1
|
Zhao Z, Asai R, Mikawa T. Differential Sensitivity of Midline Patterning to Mitosis during and after Primitive Streak Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620280. [PMID: 39484456 PMCID: PMC11527125 DOI: 10.1101/2024.10.25.620280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Midline establishment is a fundamental process during early embryogenesis for Bilaterians . Midline patterning in nonamniotes can occur without mitosis, through Planar Cell Polarity (PCP) signaling. By contrast, amniotes utilize both cell proliferation and PCP signaling for patterning early midline landmark, the primitive streak (PS). This study examined their roles for midline patterning at post PS-extension. Results In contrast to PS extension stages, embryos under mitotic arrest during the post PS-extension preserved notochord (NC) extension and Hensen's node (HN)/PS regression judged by both morphology and marker genes, although they became shorter, and laterality was lost. Remarkably, no or background level of expression was detected for the majority of PCP core components in the NC-HN-PS area at post PS-extension stages, except for robustly detected prickle-1 . Morpholino knockdown of Prickle-1 showed little influence on midline patterning, except for suppressed embryonic growth. Lastly, associated with mitotic arrest-induced size reduction, midline tissue cells displayed hypertrophy. Conclusion Thus, the study has identified at least two distinct mitosis sensitivity phases during early midline pattering: One is PS extension that requires both mitosis and PCP, and the other is mitotic arrest-resistant midline patterning with little influence by PCP at post PS-extension stages.
Collapse
|
2
|
Hu B, Pinzour J, Patel A, Rooney F, Zerwic A, Gao Y, Nguyen NT, Xie H, Ye D, Lin F. Gα13 controls pharyngeal endoderm convergence by regulating E-cadherin expression and RhoA activation. Development 2024; 151:dev202597. [PMID: 39258889 PMCID: PMC11463957 DOI: 10.1242/dev.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Pinzour
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Asmi Patel
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Faith Rooney
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amie Zerwic
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nhan T. Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Yoon J, Kumar S, Lee H, Rehman ZU, Park S, Lee U, Kim J. Sizzled (Frzb3) physically interacts with noncanonical Wnt ligands to inhibit gastrulation cell movement. Mol Cells 2024; 47:100068. [PMID: 38759887 PMCID: PMC11225558 DOI: 10.1016/j.mocell.2024.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac. However, the underlying cause of limited cell movement at the ventral side remains elusive. To explore the functional role of a key regulator in constraining gastrulation cell movement at the ventral side, we investigated the Bmp4-direct target gene, sizzled (szl), to assess its potential role in inhibiting noncanonical Wnt signaling. In our current study, we demonstrated that ectopic expression of szl led to gastrulation defects in a dose-dependent manner without altering cell fate specification. Overexpression of szl resulted in decreased elongation of Activin-treated animal cap and Keller explants. Furthermore, our immunoprecipitation assay unveiled the physical interaction of Szl with noncanonical Wnt ligand proteins (Wnt5 and Wnt11). Additionally, the activation of small GTPases involved in Wnt signaling mediation (RhoA and Rac1) was diminished upon szl overexpression. In summary, our findings suggest that Bmp4 signaling negatively modulates cell movement from the ventral side of the embryo by inducing szl expression during early Xenopus gastrulation.
Collapse
Affiliation(s)
- Jaeho Yoon
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Zia Ur Rehman
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
4
|
Kacker S, Parsad V, Singh N, Hordiichuk D, Alvarez S, Gohar M, Kacker A, Rai SK. Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. J Dev Biol 2024; 12:12. [PMID: 38804432 PMCID: PMC11130840 DOI: 10.3390/jdb12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
Collapse
Affiliation(s)
- Sandeep Kacker
- Department of Pharmacology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Varuneshwar Parsad
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Naveen Singh
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Daria Hordiichuk
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Stacy Alvarez
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Mahnoor Gohar
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Anshu Kacker
- Department of Histology and Human Physiology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Sunil Kumar Rai
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| |
Collapse
|
5
|
McLeod JJ, Rothschild SC, Francescatto L, Kim H, Tombes RM. Specific CaMKIIs mediate convergent extension cell movements in early zebrafish development. Dev Dyn 2024; 253:390-403. [PMID: 37860955 DOI: 10.1002/dvdy.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation. RESULTS Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes. CONCLUSIONS Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
Collapse
Affiliation(s)
- Jamie J McLeod
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah C Rothschild
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Haerin Kim
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert M Tombes
- Department of Biology and VCU Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Kocere A, Chiavacci E, Soneson C, Wells HH, Méndez-Acevedo KM, MacGowan JS, Jacobson ST, Hiltabidle MS, Raghunath A, Shavit JA, Panáková D, Williams MLK, Robinson MD, Mosimann C, Burger A. Rbm8a deficiency causes hematopoietic defects by modulating Wnt/PCP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536513. [PMID: 37090609 PMCID: PMC10120739 DOI: 10.1101/2023.04.12.536513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Defects in blood development frequently occur among syndromic congenital anomalies. Thrombocytopenia-Absent Radius (TAR) syndrome is a rare congenital condition with reduced platelets (hypomegakaryocytic thrombocytopenia) and forelimb anomalies, concurrent with more variable heart and kidney defects. TAR syndrome associates with hypomorphic gene function for RBM8A/Y14 that encodes a component of the exon junction complex involved in mRNA splicing, transport, and nonsense-mediated decay. How perturbing a general mRNA-processing factor causes the selective TAR Syndrome phenotypes remains unknown. Here, we connect zebrafish rbm8a perturbation to early hematopoietic defects via attenuated non-canonical Wnt/Planar Cell Polarity (PCP) signaling that controls developmental cell re-arrangements. In hypomorphic rbm8a zebrafish, we observe a significant reduction of cd41-positive thrombocytes. rbm8a-mutant zebrafish embryos accumulate mRNAs with individual retained introns, a hallmark of defective nonsense-mediated decay; affected mRNAs include transcripts for non-canonical Wnt/PCP pathway components. We establish that rbm8a-mutant embryos show convergent extension defects and that reduced rbm8a function interacts with perturbations in non-canonical Wnt/PCP pathway genes wnt5b, wnt11f2, fzd7a, and vangl2. Using live-imaging, we found reduced rbm8a function impairs the architecture of the lateral plate mesoderm (LPM) that forms hematopoietic, cardiovascular, kidney, and forelimb skeleton progenitors as affected in TAR Syndrome. Both mutants for rbm8a and for the PCP gene vangl2 feature impaired expression of early hematopoietic/endothelial genes including runx1 and the megakaryocyte regulator gfi1aa. Together, our data propose aberrant LPM patterning and hematopoietic defects as consequence of attenuated non-canonical Wnt/PCP signaling upon reduced rbm8a function. These results also link TAR Syndrome to a potential LPM origin and a developmental mechanism.
