroxide and two commonly applied media, YES and EMM2, using Cap Analysis of Gene Expression (CAGE). CAGE-based annotation of TSSs is substantially more accurate than existing PomBase annotation; on average, CAGE TSSs fall 50-75 bp downstream of PomBase TSSs and co-localize with nucleosome boundaries. In contrast to higher eukaryotes, dispersed TSS distributions are not common in S. pombe. Our data recapitulate known S. pombe stress expression response patterns and identify stress- and media-responsive alternative TSSs. Notably, alteration of growth medium induces changes of similar magnitude as some stressors. We show a link between nucleosome occupancy and genetic variation, and that the proximal promoter region is genetically diverse between S. pombe strains. Our detailed TSS map constitutes a central resource for S. pombe gene regulation research.
Collapse
Affiliation(s)
- Malte Thodberg
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Axel Thieffry
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christian Holmberg
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Ajuna Azad
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, SE14183 Huddinge, Sweden
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Albin Sandelin
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| |
Collapse
|
27
|
Paliwal S, Wheeler R, D Wolkow T. Pap1 + confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2018; 7:97-106. [PMID: 30426027 DOI: 10.22099/mbrc.2018.29705.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accumulation of Rad26ATRIP following microtubule damage. The rad26::4a allele also disrupts minichromosome stability and cellular morphology, suggesting that the interphase microtubule damage checkpoint pathway operates in an effort to maintain chromosome stability and proper cell shape. To identify other proteins of the Rad26-dependent interphase microtubule damage response, we used ultra violet (UV) radiation to identify extragenic interaction suppressors of the rad26::4A growth defect on microtubule poisons. One suppressor mutation, which we named mut2a, permitted growth of rad26:4A cells on MBC media and conferred sensitivity to a microtubulin poison upon genetic outcross. In an attempt to clone this interaction suppressor using a genomic library complementation strategy, we instead isolated pap1 + as an extracopy suppressor of the mut2a growth defect. We discuss the mechanism by which pap1 + overexpression may allow growth of mut2a cells in conditions that destabilize microtubules.
Collapse
Affiliation(s)
- Shivangi Paliwal
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway Colorado Springs, CO 80918
| | - Robert Wheeler
- Pine Creek high school, 10750 Thunder Mountain Ave, Colorado Springs, CO 80908
| | - Tom D Wolkow
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway Colorado Springs, CO 80918
| |
Collapse
|
28
|
Kartal B, Akçay A, Palabiyik B. Oxidative Stress Upregulates the Transcription of Genes Involved in Thiamine Metabolism. Turk J Biol 2018; 42:447-452. [PMID: 30930628 PMCID: PMC6438119 DOI: 10.3906/biy-1801-51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Thiamine is a major vitamin that acts as a cofactor in energy metabolism in all organisms, as well as in lipid and amino acid metabolisms, and is associated with many diseases. It is known that glucose starvation decreases the intracellular thiamine pool while increasing oxidative stress tolerance. Earlier, in whole genome analysis, we detected major differences in the expression of genes related to thiamine pathway against oxidative stress in Schizosaccharomyces pombe. We investigated the effects of oxidative stress and glucose repression to thiamine pathway in S. pombe by comparing some genes encoding key enzymes of each related pathway at the transcription level. In the present study, we found that the expression of genes related to thiamine biosynthesis and transport (thi2, thi3, and pho1) increased in wild type and ird11 cells grown in thiamine-rich media under oxidative stress induced by H2O2. Based on our findings, we suggested that there might be an important effect of oxidative stress on thiamine biosynthesis and transport.
Collapse
Affiliation(s)
- Burcu Kartal
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University , Antalya , Turkey.,Department of Molecular Biology and Genetics, Institute of Graduate Studies in Science and Engineering, İstanbul University , İstanbul , Turkey
| | - Ahmet Akçay
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Science and Engineering, İstanbul University , İstanbul , Turkey
| | - Bedia Palabiyik
- Department of Molecular Biology and Genetics, Faculty of Science, İstanbul University , İstanbul , Turkey
| |
Collapse
|
29
|
Dysfunction of Prohibitin 2 Results in Reduced Susceptibility to Multiple Antifungal Drugs via Activation of the Oxidative Stress-Responsive Transcription Factor Pap1 in Fission Yeast. Antimicrob Agents Chemother 2018; 62:AAC.00860-18. [PMID: 30181366 DOI: 10.1128/aac.00860-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2 + gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2 + gene also exhibited antifungal drug resistance. Overexpression of the phb2 + gene failed to cause drug resistance when the pap1 + gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2 + gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2 + gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.
