1
|
Tibocha-Bonilla JD, Lyda J, Riley E, Pogliano K, Zengler K. Deciphering metabolic differentiation during Bacillus subtilis sporulation. Nat Commun 2025; 16:129. [PMID: 39747067 PMCID: PMC11695771 DOI: 10.1038/s41467-024-55586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation in B. subtilis, and provides a foundation for future studies of metabolic differentiation.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Jelani Lyda
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Eammon Riley
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Ginkgo Bioworks, Inc., Boston, MA, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
2
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
3
|
Dehghani B, Rodrigues CDA. SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of Bacillus subtilis sporulation. J Bacteriol 2024; 206:e0022024. [PMID: 38904397 PMCID: PMC11270862 DOI: 10.1128/jb.00220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using Bacillus subtilis, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.
Collapse
Affiliation(s)
- Behzad Dehghani
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
4
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Marathe A, Zarazúa-Osorio B, Srivastava P, Fujita M. The master regulator for entry into sporulation in Bacillus subtilis becomes a mother cell-specific transcription factor for forespore engulfment. Mol Microbiol 2023; 120:439-461. [PMID: 37485800 DOI: 10.1111/mmi.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.
Collapse
Affiliation(s)
- Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
7
|
Genetic Screens Identify Additional Genes Implicated in Envelope Remodeling during the Engulfment Stage of Bacillus subtilis Sporulation. mBio 2022; 13:e0173222. [PMID: 36066101 PMCID: PMC9600426 DOI: 10.1128/mbio.01732-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria.
Collapse
|
8
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
9
|
Khanna K, Lopez-Garrido J, Sugie J, Pogliano K, Villa E. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. eLife 2021; 10:62204. [PMID: 34018921 PMCID: PMC8192124 DOI: 10.7554/elife.62204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can divide via two modes. During vegetative growth, the division septum is formed at the midcell to produce two equal daughter cells. However, during sporulation, the division septum is formed closer to one pole to yield a smaller forespore and a larger mother cell. Using cryo-electron tomography, genetics and fluorescence microscopy, we found that the organization of the division machinery is different in the two septa. While FtsAZ filaments, the major orchestrators of bacterial cell division, are present uniformly around the leading edge of the invaginating vegetative septa, they are only present on the mother cell side of the invaginating sporulation septa. We provide evidence suggesting that the different distribution and number of FtsAZ filaments impact septal thickness, causing vegetative septa to be thicker than sporulation septa already during constriction. Finally, we show that a sporulation-specific protein, SpoIIE, regulates asymmetric divisome localization and septal thickness during sporulation.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|
10
|
Riley EP, Lopez-Garrido J, Sugie J, Liu RB, Pogliano K. Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. SCIENCE ADVANCES 2021; 7:eabd6385. [PMID: 33523946 PMCID: PMC10670878 DOI: 10.1126/sciadv.abd6385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell-derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small-molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Chromosome Segregation and Peptidoglycan Remodeling Are Coordinated at a Highly Stabilized Septal Pore to Maintain Bacterial Spore Development. Dev Cell 2020; 56:36-51.e5. [PMID: 33383000 DOI: 10.1016/j.devcel.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.
Collapse
|
12
|
A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genet 2020; 16:e1009246. [PMID: 33315869 PMCID: PMC7769602 DOI: 10.1371/journal.pgen.1009246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development. Cell shape is an important cellular attribute linked to cellular function and environmental adaptation. Bacterial endospores are one of the toughest cell types on Earth, with a defined shape and complex, highly-resistant, multi-layered cell envelope. Although decades of research have focused on defining the composition and assembly of the multi-layered spore envelope, little is known about how these layers contribute to spore shape. Here, we identify SsdC, a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria. We show that SsdC is an important factor in spore shape development in the monoderm, model organism Bacillus subtilis. Our data suggest that SsdC influences the assembly of the spore cortex, through connections to the spore coat, by forming an intriguing, dynamic ring-like structure adjacent to the developing spore. Furthermore, our identification of SsdC suggests evolutionary diversification of the MucB /RseB protein domain between diderm and monoderm bacteria.