Collapse
Affiliation(s)
- Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Harrison H. Wells
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Jacalyn S. MacGowan
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seth T. Jacobson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Max S. Hiltabidle
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Azhwar Raghunath
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniela Panáková
- Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- University Hospital Schleswig Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg, Kiel, Lübeck, Germany
| | - Margot L. K. Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mark D. Robinson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
8
|
Paolini A, Sharipova D, Lange T, Abdelilah-Seyfried S. Wnt9 directs zebrafish heart tube assembly via a combination of canonical and non-canonical pathway signaling. Development 2023; 150:dev201707. [PMID: 37680191 PMCID: PMC10560569 DOI: 10.1242/dev.201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Tim Lange
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | | |
Collapse
|
9
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
10
|
Caetano da Silva C, Ostertag A, Raman R, Muller M, Cohen-Solal M, Collet C. wnt11f2 Zebrafish, an Animal Model for Development and New Insights in Bone Formation. Zebrafish 2023; 20:1-9. [PMID: 36795617 PMCID: PMC9968865 DOI: 10.1089/zeb.2022.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Wnt signaling is a key regulator of osteoblast differentiation and mineralization in humans and animals, mediated by the canonical Wnt/β-catenin and noncanonical signaling pathways. Both pathways are crucial in regulating osteoblastogenesis and bone formation. The zebrafish silberblick (slb) carries a mutation in wnt11f2, a gene that contributes to embryonic morphogenesis; however, its role in bone morphology is unknown. wnt11f2 was originally known as wnt11; it was recently reclassified to avoid confusion in comparative genetics and disease modeling. The goal of this review is to summarize the characterization of the wnt11f2 zebrafish mutant and to deliver some new insights concerning its role in skeletal development. In addition to the previously described defects in early development in this mutant as well as craniofacial dysmorphia, we show an increase in tissue mineral density in the heterozygous mutant that points to a possible role of wnt11f2 in high bone mass phenotypes.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université Paris-Cité, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris, France
| | - Agnes Ostertag
- INSERM U1132 and Université Paris-Cité, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université Paris-Cité, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris, France
| | - Corinne Collet
- INSERM U1132 and Université Paris-Cité, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris, France.,UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris, France
| |
Collapse
|
11
|
Van Itallie ES, Field CM, Mitchison TJ, Kirschner MW. Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands. Dev Biol 2023; 493:67-79. [PMID: 36334838 PMCID: PMC10194025 DOI: 10.1016/j.ydbio.2022.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Wnt11 family proteins are ligands that activate a type of Dishevelled-mediated, non-canonical Wnt signaling pathway. Loss of function causes defects in gastrulation and/or anterior-posterior axis extension in all vertebrates. Non-mammalian vertebrate genomes encode two Wnt11 family proteins whose distinct functions have been unclear. We knocked down Wnt11b and Wnt11, separately and together, in Xenopus laevis. Single morphants exhibited very similar phenotypes of delayed blastopore closure, but they had different phenotypes during the tailbud period. In response to their very similar gastrulation phenotypes, we chose to characterize dual morphants. Using dark field illuminated time-lapse imaging and kymograph analysis, we identified a failure of dorsal blastopore lip maturation that correlated with slower blastopore closure and failure to internalize the endoderm at the dorsal blastopore lip. We connected these externally visible phenotypes to cellular events in the internal tissues by imaging intact fixed embryos stained for anillin and microtubules. We found that the initial extension of the archenteron is correlated with blastopore lip maturation, and archenteron extension is dramatically disrupted by decreased Wnt11 family signaling. We were aided in our interpretation of the immunofluorescence by the novel, membrane proximal location of the cleavage furrow protein anillin in the epithelium of the blastopore lip and early archenteron.
Collapse
Affiliation(s)
| | - Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
13
|
Heilig AK, Nakamura R, Shimada A, Hashimoto Y, Nakamura Y, Wittbrodt J, Takeda H, Kawanishi T. Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis. eLife 2022; 11:71845. [PMID: 35522214 PMCID: PMC9075960 DOI: 10.7554/elife.71845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal axial muscles, or epaxial muscles, are a fundamental structure covering the spinal cord and vertebrae, as well as mobilizing the vertebrate trunk. To date, mechanisms underlying the morphogenetic process shaping the epaxial myotome are largely unknown. To address this, we used the medaka zic1/zic4-enhancer mutant Double anal fin (Da), which exhibits ventralized dorsal trunk structures resulting in impaired epaxial myotome morphology and incomplete coverage over the neural tube. In wild type, dorsal dermomyotome (DM) cells reduce their proliferative activity after somitogenesis. Subsequently, a subset of DM cells, which does not differentiate into the myotome population, begins to form unique large protrusions extending dorsally to guide the epaxial myotome dorsally. In Da, by contrast, DM cells maintain the high proliferative activity and mainly form small protrusions. By combining RNA- and ChIP-sequencing analyses, we revealed direct targets of Zic1, which are specifically expressed in dorsal somites and involved in various aspects of development, such as cell migration, extracellular matrix organization, and cell-cell communication. Among these, we identified wnt11 as a crucial factor regulating both cell proliferation and protrusive activity of DM cells. We propose that dorsal extension of the epaxial myotome is guided by a non-myogenic subpopulation of DM cells and that wnt11 empowers the DM cells to drive the coverage of the neural tube by the epaxial myotome.