Collapse
|
30
|
Protection from Disulfide Stress by Inhibition of Pap1 Nuclear Export in Schizosaccharomyces pombe. Genetics 2018; 210:857-868. [PMID: 30181192 DOI: 10.1534/genetics.118.301527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/28/2022] Open
Abstract
Appropriate subcellular localization of regulatory factors is critical for cellular function. Pap1, a nucleocytoplasmic shuttling transcription factor of Schizosaccharomyces pombe, is redox regulated for localization and antistress function. In this study, we find that overproduction of a peptide conjugate containing the nuclear export signal of Oxs1, a conserved eukaryotic protein that, along with Pap1, regulates certain diamide responsive genes, can retain Pap1 in the nucleus before stress by competing for nuclear export. The nuclear retention of Pap1 upregulates several drug resistance genes to prime the cells for higher tolerance to disulfide stress. Overproduction of Oxs1 also upregulates these same genes, not by competing for export but by binding directly to the drug resistance gene promoters for Pap1-mediated activation. Of medical relevance is that this may suggest a gene therapy approach of using nuclear export signal conjugates to suppress the nuclear export of biomolecules.
Collapse
|
31
|
Yukawa M, Yamauchi T, Kurisawa N, Ahmed S, Kimura KI, Toda T. Fission yeast cells overproducing HSET/KIFC1 provides a useful tool for identification and evaluation of human kinesin-14 inhibitors. Fungal Genet Biol 2018; 116:33-41. [DOI: 10.1016/j.fgb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
32
|
Segal LM, Wilson RA. Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet Biol 2018; 110:1-9. [DOI: 10.1016/j.fgb.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
33
|
Dankai W, Pongpom M, Vanittanakom N. An investigation into the possible regulation of the expression of genes by yapA in Talaromyces marneffei using the qRT- PCR method. Med Mycol 2017; 56:735-745. [DOI: 10.1093/mmy/myx105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wiyada Dankai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | | |
Collapse
|
34
|
Ni G, Liu G, Yu K. Identification of key genes associated with the effect of osmotic stimuli on intervertebral discs using microarray analysis. Oncol Lett 2017; 14:4249-4255. [PMID: 28943935 DOI: 10.3892/ol.2017.6657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to explore the effect of osmotic stimuli on intervertebral discs (IVDs) using microarray analysis. Gene expression dataset GSE1648 was downloaded from the Gene Expression Omnibus database. There were 11 IVD cell samples in this dataset, which included 4 hyperosmotic stimuli samples, 3 hypoosmotic stimuli samples and 4 isosmotic stimuli samples. The differentially expressed genes (DEGs) in hyperosmotic or hypoosmotic IVD cells (designated DEGs-hyper or DEGs-hypo) were identified, compared with isosmotic cells, using the limma package of R software. The Database for Annotation, Visualization and Integrated Discovery was used to perform a Gene Ontology (GO) term enrichment analysis for the DEG sets. Protein-protein interaction (PPI) network and microRNA (miRNA) gene-regulatory network data for the DEG sets were obtained using the Human Protein Reference Database (HPRD) and the TargetScan database, respectively, and these networks were constructed and visualized using Cytoscape software. There was a total of 43 DEGs in DEGs-hyper and 9 in DEGs-hypo. Analysis of DEGs-hyper revealed that 41 GO terms were significantly enriched. In total, 376 pairs and 382 nodes were involved in the PPI network, and 1,314 miRNA-gene pairs and 422 nodes were contained in the miRNA-gene-regulated network. The results of the present study indicated that potential target genes (including NCOA3, SOS1, XPO1, ZBTB18, EFNB2 and SOBP) may be involved in the effect of osmotic stimuli on IVD, and the biological processes of apoptosis and cell death may be associated with the effect of high osmolality on IVD disease. The potential targets identified in the present study are more reliable than those identified by previous studies.
Collapse
Affiliation(s)
- Guangxiao Ni
- Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guobin Liu
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kunlun Yu
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
35
|
Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2017; 7:723-730. [PMID: 28040778 PMCID: PMC5295615 DOI: 10.1534/g3.116.037903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by pap1Δ cells. Lastly, we show that the caf5 gene is induced upon exposure to LatA and that Pap1p is required for this transcriptional upregulation. Importantly, the expression of trr1, a Pap1p target specifically induced in response to oxidative stress, is not significantly altered by LatA treatment. Taken together, these results suggest a model in which LatA-mediated cytoskeletal perturbations are sensed, triggering the Imp1p-dependent translocation of Pap1p to the nucleus and the induction of the caf5 gene (independently of oxidative stress).