Collapse
|
13
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
14
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
15
|
Parrell D, Kroos L. Channels modestly impact compartment-specific ATP levels during Bacillus subtilis sporulation and a rise in the mother cell ATP level is not necessary for Pro-σ K cleavage. Mol Microbiol 2020; 114:563-581. [PMID: 32515031 DOI: 10.1111/mmi.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
Starvation of Bacillus subtilis initiates endosporulation involving formation of mother cell (MC) and forespore (FS) compartments. During engulfment, the MC membrane migrates around the FS and protein channels connect the two compartments. The channels are necessary for postengulfment FS gene expression, which relieves inhibition of SpoIVFB, an intramembrane protease that cleaves Pro-σK , releasing σK into the MC. SpoIVFB has an ATP-binding domain exposed to the MC cytoplasm, but the role of ATP in regulating Pro-σK cleavage has been unclear, as has the impact of the channels on MC and FS ATP levels. Using luciferase produced separately in each compartment to measure relative ATP concentrations during sporulation, we found that the MC ATP concentration rises about twofold coincident with increasing cleavage of Pro-σK , and the FS ATP concentration does not decline. Mutants lacking a channel protein or defective in channel protein turnover exhibited modest and varied effects on ATP levels, which suggested that low ATP concentration does not explain the lack of postengulfment FS gene expression in channel mutants. Furthermore, a rise in the MC ATP level was not necessary for Pro-σK cleavage by SpoIVFB, based on analysis of mutants that bypass the need for relief of SpoIVFB inhibition.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Kelly A, Salgado PS. The engulfasome in C. difficile: Variations on protein machineries. Anaerobe 2019; 60:102091. [PMID: 31470088 PMCID: PMC6934232 DOI: 10.1016/j.anaerobe.2019.102091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Clostridioides difficile infection (CDI) continues to be a substantial healthcare burden, and the changing disease profile raises new challenges in CDI management, both in clinical settings and in the community. CDI is transmitted by spores, which are formed by a subset of the cell population where an asymmetric septum is formed. A full copy of the chromosome is transported into the smaller compartment which is then engulfed by the mother cell. After engulfment, multiple metabolic and morphological changes occur, eventually resulting in the release of the mature spore. Whilst studies in the model organism Bacillus subtilis have demonstrated the importance of the DMP and Q:AH machineries in engulfment, it is becoming clear that there are fundamental differences in the way the two organisms organise these machineries. As spores are the infectious agent in CDI, it is crucial to understand how these dormant cells are formed, and how sporulation can be prevented or disrupted with the view of reducing CDI. Here, we review the current literature on the DMP and Q:AH machineries in C. difficile, and how they compare and contrast to those of B. subtilis. Overview of the DMP and Q:AH engulfment machineries in C. difficile. Analyses of the conservation of DMP across Bacilli, Clostridia and other bacteria. Proposes a multi-protein complex required for engulfment: the engulfasome. Highlights differential arrangements of engulfasome in B. subtilis and C. difficile.