Collapse
Affiliation(s)
- Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuka Hashimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuta Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Xia ZJ, Zeng XXI, Tambe M, Ng BG, Dong PDS, Freeze HH. A Dominant Heterozygous Mutation in COG4 Causes Saul-Wilson Syndrome, a Primordial Dwarfism, and Disrupts Zebrafish Development via Wnt Signaling. Front Cell Dev Biol 2021; 9:720688. [PMID: 34595172 PMCID: PMC8476873 DOI: 10.3389/fcell.2021.720688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport. Our previous work has shown the intracellular disturbances caused by this mutation; however, the pathological mechanism of SWS needs further investigation. We sought to understand the molecular mechanism of specific aspects of the SWS phenotype by analyzing SWS-derived fibroblasts and zebrafish embryos expressing this dominant variant. SWS fibroblasts accumulate glypicans, a group of heparan sulfate proteoglycans (HSPGs) critical for growth and bone development through multiple signaling pathways. Consistently, we find that glypicans are increased in zebrafish embryos expressing the COG4 p.G516R variant. These animals show phenotypes consistent with convergent extension (CE) defects during gastrulation, shortened body length, and malformed jaw cartilage chondrocyte intercalation at larval stages. Since non-canonical Wnt signaling was shown in zebrafish to be related to the regulation of these processes by glypican 4, we assessed wnt levels and found a selective increase of wnt4 transcripts in the presence of COG4 p.G516R . Moreover, overexpression of wnt4 mRNA phenocopies these developmental defects. LGK974, an inhibitor of Wnt signaling, corrects the shortened body length at low concentrations but amplifies it at slightly higher concentrations. WNT4 and the non-canonical Wnt signaling component phospho-JNK are also elevated in cultured SWS-derived fibroblasts. Similar results from SWS cell lines and zebrafish point to altered non-canonical Wnt signaling as one possible mechanism underlying SWS pathology.
Collapse
Affiliation(s)
- Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Mitali Tambe
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,National Centre for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
15
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
16
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
18
|
Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs. Cells 2021; 10:cells10020253. [PMID: 33525513 PMCID: PMC7911671 DOI: 10.3390/cells10020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neocortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also disrupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. In particular, the Wnt3-Fzd7 signaling axis determines the deep layer Foxp2-expressing neurons of developing neocortices. Our findings also suggest that Fzd7 controls the balance of the expression for Foxp transcription factors in developing neocortical neurons. These discoveries are presented in our manuscript within a larger framework of this review on the role of extrinsic factors in regulating mRNA translation.
Collapse
|
19
|
Dalgin G, Prince VE. Midline morphogenesis of zebrafish foregut endoderm is dependent on Hoxb5b. Dev Biol 2020; 471:1-9. [PMID: 33290819 DOI: 10.1016/j.ydbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
During vertebrate embryonic development complex morphogenetic events drive the formation of internal organs associated with the developing digestive tract. The foregut organs derive from hepatopancreatic precursor cells that originate bilaterally within the endoderm monolayer, and subsequently converge toward the midline where they coalesce to produce the gut tube from which the liver and pancreas form. The progenitor cells of these internal organs are influenced by the lateral plate mesoderm (LPM), which helps direct them towards their specific fates. However, it is not completely understood how the bilateral organ precursors move toward the embryonic midline and ultimately coalesce to form functional organs. Here we demonstrate that the zebrafish homeobox gene hoxb5b regulates morphogenesis of the foregut endoderm at the midline. At early segmentation stages, hoxb5b is expressed in the LPM adjacent to the developing foregut endoderm. By 24 hpf hoxb5b is expressed directly in the endoderm cells of the developing gut tube. When Hoxb5b function is disrupted, either by morpholino knockdown or sgRNA/Cas9 somatic disruption, the process of foregut morphogenesis is disrupted, resulting in a bifurcated foregut. By contrast, knockdown of the paralogous hoxb5a gene does not alter gut morphology. Further analysis has indicated that Hoxb5b knockdown specimens produce endocrine pancreas cell types, but liver cells are absent. Finally, cell transplantation experiments revealed that Hoxb5b function in the endoderm is not needed for proper coalescence of the foregut at the midline. Together, our findings imply that midline morphogenesis of foregut endoderm is guided by a hoxb5b-mediated mechanism that functions extrinsically, likely within the LPM. Loss of hoxb5b function prevents normal coalescence of endoderm cells at the midline and thus disrupts gut morphogenesis.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, 60637, USA
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
20
|
Deepa S, Senthilkumaran B. Interactive role of Wnt signaling and Zn in regulating testicular function of the common carp, Cyprinus carpio. Theriogenology 2020; 161:161-175. [PMID: 33333442 DOI: 10.1016/j.theriogenology.2020.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
Wnt signaling is conserved among all species and plays a significant role in various cellular processes including reproduction. The present study identified significant involvement of wnt4a, wnt5b, and wnt8a signaling in the testicular growth of common carp,Cyprinus carpio. Predominant expression of wnt4a, wnt5b, and wnt8a was found in the gonads and Wnt4a was localized in spermatocytes and interstitial cells. Ontogeny and testicular phase-wise analysis signified the importance of wnt isofoms analyzed in this study. Specific pathway activation of Wnt signaling revealed that Wnt4a and Wnt5b act through non-canonical while Wnt8a prefers the canonical pathway. The Wnt signaling regulates several steroidogenic enzyme and testis-related genes which was confirmed by the Wnt blockade experiments. Incidentally, zinc (Zn) is an essential trace element involved in the progression of spermatogenesis in teleosts. In adult male carp, a single administration of Zn at different doses elevated the expression of Wnt and Zn transporter genes and a single-dose (30 μg/g body weight [BW]) of Zn treatment elevated steroidogenic enzyme and testis-related genes which coincided with elevated androgens. Conversely, single-dose administration of Zn chelator to the Zn administered (30 μg/g BW) fish reversed the effects emphasizing a prominent role of Zn in the testicular function perhaps through Wnt signaling. Similar effects were observed in the in vitro experiments using the Zn chelator. Bioaccumulation of Zn and histological analysis revealed the importance of Zn in progression of spermatogenesis and sperm motility. Various assays related to cell viability and proliferation exhibited the role of Zn in promoting spermatogenic cell progression. Flow cytometric analysis confirmed Zn-induced elevation of Wnt and Zn transporter genes in germ and supporting cells. Furthermore, the effects of Zn are dose-related in carp. Taken together, it seems wnt4a, wnt5b, and wnt8a play an important role in testis and exposure of Wnt inhibitor, canonical as well as non-canonical activators, and Zn confirmed that Zn regulates Wnt signaling vis-à-vis promoting spermatogenesis in the common carp.