Collapse
|
36
|
Dankai W, Pongpom M, Youngchim S, Cooper CR, Vanittanakom N. The yapA Encodes bZIP Transcription Factor Involved in Stress Tolerance in Pathogenic Fungus Talaromyces marneffei. PLoS One 2016; 11:e0163778. [PMID: 27706212 PMCID: PMC5051730 DOI: 10.1371/journal.pone.0163778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023] Open
Abstract
Talaromyces marneffei, formerly Penicillium marneffei, is a thermally dimorphic fungus. It causes a fatal disseminated disease in patients infected with the human immunodeficiency virus (HIV). Studies on the stress defense mechanism of T. marneffei can lead to a better understanding of the pathogenicity and the progression of the disease due to this fungus. The basic leucine-zipper (bZip) transcription factor gene in Saccharomyces cerevisiae, named yap1 (yeast activating protein-1), is known as a crucial central regulator of stress responses including those caused by oxidative agents, cadmium, and drugs. An ortholog of yap1, designated yapA, was identified in T. marneffei. We found that the yapA gene was involved in growth and fungal cell development. The yapA deletion mutant exhibited delays in the rate of growth, germination, and conidiation. Surprisingly, the yapA gene was also involved in the pigmentation of T. marneffei. Moreover, the mutant was sensitive to oxidative stressors such as H2O2 and menadione, similar to S. cerevisiae yap1 mutant, as well as the nitrosative stressor NaNO2. In addition, the yapA mutant demonstrated significantly decreased survival in human macrophage THP-1 compared to wild-type and complemented strains. This study reveals the role of yapA in fungal growth, cell development, stress response, and potential virulence in T. marneffei.
Collapse
Affiliation(s)
- Wiyada Dankai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chester R. Cooper
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH, 44555, United States of America
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
37
|
Abstract
Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.
Collapse
Affiliation(s)
- Manos A Papadakis
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | - Christopher T Workman
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| |
Collapse
|
38
|
He Y, Chen Y, Song W, Zhu L, Dong Z, Ow DW. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe. Nucleic Acids Res 2016; 45:106-114. [PMID: 27664222 PMCID: PMC5224502 DOI: 10.1093/nar/gkw818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023] Open
Abstract
We describe a Pap1–Oxs1 pathway for diamide-induced disulfide stress in Schizosaccharomyces pombe, where the nucleocytoplasmic HMG protein Oxs1 acts cooperatively with Pap1 to regulate transcription. Oxs1 and Pap1 form a complex when cells are exposed to diamide or Cd that causes disulfide stress. When examined for promoters up-regulated by diamide, effective Pap1 binding to these targets requires Oxs1, and vice versa. With some genes, each protein alone enhances transcription, but the presence of both exerts an additive positive effect. In other genes, although transcription is induced by diamide, Oxs1 or Pap1 plays a negative role with full de-repression requiring loss of both proteins. In a third class of genes, Oxs1 positively regulates expression, but in its absence, Pap1 plays a negative role. The Oxs1–Pap1 regulatory interaction appears evolutionarily conserved, as heterologous (human, mouse and Arabidopsis) Oxs1 and Pap1-homologues can bind interchangeably with each other in vitro, and at least in the fission yeast, heterologous Oxs1 and Pap1-homologues can substitute for S. pombe Oxs1 and Pap1 to enhance stress tolerance.
Collapse
Affiliation(s)
- Yumei He
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yan Chen
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Song
- Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| | - Lei Zhu
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China .,Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| |
Collapse
|
39
|
WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System. J Bacteriol 2016; 198:1281-93. [PMID: 26858101 DOI: 10.1128/jb.00982-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The general stress response (GSR) system of the intracellular pathogen Brucella abortus controls the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required for B. abortus survival under nonoptimal growth conditions in vitro and for maintenance of chronic infection in an in vivo mouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined. bab1_1070 is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditions in vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However, B. abortus WrbA-related protein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductase in vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion of wrpA (ΔwrpA) does not compromise cell survival under acute oxidative stress in vitro or attenuate infection in cell-based or mouse models. However, a ΔwrpA strain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulates B. abortus interaction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose that B. abortus WrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCE Brucella abortus is an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system of B. abortus controls the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We present in vitro and in vivo functional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activity in vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.