Collapse
Affiliation(s)
- Abigail Kelly
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y, Sugie J, Pogliano K, Villa E. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 2019; 8:45257. [PMID: 31282858 PMCID: PMC6684271 DOI: 10.7554/elife.45257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023] Open
Abstract
The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Javier Lopez-Garrido
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Ziyi Zhao
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Reika Watanabe
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Yuan Yuan
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Joseph Sugie
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Kit Pogliano
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Elizabeth Villa
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
19
|
Ribis JW, Fimlaid KA, Shen A. Differential requirements for conserved peptidoglycan remodeling enzymes during Clostridioides difficile spore formation. Mol Microbiol 2019; 110:370-389. [PMID: 30066347 DOI: 10.1111/mmi.14090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
Abstract
Spore formation is essential for the bacterial pathogen and obligate anaerobe, Clostridioides (Clostridium) difficile, to transmit disease. Completion of this process depends on the mother cell engulfing the developing forespore, but little is known about how engulfment occurs in C. difficile. In Bacillus subtilis, engulfment is mediated by a peptidoglycan degradation complex consisting of SpoIID, SpoIIP and SpoIIM, which are all individually required for spore formation. Using genetic analyses, we determined the functions of these engulfment-related proteins along with the putative endopeptidase, SpoIIQ, during C. difficile sporulation. While SpoIID, SpoIIP and SpoIIQ were critical for engulfment, loss of SpoIIM minimally impacted C. difficile spore formation. Interestingly, a small percentage of ∆spoIID and ∆spoIIQ cells generated heat-resistant spores through the actions of SpoIIQ and SpoIID, respectively. Loss of SpoIID and SpoIIQ also led to unique morphological phenotypes: asymmetric engulfment and forespore distortions, respectively. Catalytic mutant complementation analyses revealed that these phenotypes depend on the enzymatic activities of SpoIIP and SpoIID, respectively. Lastly, engulfment mutants mislocalized polymerized coat even though the basement layer coat proteins, SpoIVA and SipL, remained associated with the forespore. Collectively, these findings advance our understanding of several stages during infectious C. difficile spore assembly.
Collapse
Affiliation(s)
- John W Ribis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Kelly A Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
20
|
Barák I, Muchová K, Labajová N. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 2019; 14:353-363. [PMID: 30855188 DOI: 10.2217/fmb-2018-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis is a rod-shaped bacterium which divides precisely at mid-cell during vegetative growth. Unlike Escherichia coli, another model organism used for studying cell division, B. subtilis can also divide asymmetrically during sporulation, the simplest cell differentiation process. The asymmetrically positioned sporulation septum serves as a morphological foundation for establishing differential gene expression in the smaller forespore and larger mother cell. Both vegetative and sporulation septation events are fine-tuned with cell cycle, and placement of both septa are highly precise. We understand in some detail how this is achieved during vegetative growth but have limited information about how the asymmetric septation site is determined during sporulation.
Collapse
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Naďa Labajová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
21
|
Zeytuni N, Strynadka NCJ. A Hybrid Secretion System Facilitates Bacterial Sporulation: A Structural Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0013-2018. [PMID: 30681070 PMCID: PMC11588154 DOI: 10.1128/microbiolspec.psib-0013-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 02/01/2023] Open
Abstract
Bacteria employ a number of dedicated secretion systems to export proteins to the extracellular environment. Several of these comprise large complexes that assemble in and around the bacterial membrane(s) to form specialized channels through which only selected proteins are actively delivered. Although typically associated with bacterial pathogenicity, a specialized variant of these secretion systems has been proposed to play a central part in bacterial sporulation, a primitive protective process that allows starving cells to form spores that survive in extreme environments. Following asymmetric division, the mother cell engulfs the forespore, leaving it surrounded by two bilayer membranes. During the engulfment process an essential channel apparatus is thought to cross both membranes to create a direct conduit between the mother cell and forespore. At least nine proteins are essential for channel formation, including SpoIIQ under forespore control and the eight SpoIIIA proteins (SpoIIIAA to -AH) under mother cell control. Presumed to form a core channel complex, several of these proteins share similarity with components of Gram-negative bacterial secretion systems, including the type II, III, and IV secretion systems and the flagellum. Based on these similarities it has been suggested that the sporulation channel represents a hybrid, secretion-like transport machinery. Recently, in-depth biochemical and structural characterization of the individual channel components accompanied by in vivo studies has further reinforced this model. Here we review and discuss these recent studies and suggest an updated model for the unique sporulation channel apparatus architecture.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
22
|
Structural and biochemical characterization of SpoIIIAF, a component of a sporulation-essential channel in Bacillus subtilis. J Struct Biol 2018; 204:1-8. [DOI: 10.1016/j.jsb.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
|
23
|
The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation. Trends Microbiol 2018; 26:663-676. [DOI: 10.1016/j.tim.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
24
|