Collapse
Affiliation(s)
- Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
21
|
Lee YH, Kawakami K, HuangFu WC, Liu IH. Chondroitin sulfate proteoglycan 4 regulates zebrafish body axis organization via Wnt/planar cell polarity pathway. PLoS One 2020; 15:e0230943. [PMID: 32240230 PMCID: PMC7117731 DOI: 10.1371/journal.pone.0230943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Pericellular and extracellular proteoglycans play an important role in modulating morphogen gradients and signal transductions. Chondroitin sulfate proteoglycan 4 (Cspg4) is a membrane spanning proteoglycan expressed in immature progenitor cells and cancer cells. Cspg4 participates in cellular events such as proliferation, migration and signal transduction, and these events are generally important for embryo development. In this study, we characterized Cspg4 for its roles in zebrafish embryonic development. Our results demonstrated that cspg4 was maternally expressed from 0 to 3 hours post fertilization (hpf) and expressed in the anterior and posterior embryo end after 9 hpf. Knocking-down cspg4 resulted in a shorter anterior-posterior axis than control embryo, which could be rescued by co-injecting wnt11 mRNA suggesting that Cspg4 regulates body axis organization through modulating the Wnt/planar cell polarity signaling pathway. In addition, overexpressing cspg4 caused cyclopia. The Cspg4 transmembrane domain mutant embryo phenocopied the global over-expression of cspg4 mRNA and led to cyclopia with a very low penetrance. Our results demonstrated that the quantitatively and spatially accurate distribution of Cspg4 is critical for body axis and midline development during gastrulation.
Collapse
Affiliation(s)
- Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regeneration Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
24
|
Wu L, Li Y, Xu Y, Li Y, Wang L, Ma X, Liu H, Li X, Zhou L. Cloning and characterization of wnt4a gene in a natural triploid teleost, Qi river crucian carp (Carassius auratus). Gen Comp Endocrinol 2019; 277:104-111. [PMID: 30923007 DOI: 10.1016/j.ygcen.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
WNT4 (wingless-type MMTV integration site family, member 4) plays a key role in the ovarian differentiation and development in mammals. However, the possible roles of Wnt4 during gonadal differentiation and development need further clarification in teleosts. In this study, we cloned and characterized the full-length cDNA of Qi river crucian carp (Carassius auratus) wnt4a gene (CA-wnt4a). The cDNA of CA-wnt4a is 2337 bp, including the ORF of 1059 bp, encoding a putative protein with a transmembrane domain and a WNT family domain. Sequence and phylogenetic analyses revealed that the CA-Wnt4a identified is a genuine Wnt4a. Tissue distribution analysis showed that CA-wnt4a is expressed in all the tissues examined, including ovary. CA-wnt4a undergoes a stepwise increase in the embryonic stages, suggesting that CA-wnt4a might be involved in the early developmental stage. Ontogenic analysis demonstrated that CA-wnt4a expression is upregulated in the ovaries at 30-50 days after hatching (dah), the critical period of sex determination/differentiation in Qi river crucian carp. From 90 dah, the expression of CA-wnt4a was gradually downregulated in the developing ovaries. Immunohistochemistry demonstrated that CA-Wnt4a was expressed in the somatic and germ cells of the ovary by 30 dah, thereafter, positive signals of Wnt4a were detected in the somatic cells, oogonia and primary growth oocytes from 60 dah. In the sex-reversed testis induced by letrozole treatment, the expression level of CA-wnt4a was significantly downregulated. When CA-wnt4a expression was inhibited by injection of FH535 (an inhibitor of canonical Wnt/β-catenin signal pathway) in the ovaries, levels of cyp19a1a, foxl2 mRNA were significantly downregulated, while sox9b and cyp11c1 were upregulated, which suggested that together with Foxl2-leading estrogen pathway, CA-wnt4a signaling pathway might be involved in ovarian differentiation and repression of the male pathway gene expression in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yongjing Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yufeng Xu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanfeng Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Zhang Z, Zhang K, Chen S, Zhang Z, Zhang J, You X, Bian C, Xu J, Jia C, Qiang J, Zhu F, Li H, Liu H, Shen D, Ren Z, Chen J, Li J, Gao T, Gu R, Xu J, Shi Q, Xu P. Draft genome of the protandrous Chinese black porgy, Acanthopagrus schlegelii. Gigascience 2018; 7:1-7. [PMID: 29659813 PMCID: PMC5893958 DOI: 10.1093/gigascience/giy012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background As one of the most popular and valuable commercial marine fishes in China and East Asian countries, the Chinese black porgy (Acanthopagrus schlegelii), also known as the blackhead seabream, has some attractive characteristics such as fast growth rate, good meat quality, resistance to diseases, and excellent adaptability to various environments. Furthermore, the black porgy is a good model for investigating sex changes in fish due to its protandrous hermaphroditism. Here, we obtained a high-quality genome assembly of this interesting teleost species and performed a genomic survey on potential genes associated with the sex-change phenomenon. Findings We generated 175.4 gigabases (Gb) of clean sequence reads using a whole-genome shotgun sequencing strategy. The final genome assembly is approximately 688.1 megabases (Mb), accounting for 93% of the estimated genome size (739.6 Mb). The achieved scaffold N50 is 7.6 Mb, reaching a relatively high level among sequenced fish species. We identified 19 465 protein-coding genes, which had an average transcript length of 17.3 kb. By performing a comparative genomic analysis, we found 3 types of genes potentially associated with sex change, which are useful for studying the genetic basis of the protandrous hermaphroditism. Conclusions We provide a draft genome assembly of the Chinese black porgy and discuss the potential genetic mechanisms of sex change. These data are also an important resource for studying the biology and for facilitating breeding of this economically important fish.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Kai Zhang
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Shuyin Chen
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Jinyong Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430000, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, Jiangsu 212000, China
| | - Jin Xu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Jun Qiang
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Hongxia Li
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Hailin Liu
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Dehua Shen
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Zhonghong Ren
- Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Tianheng Gao
- College of Oceanography, Hohhai University, Nanjing, Jiangsu 210098, China
| | - Ruobo Gu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, Jiangsu 212000, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, Jiangsu 212000, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, Jiangsu 212000, China
| | - Pao Xu
- Freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| |
Collapse
|
26
|
Hu B, Gao Y, Davies L, Woo S, Topczewski J, Jessen JR, Lin F. Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development 2018; 145:dev.163303. [PMID: 30082271 DOI: 10.1242/dev.163303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/16/2018] [Indexed: 01/30/2023]
Abstract