Collapse
|
40
|
Su Y, Chen C, Huang L, Yan J, Huang Y. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance. PLoS One 2015; 10:e0143888. [PMID: 26624998 PMCID: PMC4666628 DOI: 10.1371/journal.pone.0143888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
The Parkinson′s disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Caiping Chen
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Linting Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
41
|
Bond ME, Brown R, Rallis C, Bähler J, Mole SE. A central role for TOR signalling in a yeast model for juvenile CLN3 disease. MICROBIAL CELL 2015; 2:466-480. [PMID: 28357272 PMCID: PMC5354605 DOI: 10.15698/mic2015.12.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.
Collapse
Affiliation(s)
- Michael E Bond
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rachel Brown
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK. ; UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. ; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
42
|
Quesnel DM, Oldenburg TBP, Larter SR, Gieg LM, Chua G. Biostimulation of Oil Sands Process-Affected Water with Phosphate Yields Removal of Sulfur-Containing Organics and Detoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13012-13020. [PMID: 26448451 DOI: 10.1021/acs.est.5b01391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the potential for in situ bioremediation of OSPW AEOs by indigenous algae. Phosphate biostimulation was performed in OSPW to promote the growth of indigenous photosynthetic microorganisms and subsequent toxicity and chemical changes were determined. After 12 weeks, the AEO fraction of phosphate-biostimulated OSPW was significantly less toxic to the fission yeast Schizosaccharomyces pombe than unstimulated OSPW. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis of the AEO fraction in phosphate-biostimulated OSPW showed decreased levels of SO3 class compounds, including a subset that may represent linear arylsulfonates. A screen with S. pombe transcription factor mutant strains for growth sensitivity to the AEO fraction or sodium dodecylbenzenesulfonate revealed a mode of toxic action consistent with oxidative stress and detrimental effects on cellular membranes. These findings demonstrate a potential algal-based in situ bioremediation strategy for OSPW AEOs and uncover a link between toxicity and AEOs other than classical NAs.
Collapse
Affiliation(s)
- Dean M Quesnel
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Thomas B P Oldenburg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Stephen R Larter
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Lisa M Gieg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Gordon Chua
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| |
Collapse
|
43
|
Li L, Naseem S, Sharma S, Konopka JB. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence. PLoS Pathog 2015; 11:e1005147. [PMID: 26325183 PMCID: PMC4556627 DOI: 10.1371/journal.ppat.1005147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022] Open
Abstract
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.
Collapse
Affiliation(s)
- Lifang Li
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Sahil Sharma
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wu J, Chen X, Cai L, Tang L, Liu L. Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Front Microbiol 2015; 6:843. [PMID: 26347728 PMCID: PMC4539521 DOI: 10.3389/fmicb.2015.00843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is an important microorganism used in commercial fermentation to produce pyruvate, but very little is known about its mechanisms for surviving acid stress in culture. In this study, it was shown that transcription factors Asg1p and Hal9p play essential roles in C. glabrata in the tolerance of acid stress, as the deletion of CgASG1 or CgHAL9 resulted in the inability to survive in an acidic environment. Cgasg1Δ and Cghal9Δ mutant strains are unable to maintain pH homeostasis, as evidenced by a decrease in intracellular pH and an increase in reactive oxygen species production, which results in metabolic disorders. The results showed that intracellular acidification was partly due to the diminished activity of the plasma membrane proton pump, CgPma1p. In addition, transcriptome sequencing revealed that Cgasg1Δ and Cghal9Δ mutant strains displayed a variety of changes in gene expression under acidic conditions, including genes in the MAPK signaling pathway, plasma membrane, or cell wall organization, trehalose accumulation, and the RIM101 signaling pathway. Lastly, quantitative reverse-transcribed PCR and cellular localization showed that CgAsg1p and CgHal9p played independent roles in response to acid stress.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Lijun Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Lei Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| |
Collapse
|
45
|
Peroxide sensing and signaling in the Sporothrix schenckii complex: an in silico analysis to uncover putative mechanisms regulating the Hog1 and AP-1 like signaling pathways. Med Mycol 2014; 53:51-9. [DOI: 10.1093/mmy/myu069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1. Mol Cell Biol 2014; 35:566-81. [PMID: 25452301 DOI: 10.1128/mcb.01133-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transport regulation by the Ran GTPase requires its nuclear localization and GTP loading by the chromatin-associated exchange factor RCC1. These reactions generate Ran protein and Ran nucleotide gradients between the nucleus and the cytoplasm. Cellular stress disrupts the Ran gradients, but the specific mechanisms underlying this disruption have not been elucidated. We used biochemical approaches to determine how oxidative stress disrupts the Ran system. RCC1 exchange activity was reduced by diamide-induced oxidative stress and restored with dithiothreitol. Using mass spectrometry, we found that multiple solvent-exposed cysteines in RCC1 are oxidized in cells treated with diamide. The cysteines oxidized in RCC1 included Cys93, which is solvent exposed and unique because it becomes buried upon contact with Ran. A Cys93Ser substitution dramatically reduced exchange activity through an effect on RCC1 binding to RanGDP. Diamide treatment reduced the size of the mobile fraction of RCC1-green fluorescent protein in cells and inhibited nuclear import in digitonin-permeabilized cell assays. The Ran protein gradient was also disrupted by UV-induced stress but without affecting RCC1 exchange activity. Our data suggest that stress can disrupt the Ran gradients through RCC1-dependent and RCC1-independent mechanisms, possibly dependent on the particular stress condition.