Zeytuni N, Flanagan KA, Worrall LJ, Massoni SC, Camp AH, Strynadka NCJ. Structural characterization of SpoIIIAB sporulation-essential protein in Bacillus subtilis. J Struct Biol 2017; 202:105-112. [PMID: 29288127 DOI: 10.1016/j.jsb.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Endospore formation in the Gram-positive bacterium Bacillus subtilis initiates in response to nutrient depletion and involves a series of morphological changes that result in the creation of a dormant spore. Early in this developmental process, the cell undergoes an asymmetric cell division that produces the larger mother cell and smaller forespore, the latter destined to become the mature spore. The mother cell septal membrane then engulfs the forespore, at which time an essential channel, the so-called feeding-tube apparatus, is thought to cross both membranes to create a direct conduit between the cells. At least nine proteins are required to form this channel including SpoIIQ under forespore control and SpoIIIAA-AH under the mother cell control. Several of these proteins share similarity to components of Type-II, -III and -IV secretion systems as well as the flagellum from Gram-negative bacteria. Here we report the X-ray crystallographic structure of the cytosolic domain of SpoIIIAB to 2.3 Å resolution. This domain adopts a conserved, secretion-system related fold of a six membered anti-parallel helical bundle with a positively charged membrane-interaction face at one end and a small groove at the other end that may serve as a binding site for partner proteins in the assembled apparatus. We analyzed and identified potential interaction interfaces by structure-guided mutagenesis in vivo. Furthermore, we were able to identify a remarkable structural homology to the C-subunit of a bacterial V-ATPase. Collectively, our data provides new insight into the possible roles of SpoIIIAB protein within the secretion-like apparatus essential to bacterial sporulation.
Collapse
Affiliation(s)
- N Zeytuni
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - K A Flanagan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - L J Worrall
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - S C Massoni
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - A H Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA.
| | - N C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 2017; 13:e1007015. [PMID: 28945739 PMCID: PMC5629000 DOI: 10.1371/journal.pgen.1007015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022] Open
Abstract
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria. All pathogenic and non-pathogenic bacteria that differentiate into dormant endospores including Clostridium difficile, Bacillus anthracis, and Bacillus subtilis, contain very high concentrations of the small molecule dipicolinic acid (DPA). This molecule displaces water in the spore core where it plays an integral role in spore resistance and dormancy. DPA and its contribution to spore dehydration were discovered in 1953 but the molecular basis for its accumulation in the spore has remained unclear. The developing endospore resides within a mother cell that assembles protective layers around the spore and nurtures it by providing mother-cell-produced molecules. DPA is produced in the mother cell at a late stage in development and then must be translocated across two membranes into the spore core. Here, we report the discovery of the missing DPA transporter, homologs of which are present in virtually all endospore-forming bacteria. Our data provide evidence for a simple two-step transport pathway in which the mother cell nurtures the developing spore by sequentially moving DPA across the two membranes that surround it.
Collapse
Affiliation(s)
| | - Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Andrew C. Kruse
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 2017; 114:E7073-E7081. [PMID: 28784753 DOI: 10.1073/pnas.1704310114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical β-barrel that forms a large inner channel encircled by two concentric rings, one β-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique β-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.
Collapse
|
27
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 2016; 5. [PMID: 27852437 PMCID: PMC5158138 DOI: 10.7554/elife.18657] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.001 Some bacteria, such as Bacillus subtilis, form spores when starved of food, which enables them to lie dormant for years and wait for conditions to improve. To make a spore, the bacterial cell divides to make a larger mother cell and a smaller forespore cell. Then the membrane that surrounds the mother cell moves to surround the forespore and engulf it. For this process to take place, a rigid mesh-like layer called the cell wall, which lies outside the cell membrane, needs to be remodelled. This happens once a partition in the cell wall, called a septum, has formed, separating mother and daughter cells. However, it is not clear how the mother cell can generate the physical force required to engulf the forespore under the cramped conditions imposed by the cell wall. To address this question, Ojkic, López-Garrido et al. used microscopy to investigate how B. subtilis makes spores. The experiments show that, in order to engulf the forespore, the mother cell must produce new cell wall and destroy cell wall that is no longer needed. Running a simple biophysical model on a computer showed that coordinating these two processes could generate enough force for a mother cell to engulf a forespore. Ojkic, López-Garrido et al. propose that the junction between the septum and the cell wall moves around the forespore to make room for the mother cell’s membrane for expansion. Other spore-forming bacteria that threaten human health – such as Clostridium difficile, which causes bowel infections, and Bacillus anthracis, which causes anthrax – might form their spores in the same way, but this remains to be tested. More work will also be needed to understand exactly how bacterial cells coordinate the cell wall synthesis and cell wall degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.002
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2016; 113:11585-11590. [PMID: 27681621 DOI: 10.1073/pnas.1609604113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the "A-Q complex") is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A-Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.