During embryogenesis, the germ layers, including the endoderm, undergo convergence and extension movements to narrow and elongate the body plan. In zebrafish, the dorsal migration of endodermal cells during gastrulation is controlled by chemokine signaling, but little is known about how they migrate during segmentation. Here, we show that glypican 4 (Gpc4), a member of the heparin sulfate proteoglycan family, is required for efficient migration of anterior endodermal cells during early segmentation, regulating Rac activation to maintain polarized actin-rich lamellipodia. An endoderm transplantation assay showed that Gpc4 regulates endoderm migration in a non-cell-autonomous fashion. Further analyses revealed that the impaired endoderm migration in gpc4 mutants results from increases in the expression and assembly of fibronectin and laminin, major components of the extracellular matrix (ECM). Notably, we found that matrix metalloproteinase 14 (Mmp14a/b) is required for the control of ECM expression during endoderm migration, with Gpc4 acting through Mmp14a/b to limit ECM expression. Our results suggest that Gpc4 is crucial for generating the environment required for efficient migration of endodermal cells, uncovering a novel function of Gpc4 during development.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lauren Davies
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Stephanie Woo
- School of Natural Sciences, Merced, University of California Merced, Merced, CA 95340, USA
| | - Jacek Topczewski
- Northwestern University, Feinberg School of Medicine, Stanley Manne Children's Research Institute, Chicago, IL 60611, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Yamada S, Iino T, Bessho Y, Hosokawa Y, Matsui T. Quantitative analysis of mechanical force required for cell extrusion in zebrafish embryonic epithelia. Biol Open 2017; 6:1575-1580. [PMID: 28882841 PMCID: PMC5665469 DOI: 10.1242/bio.027847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
When cells in epithelial sheets are damaged by intrinsic or extrinsic causes, they are eliminated by extrusion from the sheet. Cell extrusion, which is required for maintenance of tissue integrity, is the consequence of contraction of actomyosin rings, as demonstrated by both molecular/cellular biological experimentation and numerical simulation. However, quantitative evaluation of actomyosin contraction has not been performed because of the lack of a suitable direct measurement system. In this study, we developed a new method using a femtosecond laser to quantify the contraction force of the actomyosin ring during cell extrusion in zebrafish embryonic epithelia. In this system, an epithelial cell in zebrafish embryo is first damaged by direct femtosecond laser irradiation. Next, a femtosecond laser-induced impulsive force is loaded onto the actomyosin ring, and the contraction force is quantified to be on the order of kPa as a unit of pressure. We found that cell extrusion was delayed when the contraction force was slightly attenuated, suggesting that a relatively small force is sufficient to drive cell extrusion. Thus, our method is suitable for the relative quantitative evaluation of mechanical dynamics in the process of cell extrusion, and in principle the method is applicable to similar phenomena in different tissues and organs of various species. Summary: In this study a novel in vivo force quantification system was developed, which succeeded in estimating the magnitude of force required for extrusion of a dying cell from zebrafish embryonic epithelia.
Collapse
Affiliation(s)
- Sohei Yamada
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takanori Iino
- Bio-Process Engineering, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yoichiroh Hosokawa
- Bio-Process Engineering, Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
28
|
Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T. High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis. Dev Biol 2017; 426:270-290. [DOI: 10.1016/j.ydbio.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
29
|
Miles LB, Mizoguchi T, Kikuchi Y, Verkade H. A role for planar cell polarity during early endoderm morphogenesis. Biol Open 2017; 6:531-539. [PMID: 28377456 PMCID: PMC5450312 DOI: 10.1242/bio.021899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The zebrafish endoderm begins to develop at gastrulation stages as a monolayer of cells. The behaviour of the endoderm during gastrulation stages is well understood. However, knowledge of the morphogenic movements of the endoderm during somitogenesis stages, as it forms a mesenchymal rod, is lacking. Here we characterise endodermal development during somitogenesis stages, and describe the morphogenic movements as the endoderm transitions from a monolayer of cells into a mesenchymal endodermal rod. We demonstrate that, unlike the overlying mesoderm, endodermal cells are not polarised during their migration to the midline at early somitogenesis stages. Specifically, we describe the stage at which endodermal cells begin to leave the monolayer, a process we have termed 'midline aggregation'. The planar cell polarity (PCP) signalling pathway is known to regulate mesodermal and ectodermal cell convergence towards the dorsal midline. However, a role for PCP signalling in endoderm migration to the midline during somitogenesis stages has not been established. In this report, we investigate the role for PCP signalling in multiple phases of endoderm development during somitogenesis stages. Our data exclude involvement of PCP signalling in endodermal cells as they leave the monolayer.
Collapse
Affiliation(s)
- Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical sciences, Chiba University, Chuo-ku 260-8675, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Prathibha Y, Senthilkumaran B. Expression of wnt4/5 during reproductive cycle of catfish and wnt5 promoter analysis. J Endocrinol 2017; 232:1-13. [PMID: 27875264 DOI: 10.1530/joe-16-0104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023]
Abstract
Signaling molecules, Wnt4 and Wnt5, are essential for ovarian growth during developmental stages in mammals. Although these molecules were identified in several teleosts, their precise expression and role in reproductive processes have not yet been explored in any lower vertebrates. In view of this, using catfish, Clarias batrachus as an animal model, cloning and expression analysis of wnt4 and wnt5 were analyzed in different tissues, at various developmental stages, during ovarian reproductive cycle and after gonadotropin induction. These studies indicate a plausible influence of Wnts in ovarian development and recrudescence. Transcript and protein localization revealed their presence in peri-nucleolar, pre-vitellogenic, vitellogenic and follicular layer of post-vitellogenic oocytes. Synchronous expression of pax2 and wnt5 during the ovarian development and recrudescence of catfish led us to analyze the importance of putative binding element of Pax2 in the 5'-promoter motif of wnt5 Promoter activity of wnt5 was analyzed by luciferase assays after transfecting progressive deletion constructs in pGL3 basic vector into the mammalian cell lines (HEK 293 and CHO). The constructs having putative Pax2 motif showed high promoter activity compared with controls. Likewise, the constructs with site-directed mutagenesis showed increased activity after supplementing recombinant Pax2 indicating the prominence of this motif in wnt5 promoter, in vitro Electrophoretic gel mobility shift, supershift and chromatin immunoprecipitation assays confirmed the binding of Pax2 to its corresponding cis-acting element in the upstream of wnt5 This study is the first of its kind to report the critical transcriptional interaction of Pax2 on wnt5 vis-à-vis ovarian development in teleosts.