Collapse
|
47
|
Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon 2014; 90:155-66. [DOI: 10.1016/j.toxicon.2014.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022]
|
48
|
Gazdag Z, Kálmán N, Blaskó A, Virág E, Belágyi J, Pesti M. Regulation of the unbalanced redox state in a Schizosaccharomyces pombe tert-butyl hydroperoxide-resistant mutant. ACTA BIOLOGICA HUNGARICA 2014; 65:218-26. [PMID: 24873914 DOI: 10.1556/abiol.65.2014.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The one-gene mutation in the tert-butyl hydroperoxide-resistant mutant hyd1-190 of the fission yeast Schizosaccharomyces pombe led to a 4-fold increase in resistance to t-BuOOH and decreased specific concentrations of superoxide and total thiols in comparison with the parental strain hyd+. It suggested an unbalanced redox state of the cells, which induced continuously increased specific activities of glutathione peroxidase, glutathione reductase and glutathione S-transferase and decreased activities of the antioxidant enzymes superoxide dismutases and glucose-6-phosphate dehydrogenase to regulate the redox balance of the mutation-induced permanent, low-level but tolerable internal stress. These results may contribute to the understanding of internal, oxidative stress-related human diseases.
Collapse
Affiliation(s)
- Z Gazdag
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - Nikoletta Kálmán
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - Agnes Blaskó
- University of Pécs Institute of Bioanalysis, Faculty of Medicine Pécs Hungary
| | - Eszter Virág
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - J Belágyi
- University of Pécs Institute of Biophysics, Faculty of Medicine Pécs Hungary
| | - M Pesti
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| |
Collapse
|
49
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
50
|
Gazdag Z, Máté G, Certik M, Türmer K, Virág E, Pócsi I, Pesti M. tert-Butyl hydroperoxide-induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 and erg5Δ. J Basic Microbiol 2014; 54 Suppl 1:S50-62. [PMID: 24687861 DOI: 10.1002/jobm.201300925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 11/06/2022]
Abstract
The molecular mechanism of tert-butyl hydroperoxide (t-BuOOH) elicited cytotoxicity and the background of t-BuOOH sensitivity were studied in the Saccharomyces cerevisiae ergosterol-less gene deletion mutant erg5Δ and its parental strain BY4741. In comparison to BY4741, untreated erg5Δ cells exhibited alterations in sterol and fatty acid compositions of the plasma membrane, as reflected by the inherent amphotericin B resistance, an elevated level (31%) of plasma membrane rigidity and a decreased uptake of glycerol. Surprisingly, the untreated erg5Δ cells exhibited an unbalanced intracellular redox state, accompanied by the continuous upregulation of the antioxidant enzymes Mn superoxide dismutase, catalase, and glutathione S-transferase, which resulted in decreased specific concentrations of superoxide and peroxides and elevated levels of the hydroxyl radical and thiols. The 2.5-fold sensitivity of erg5Δ to t-BuOOH suggested that the oxidative stress adaptation processes of the mutant could not restore the redox homeostasis of the cells and there is an overlap between sterol and redox homeostases. t-BuOOH treatment of both strains induced adaptive modification of the sterol and fatty acid compositions, increased the plasma membrane fluidity and elevated the specific activities of most antioxidant enzymes through specific regulation processes in a strain-dependent manner.
Collapse
Affiliation(s)
- Zoltán Gazdag
- Faculty of Sciences, Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|