Collapse
|
29
|
Rodrigues CDA, Ramírez-Guadiana FH, Meeske AJ, Wang X, Rudner DZ. GerM is required to assemble the basal platform of the SpoIIIA-SpoIIQ transenvelope complex during sporulation in Bacillus subtilis. Mol Microbiol 2016; 102:260-273. [PMID: 27381174 DOI: 10.1111/mmi.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 11/29/2022]
Abstract
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A-Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell-cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A-Q complex and a hub for the localization of mother cell and forespore proteins.
Collapse
Affiliation(s)
- Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Muchová K, Chromiková Z, Bradshaw N, Wilkinson AJ, Barák I. Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis. PLoS One 2016; 11:e0159076. [PMID: 27415800 PMCID: PMC4945075 DOI: 10.1371/journal.pone.0159076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore.
Collapse
Affiliation(s)
- Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Niels Bradshaw
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
31
|
Zhang Y, Halder S, Kerr RA, Parrell D, Ruotolo B, Kroos L. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK. J Biol Chem 2016; 291:10347-62. [PMID: 26953342 DOI: 10.1074/jbc.m116.715508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σ(K) during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1-20) and σ(K)(21-126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σ(K) part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σ(K)(1-126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σ(K)(1-126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σ(K)(1-126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies.
Collapse
Affiliation(s)
- Yang Zhang
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Sabyasachi Halder
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Richard A Kerr
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Parrell
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Brandon Ruotolo
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Lee Kroos
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
32
|
Serrano M, Crawshaw AD, Dembek M, Monteiro JM, Pereira FC, Pinho MG, Fairweather NF, Salgado PS, Henriques AO. The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis. Mol Microbiol 2016; 100:204-28. [PMID: 26690930 PMCID: PMC4982068 DOI: 10.1111/mmi.13311] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc‐binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQH120S interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQH120S, binds Zn2+, and metal absence alters the SpoIIQ‐SpoIIIAH complex in vitro. Possibly, SpoIIQH120S supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post‐engulfment, forespore and mother cell‐specific gene expression, suggesting a channel‐like function. Both engulfment and a channel‐like function may be ancestral functions of SpoIIQ‐SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms.
Collapse
Affiliation(s)
- Mónica Serrano
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Adam D Crawshaw
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marcin Dembek
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - João M Monteiro
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Fátima C Pereira
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mariana Gomes Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| | - Neil F Fairweather
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O Henriques
- Microbial Development, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, Avenida da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
33
|
Meeske AJ, Rodrigues CDA, Brady J, Lim HC, Bernhardt TG, Rudner DZ. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis. PLoS Biol 2016; 14:e1002341. [PMID: 26735940 PMCID: PMC4703394 DOI: 10.1371/journal.pbio.1002341] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023] Open
Abstract
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. Transposon sequencing enables the recovery of virtually all previously characterized genes required for the differentiation of the bacterium Bacillus subtilis into a dormant spore and identifies 24 new ones. When starved of nutrients, the bacterium Bacillus subtilis differentiates into a dormant spore that is impervious to environmental insults. Decades of research have uncovered over 100 genes required for spore formation. Molecular dissection of these genes has revealed factors that act at every stage of this developmental process. In this study, we used a high-throughput genetic screening method called transposon sequencing to assess whether there were any sporulation genes left to be discovered. This approach identified virtually all of the known sporulation genes, as well as 24 new ones. Furthermore, transposon sequencing enabled the discovery of two new sets of mutants in which the sporulation process was either delayed or accelerated. Using fluorescence microscopy, we determined the developmental stage at which each mutant was impaired and discovered mutants that are delayed in initiation of sporulation, or defective in morphogenesis, cell–cell signaling, or spore maturation. Our findings exemplify the utility of transposon sequencing to uncover new biology in well-studied processes, suggesting that it could similarly be used to identify novel genes required for other aspects of bacterial physiology, such as natural competence, stationary phase survival, or the responses to cell envelope stress and DNA damage.