Collapse
Affiliation(s)
- Yarikipati Prathibha
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Zhang X, Chen Y, Ye Y, Wang J, Wang H, Yuan G, Lin Z, Wu Y, Zhang Y, Lin X. Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation. Cell Signal 2016; 29:12-22. [PMID: 27693749 DOI: 10.1016/j.cellsig.2016.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Wnt signaling plays essential roles in both embryonic pattern formation and postembryonic tissue homoestasis. High levels of Wnt activity repress foregut identity and facilitate hindgut fate through forming a gradient of Wnt signaling activity along the anterior-posterior axis. Here, we examined the mechanisms of Wnt signaling in hindgut development by differentiating human embryonic stem cells (hESCs) into the hindgut progenitors. We observed severe morphological changes when Wnt signaling was blocked by using Wnt antagonist Dkk1. We performed deep-transcriptome sequencing (RNA-seq) and identified 240 Wnt-activated genes and 2023 Wnt-repressed genes, respectively. Clusters of Wnt targets showed enrichment in specific biological functions, such as "gastrointestinal or skeletal development" in the Wnt-activated targets and "neural or immune system development" in the Wnt-repressed targets. Moreover, we adopted a high-throughput chromatin immunoprecipitation and deep sequencing (ChIP-seq) approach to identify the genomic regions through which Wnt-activated transcription factor TCF7L2 regulated transcription. We identified 83 Wnt direct target candidates, including the hindgut marker CDX2 and the genes relevant to morphogenesis (MSX1, MSX2, LEF1, T, PDGFRB etc.) through combinatorial analysis of the RNA-seq and ChIP-seq data. Together, our study identified a series of direct and indirect Wnt targets in hindgut differentiation, and uncovered the diverse mechanisms of Wnt signaling in regulating multi-lineage differentiation.
Collapse
Affiliation(s)
- Xiujuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Ye
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- Core Genomic Facility, CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohong Yuan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
The endoderm indirectly influences morphogenetic movements of the zebrafish head kidney through the posterior cardinal vein and VegfC. Sci Rep 2016; 6:30677. [PMID: 27477767 PMCID: PMC4967926 DOI: 10.1038/srep30677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Integration of blood vessels and organ primordia determines organ shape and function. The head kidney in the zebrafish interacts with the dorsal aorta (DA) and the posterior cardinal vein (PCV) to achieve glomerular filtration and definitive hematopoiesis, respectively. How the head kidney co-develops with both the axial artery and vein remains unclear. We found that in endodermless sox32-deficient embryos, the head kidney associated with the PCV but not the DA. Disrupted convergent migration of the PCV and the head kidney in sox32-deficient embryos was rescued in a highly coordinated fashion through the restoration of endodermal cells. Moreover, grafted endodermal cells abutted the host PCV endothelium in the transplantation assay. Interestingly, the severely-disrupted head kidney convergence in the sox32-deficient embryo was suppressed by both the cloche mutation and the knockdown of endothelial genes, indicating that an interaction between the endoderm and the PCV restricts the migration of the head kidney. Furthermore, knockdown of either vegfC or its receptor vegfr3 suppressed the head kidney convergence defect in endodermless embryos and perturbed the head kidney-PCV association in wild-type embryos. Our findings thus underscore a role for PCV and VegfC in patterning the head kidney prior to organ assembly and function.
Collapse
|
33
|
Wittig JG, Münsterberg A. The Early Stages of Heart Development: Insights from Chicken Embryos. J Cardiovasc Dev Dis 2016; 3:jcdd3020012. [PMID: 29367563 PMCID: PMC5715676 DOI: 10.3390/jcdd3020012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
34
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
35
|
Wu BT, Wen SH, Hwang SPL, Huang CJ, Kuan YS. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression. J Cell Sci 2015; 128:2328-39. [PMID: 25934698 DOI: 10.1242/jcs.167403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/21/2015] [Indexed: 01/22/2023] Open
Abstract
Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.
Collapse
Affiliation(s)
- Bo-Tsung Wu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsien Wen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Ping L Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan Center for System Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Wu D, Zhu X, Jimenez-Cowell K, Mold AJ, Sollecito CC, Lombana N, Jiao M, Wei Q. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2. Exp Cell Res 2015; 333:80-92. [PMID: 25704760 PMCID: PMC4387072 DOI: 10.1016/j.yexcr.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 10/25/2022]
Abstract
Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), a Cooperation between Max Delbrück Center and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Kevin Jimenez-Cowell
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Alexander J Mold
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | | | - Nicholas Lombana
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States.
| |
Collapse
|
37
|
Bai Y, Tan X, Zhang H, Liu C, Zhao B, Li Y, Lu L, Liu Y, Zhou J. Ror2 receptor mediates Wnt11 ligand signaling and affects convergence and extension movements in zebrafish. J Biol Chem 2015; 289:20664-76. [PMID: 24928507 DOI: 10.1074/jbc.m114.586099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. Theintracellular Tyr-647andSer-863 sites ofRor2are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish.
Collapse
|
38
|
Hu Q, Zhu Y, Liu Y, Wang N, Chen S. Cloning and characterization of wnt4a gene and evidence for positive selection in half-smooth tongue sole (Cynoglossus semilaevis). Sci Rep 2014; 4:7167. [PMID: 25418599 PMCID: PMC4241513 DOI: 10.1038/srep07167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023] Open
Abstract
Wnt4 gene plays a role in developmental processes in mammals. However, little is known regarding its function in teleosts. We cloned and characterized the full-length half-smooth tongue sole (Cynoglossus semilaevis) wnt4a gene (CS-wnt4a). CS-wnt4a cDNA was 1746 bp in length encoding 353aa. CS-wnt4a expression level was highest in the testis, and gradually increased in the developing gonads until 1 year of age. In situ hybridization revealed that CS-wnt4a expression level was highest in stage II oocytes and sperm in the adult ovary and testis, respectively. CS-wnt4a expression level was significantly up-regulated in the gonads after exposure to high temperature. The level of methylation of the CS-wnt4a first exon was negatively correlated with the expression of CS-wnt4a. The branch-site model suggested that vertebrate wnt4a differed significantly from that of wnt4b, and that the selective pressures differed between ancestral aquatic and terrestrial organisms. Two positively selected sites were found in the ancestral lineages of teleost fish, but none in the ancestral lineages of mammals. One positively selected site was located on the α-helices of the 3D structure, the other on the random coil. Our results are of value for further study of the function of wnt4 and the mechanism of selection.
Collapse
Affiliation(s)
- Qiaomu Hu
- 1] Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China [2] Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ying Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| |
Collapse
|
39
|
Sinha T, Lin L, Li D, Davis J, Evans S, Wynshaw-Boris A, Wang J. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development. Dev Biol 2014; 398:177-92. [PMID: 25448697 DOI: 10.1016/j.ydbio.2014.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained from this study will also guide future investigations to decipher the role of non-canonical Wnt/PCP signaling in endoderm development, vasculogenesis and heart formation.