Collapse
Affiliation(s)
- Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher D. A. Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacqueline Brady
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the formation of an endospore in response to conditions of nutrient limitation. The morphological differentiation that spores undergo initiates with the formation of an asymmetric septum near to one pole of the cell, forming a smaller compartment, the forespore, and a larger compartment, the mother cell. This process continues with the complex morphogenesis of the spore as governed by an intricate series of interactions between forespore and mother cell proteins across the inner and outer forespore membranes. Given that these interactions occur at a particular place in the cell, a critical question is how the proteins involved in these processes get properly targeted, and we discuss recent progress in identifying mechanisms responsible for this targeting.
Collapse
|
35
|
Fimlaid KA, Jensen O, Donnelly ML, Siegrist MS, Shen A. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins. PLoS Genet 2015; 11:e1005562. [PMID: 26465937 PMCID: PMC4605598 DOI: 10.1371/journal.pgen.1005562] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023] Open
Abstract
Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the “feeding tube,” that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission. The bacterial spore-forming pathogen Clostridium difficile is a leading cause of nosocomial infections in the United States and represents a significant threat to healthcare systems around the world. As an obligate anaerobe, C. difficile must form spores in order to survive exit from the gastrointestinal tract. Accordingly, spore formation is essential for C. difficile disease transmission. Since the mechanisms controlling this process remain poorly characterized, we analyzed the importance of highly conserved secretion channel components during C. difficile sporulation. In the model organism Bacillus subtilis, this channel had previously been shown to function as a “feeding tube” that allows the mother cell to nurture the developing forespore and sustain transcription in the forespore. We show here that conserved components of this structure in C. difficile are dispensable for forespore transcription, although they are important for completing forespore engulfment and retaining the protective spore coat around the forespore, in contrast with B. subtilis. The results of our study suggest that targeting these conserved proteins could prevent C. difficile spore formation and thus disease transmission.
Collapse
Affiliation(s)
- Kelly A. Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Program in Cellular, Molecular & Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Owen Jensen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - M. Lauren Donnelly
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 2014; 10:e1003912. [PMID: 25356555 PMCID: PMC4214620 DOI: 10.1371/journal.pcbi.1003912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in 60 of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes. When the bacterium B. subtilis runs out of food, it undergoes a fundamental development process by which it forms durable spores. Sporulation is initiated by asymmetric cell division after which the larger mother cell engulfs the smaller forespore, followed by spore maturation and release. This survival strategy is so robust that engulfment even proceeds when cells are deprived of their protective cell wall. Under these severe perturbations, 60 of the mother cells still engulf their forespores in only 10 of the normal engulfment time, while the remaining 40 of mother cells withdraw from engulfment. This all-or-none outcome of engulfment suggests decision-making, which was recently also identified in other types of engulfment, e.g. during phagocytosis when immune cells engulf and destroy pathogens. Here, we developed a biophysical model to explain fast bistable forespore engulfment in absence of the cell wall and energy sources. Our discovered principles may prove very general, thus predicting key ingredients of successful engulfment across all kingdoms of life.
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
- * E-mail:
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Robert G. Endres
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
| |
Collapse
|
37
|
Crawshaw AD, Serrano M, Stanley WA, Henriques AO, Salgado PS. A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiol Lett 2014; 358:129-36. [PMID: 25105965 DOI: 10.1111/1574-6968.12554] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/18/2014] [Accepted: 07/28/2014] [Indexed: 11/30/2022] Open
Abstract
Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining.