Collapse
Affiliation(s)
- Tanvi Sinha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Lizhu Lin
- Skaggs School of Pharmacy and Pharmaceutical Sciences & Department of Medicine, University of California, San Diego, United States
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Jennifer Davis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Sylvia Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences & Department of Medicine, University of California, San Diego, United States
| | - Anthony Wynshaw-Boris
- Department of Genetics, School of Medicine, Case Western Reserve University, United States
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States.
| |
Collapse
|
40
|
Du TT, Xu PF, Dong ZW, Fan HB, Jin Y, Dong M, Chen Y, Pan WJ, Ren RB, Liu TX, Deng M, Huang QH. Setdb2 controls convergence and extension movements during zebrafish gastrulation by transcriptional regulation of dvr1. Dev Biol 2014; 392:233-44. [PMID: 24892953 DOI: 10.1016/j.ydbio.2014.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 12/15/2022]
Abstract
As the primary driving forces of gastrulation, convergence and extension (C&E) movements lead to a medio-lateral narrowing and an anterior-posterior elongation of the embryonic body axis. Histone methylation as a post-translational modification plays a critical role in early embryonic development, but its functions in C&E movements remain largely unknown. Here, we show that the setdb2-dvr1 transcriptional cascade plays a critical role in C&E movements during zebrafish gastrulation. Knockdown of Setdb2, a SET domain-containing protein possessing a potential histone H3K9 methyltransferase activity, induced abnormal C&E movements, resulting in anterior-posterior shortening and medio-lateral expansion of the embryonic axis, as well as abnormal notochord cell polarity. Furthermore, we found that Setdb2 functions through fine-tuning the expression of dvr1, a ligand of the TGF-β superfamily, to an appropriate level to ensure proper C&E movements in a non-cell-autonomous manner. In addition, both overexpression and knockdown of Dvr1 at the one-cell stage resulted in defects at epiboly and C&E. These data demonstrate that Setdb2 is a novel regulator for C&E movements and acts by modulating the expression level of dvr1, suggesting that Dvr1 acts as a direct and essential mediator for C&E cell movements.
Collapse
Affiliation(s)
- Ting-Ting Du
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Fei Xu
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Zhi-Wei Dong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Bo Fan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Jun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui-Bao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Xi Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Deng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Qiu-Hua Huang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Akiyama R, Masuda M, Tsuge S, Bessho Y, Matsui T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 2014; 141:1104-9. [PMID: 24504340 DOI: 10.1242/dev.098905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains unidentified. Here, we characterized fibroblast growth factor (FGF) signal activity within the PSM, and demonstrated that an anterior limit of downstream Erk activity corresponds to the future B-5 somite boundary. Moreover, the segmentation clock is required for a stepwise posterior shift of the Erk activity boundary during each segmentation. Our results provide the first molecular evidence of the future somite boundary at B-5, and we propose that clock-dependent cyclic inhibition of the FGF/Erk signal is a key mechanism in the generation of perfect repetitive structures in zebrafish development.
Collapse
Affiliation(s)
- Ryutaro Akiyama
- Gene Regulation Research, Nara Institute Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
42
|
Nakanaga K, Hama K, Kano K, Sato T, Yukiura H, Inoue A, Saigusa D, Tokuyama H, Tomioka Y, Nishina H, Kawahara A, Aoki J. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. ACTA ACUST UNITED AC 2014; 155:235-41. [DOI: 10.1093/jb/mvt114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Retnoaji B, Akiyama R, Matta T, Bessho Y, Matsui T. Retinoic acid controls proper head-to-trunk linkage in zebrafish by regulating an anteroposterior somitogenetic rate difference. Development 2013; 141:158-65. [PMID: 24284210 DOI: 10.1242/dev.097568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the primary body axis elongates towards the posterior and is periodically divided into somites, which give rise to the vertebrae, skeletal muscles and dermis. Somites form periodically from anterior to posterior, and the anterior somites form in a more rapid cycle than the posterior somites. However, how this anteroposterior (AP) difference in somitogenesis is generated and how it contributes to the vertebrate body plan remain unclear. Here, we show that the AP difference in zebrafish somitogenesis originates from a variable overlapping segmentation period between one somite and the next. The AP difference is attributable to spatiotemporal inhibition of the clock gene her1 via retinoic acid (RA) regulation of the transcriptional repressor ripply1. RA depletion thus disrupts timely somite formation at the transition, eventually leading to the loss of one somite and the resultant cervical vertebra. Overall, our results indicate that RA regulation of the AP difference is crucial for proper linkage between the head and trunk in the vertebrate body plan.
Collapse
Affiliation(s)
- Bambang Retnoaji
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
44
|
Tahara N, Bessho Y, Matsui T. Celf1 is required for formation of endoderm-derived organs in zebrafish. Int J Mol Sci 2013; 14:18009-23. [PMID: 24005864 PMCID: PMC3794766 DOI: 10.3390/ijms140918009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
We recently reported that an RNA binding protein called Cugbp Elav-like family member 1 (Celf1) regulates somite symmetry and left-right patterning in zebrafish. In this report, we show additional roles of Celf1 in zebrafish organogenesis. When celf1 is knocked down by using an antisense morpholino oligonucleotides (MO), liver buds fail to form, and pancreas buds do not form a cluster, suggesting earlier defects in endoderm organogenesis. As expected, we found failures in endoderm cell growth and migration during gastrulation in embryos injected with celf1-MOs. RNA immunoprecipitation revealed that Celf1 binds to gata5 and cdc42 mRNAs which are known to be involved in cell growth and migration, respectively. Our results therefore suggest that Celf1 regulates proper organogenesis of endoderm-derived tissues by regulating the expression of such targets.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Gene Regulation Research, Nara Institute Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan.