Collapse
Affiliation(s)
- Adam D Crawshaw
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
38
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
39
|
Defining the region of Bacillus subtilis SpoIIIJ that is essential for its sporulation-specific function. J Bacteriol 2014; 196:1318-24. [PMID: 24443530 DOI: 10.1128/jb.01084-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the YidC/OxaI/Alb3 family play a crucial role in the insertion, folding, and/or assembly of membrane proteins in prokaryotes and eukaryotes. Bacillus subtilis has two YidC-like proteins, denoted SpoIIIJ and YqjG. SpoIIIJ and YqjG are largely exchangeable in function, but SpoIIIJ has a unique role in sporulation, while YqjG stimulates competence development. To obtain more insight into the regions important for the sporulation specificity of SpoIIIJ, a series of SpoIIIJ/YqjG chimeras was constructed. These chimeras were tested for functionality during vegetative growth and for their ability to complement the sporulation defect of a spoIIIJ deletion strain. The data suggest an important role for the domain comprising transmembrane segment 2 (TMS2) and its flanking loops in sporulation specificity, with lesser contributions to specificity by TMS1 and TMS3.
Collapse
|
40
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
41
|
Kroos L, Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2873-85. [PMID: 24099006 DOI: 10.1016/j.bbamem.2013.03.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
42
|
Pérez Rodriguez MA, Guo X. Biomacromolecular localization in bacterial cells by the diffusion and capture mechanism. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0596-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Søgaard-Andersen L. Stably bridging a great divide: localization of the SpoIIQ landmark protein in Bacillus subtilis. Mol Microbiol 2013; 89:1019-24. [PMID: 23944268 PMCID: PMC3817522 DOI: 10.1111/mmi.12365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 11/28/2022]
Abstract
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan-degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.
Collapse
Affiliation(s)
- Lotte Søgaard-Andersen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
44
|
Fredlund J, Broder D, Fleming T, Claussin C, Pogliano K. The SpoIIQ landmark protein has different requirements for septal localization and immobilization. Mol Microbiol 2013; 89:1053-68. [PMID: 23859254 DOI: 10.1111/mmi.12333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2013] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins. SpoIIQ shows diffuse localization only in a mutant lacking both pathways. Super-resolution imaging shows that in the absence of SpoIIIAH, SpoIIQ forms fewer, slightly larger foci than in wild type. Surprisingly, photobleaching experiments demonstrate that, although SpoIIQ localizes without SpoIIIAH, it is no longer immobilized, and is therefore able to exchange subunits within a localized pool. SpoIIQ mobility is further increased by the additional absence of the engulfment proteins. However an enzymatically inactive SpoIID protein immobilizes SpoIIQ even in the absence of SpoIIIAH, indicating that complete septal thinning is not required for SpoIIQ localization. This suggests that SpoIIQ interacts with both SpoIIIAH and the engulfment proteins or their peptidoglycan cleavage products. They further demonstrate that apparently normal localization of a protein without a binding partner can mask dramatic alterations in protein mobility. We speculate that SpoIIQ assembles foci along the path defined by engulfment proteins degrading peptidoglycan.
Collapse
Affiliation(s)
- Jennifer Fredlund
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0377, USA
| | | | | | | | | |
Collapse
|
45
|
Rodrigues CDA, Marquis KA, Meisner J, Rudner DZ. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis. Mol Microbiol 2013; 89:1039-52. [PMID: 23834622 DOI: 10.1111/mmi.12322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/22/2023]
Abstract
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother-cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother-cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother-cell-produced protein to interact with SpoIIQ. Cells in which both mother-cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram-negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.
Collapse
Affiliation(s)
- Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Bacterial endospores are the most resistant cell type known to humans, as they are able to withstand extremes of temperature, pressure, chemical injury, and time. They are also of interest because the endospore is the infective particle in a variety of human and livestock diseases. Endosporulation is characterized by the morphogenesis of an endospore within a mother cell. Based on the genes known to be involved in endosporulation in the model organism Bacillus subtilis, a conserved core of about 100 genes was derived, representing the minimal machinery for endosporulation. The core was used to define a genomic signature of about 50 genes that are able to distinguish endospore-forming organisms, based on complete genome sequences, and we show this 50-gene signature is robust against phylogenetic proximity and other artifacts. This signature includes previously uncharacterized genes that we can now show are important for sporulation in B. subtilis and/or are under developmental control, thus further validating this genomic signature. We also predict that a series of polyextremophylic organisms, as well as several gut bacteria, are able to form endospores, and we identified 3 new loci essential for sporulation in B. subtilis: ytaF, ylmC, and ylzA. In all, the results support the view that endosporulation likely evolved once, at the base of the Firmicutes phylum, and is unrelated to other bacterial cell differentiation programs and that this involved the evolution of new genes and functions, as well as the cooption of ancestral, housekeeping functions.
Collapse
|
47
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Structure of components of an intercellular channel complex in sporulating Bacillus subtilis. Proc Natl Acad Sci U S A 2012; 109:5441-5. [PMID: 22431604 DOI: 10.1073/pnas.1120087109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Following asymmetric cell division during spore formation in Bacillus subtilis, a forespore expressed membrane protein SpoIIQ, interacts across an intercellular space with a mother cell-expressed membrane protein, SpoIIIAH. Their interaction can serve as a molecular "ratchet" contributing to the migration of the mother cell membrane around that of the forespore in a phagocytosis-like process termed engulfment. Upon completion of engulfment, SpoIIQ and SpoIIIAH are integral components of a recently proposed intercellular channel allowing passage from the mother cell into the forespore of factors required for late gene expression in this compartment. Here we show that the extracellular domains of SpoIIQ and SpoIIIAH form a heterodimeric complex in solution. The crystal structure of this complex reveals that SpoIIQ has a LytM-like zinc-metalloprotease fold but with an incomplete zinc coordination sphere and no metal. SpoIIIAH has an α-helical subdomain and a protruding β-sheet subdomain, which mediates interactions with SpoIIQ. SpoIIIAH has sequence and structural homology to EscJ, a type III secretion system protein that forms a 24-fold symmetric ring. Superposition of the structures of SpoIIIAH and EscJ reveals that the SpoIIIAH protomer overlaps with two adjacent protomers of EscJ, allowing us to generate a dodecameric SpoIIIAH ring by using structural homology. Following this superposition, the SpoIIQ chains also form a closed dodecameric ring abutting the SpoIIIAH ring, producing an assembly surrounding a 60 Å channel. The dimensions and organization of the proposed complex suggest it is a plausible model for the extracellular component of a gap junction-like intercellular channel.
Collapse
|
49
|
Radhakrishnan SK, Viollier P. Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends Cell Biol 2012; 22:14-21. [DOI: 10.1016/j.tcb.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
50
|
Abstract
Spores of Bacillus subtilis are encased in a protective coat made up of at least 70 proteins. The structure of the spore coat has been examined using a variety of genetic, imaging and biochemical techniques; however, the majority of these studies have focused on mature spores. In this study we use a library of 41 spore coat proteins fused to the green fluorescent protein to examine spore coat morphogenesis over the time-course of sporulation. We found considerable diversity in the localization dynamics of coat proteins and were able to establish six classes based on localization kinetics. Localization dynamics correlate well with the known transcriptional regulators of coat gene expression. Previously, we described the existence of multiple layers in the mature spore coat. Here, we find that the spore coat initially assembles a scaffold that is organized into multiple layers on one pole of the spore. The coat then encases the spore in multiple co-ordinated waves. Encasement is driven, at least partially, by transcription of coat genes and deletion of sporulation transcription factors arrests encasement. We also identify the trans-compartment SpoIIIAH-SpoIIQ channel as necessary for encasement. This is the first demonstration of a forespore contribution to spore coat morphogenesis.
Collapse
Affiliation(s)
- Peter T McKenney
- New York University, Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, 8th floor, New York, NY 10003, USA
| | | |
Collapse
|