| | | | | |
Collapse
|
45
|
Sequential effects of spadetail, one-eyed pinhead and no tail on midline convergence of nephric primordia during zebrafish embryogenesis. Dev Biol 2013; 384:290-300. [PMID: 23860396 DOI: 10.1016/j.ydbio.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/12/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022]
Abstract
Midline convergence of organ primordia is an important mechanism that shapes the vertebrate body plan. Here, we focus on the morphogenetic movements of pronephric glomerular primordia (PGP) occurring during zebrafish embryonic kidney development. To characterize the process of PGP midline convergence, we used Wilms' tumour 1a (wt1a) as a marker to label kidney primordia, and performed quantitative analyses of the migration of the bilateral PGP. The PGP initially are approximately 350 μm apart in a wild type embryo at 10h post fertilization (hpf). The inter-PGP distance decreases exponentially between 10 and 48 hpf, while the anterior-posterior (A-P) dimension of each PGP increases linearly between 10 and 12 hpf, then decreases substantially between 12 and 24 hpf. Using mutants in the Nodal receptor cofactor one-eyed pinhead (oep) and the T-box transcription factors spadetail (spt) and no tail (ntl), we were able to define distinctive regulation underlying these sequential phases of PGP midline migration. Zygotic oep mutants (Zoep(-/-)) exhibited defects in midline convergence after 16 hpf. Spt is necessary for PGP convergence from 10 hpf, whereas ntl's effect on convergence does not begin until 24 hpf. Notably, we observed normal cardiac convergence in spt(-/-) and ntl(-/-) embryos implying that these novel roles of spt and ntl in PGP migration cannot be explained simply by generalised effects on midline convergence. These findings demonstrate that quantitative approaches to developmental migration allow the parsing of early patterning events, and in this instance suggest that the zebrafish may offer insights into midline urogenital migration anomalies in humans.
Collapse
|
46
|
Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M. Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 2013; 4:1915. [DOI: 10.1038/ncomms2915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/19/2013] [Indexed: 12/14/2022] Open
|
47
|
Herder C, Swiercz JM, Müller C, Peravali R, Quiring R, Offermanns S, Wittbrodt J, Loosli F. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development 2013; 140:2787-97. [PMID: 23698346 DOI: 10.1242/dev.096487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vertebrate central nervous system develops from an epithelium where cells are polarized along the apicobasal axis. Loss of this polarity results in abnormal organ architecture, morphology and proliferation. We found that mutations of the guanine nucleotide exchange factor ArhGEF18 affect apicobasal polarity of the retinal neuroepithelium in medaka fish. We show that ArhGEF18-mediated activation of the small GTPase RhoA is required to maintain apicobasal polarity at the onset of retinal differentiation and to control the ratio of neurogenic to proliferative cell divisions. RhoA signals through Rock2 to regulate apicobasal polarity, tight junction localization and the cortical actin cytoskeleton. The human ArhGEF18 homologue can rescue the mutant phenotype, suggesting a conserved function in vertebrate neuroepithelia. Our analysis identifies ArhGEF18 as a key regulator of tissue architecture and function, controlling apicobasal polarity and proliferation through RhoA activation. We thus identify the control of neuroepithelial apicobasal polarity as a novel role for RhoA signaling in vertebrate development.
Collapse
Affiliation(s)
- Cathrin Herder
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS One 2013; 8:e64058. [PMID: 23700457 PMCID: PMC3659048 DOI: 10.1371/journal.pone.0064058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis is a powerful tool to obtain large amount genome-scale gene expression profiles. Despite its extensive usage to diverse biological problems in the last decade, transcriptomic researches approaching the zebrafish embryonic development have been very limited. Several recent studies have made great progress in this direction, yet the large gap still exists, especially regarding to the transcriptome dynamics of embryonic stages from early gastrulation onwards. Here, we present a comprehensive analysis about the transcriptomes of 9 different stages covering 7 major periods (cleavage, blastula, gastrula, segmentation, pharyngula, hatching and early larval stage) in zebrafish development, by recruiting the RNA-sequencing technology. We detected the expression for at least 24,065 genes in at least one of the 9 stages. We identified 16,130 genes that were significantly differentially expressed between stages and were subsequently classified into six clusters. Each revealed gene cluster had distinct expression patterns and characteristic functional pathways, providing a framework for the understanding of the developmental transcriptome dynamics. Over 4000 genes were identified as preferentially expressed in one of the stages, which could be of high relevance to stage-specific developmental and molecular events. Among the 68 transcription factor families active during development, most had enhanced average expression levels and thus might be crucial for embryogenesis, whereas the inactivation of the other families was likely required by the activation of the zygotic genome. We discussed our RNA-seq data together with previous findings about the Wnt signaling pathway and some other genes with known functions, to show how our data could be used to advance our understanding about these developmental functional elements. Our study provides ample information for further study about the molecular and cellular mechanisms underlying vertebrate development.
Collapse
|
49
|
Stuckenholz C, Lu L, Thakur PC, Choi TY, Shin D, Bahary N. Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogenesis [corrected] in the zebrafish, Danio rerio. PLoS One 2013; 8:e62470. [PMID: 23638093 PMCID: PMC3639276 DOI: 10.1371/journal.pone.0062470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Sfrp5 belongs to the family of secreted frizzled related proteins (Sfrp), secreted inhibitors of Wingless-MMTV Integration Site (Wnt) signaling, which play an important role in cancer and development. We selected sfrp5 because of its compelling expression profile in the developing endoderm in zebrafish, Danio rerio. In this study, overexpression of sfrp5 in embryos results in defects in both convergent extension (CE) by inhibition of non-canonical Wnt signaling and defects in dorsoventral patterning by inhibition of Tolloid-mediated proteolysis of the BMP inhibitor Chordin. From 25 hours post fertilization (hpf) to 3 days post fertilization (dpf), both overexpression and knockdown of Sfrp5 decrease the size of the endoderm, significantly reducing liver cell number. At 3 dpf, insulin-positive endodermal cells fail to coalesce into a single pancreatic islet. We show that Sfrp5 inhibits both canonical and non-canonical Wnt signaling during embryonic and endodermal development, resulting in endodermal abnormalities.
Collapse
Affiliation(s)
- Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lili Lu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prakash C. Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tae-Young Choi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Choudhry P, Trede NS. DiGeorge syndrome gene tbx1 functions through wnt11r to regulate heart looping and differentiation. PLoS One 2013; 8:e58145. [PMID: 23533583 PMCID: PMC3606275 DOI: 10.1371/journal.pone.0058145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/31/2013] [Indexed: 01/31/2023] Open
Abstract
DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1−/− mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1−/− mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1−/− mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1−/− mutants. In addition, both wnt11r−/− mutants and alcama morphants have heart looping and differentiation defects similar to tbx1−/− mutants. Strikingly, heart looping and differentiation in tbx1−/− mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding of DGS and heart development.
Collapse
Affiliation(s)
- Priya Choudhry
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (PC) (PC); (NT) (NT)
| | - Nikolaus S. Trede
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (PC) (PC); (NT) (NT)
| |
Collapse
|