1
|
Hartmann L, Kristofori P, Li C, Becker K, Hexemer L, Bohn S, Lenhardt S, Weiss S, Voss B, Loewer A, Legewie S. Transcriptional regulators ensuring specific gene expression and decision-making at high TGFβ doses. Life Sci Alliance 2025; 8:e202402859. [PMID: 39542693 PMCID: PMC11565188 DOI: 10.26508/lsa.202402859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
TGFβ-signaling regulates cancer progression by controlling cell division, migration, and death. These outcomes are mediated by gene expression changes, but the mechanisms of decision-making toward specific fates remain unclear. Here, we combine SMAD transcription factor imaging, genome-wide RNA sequencing, and morphological assays to quantitatively link signaling, gene expression, and fate decisions in mammary epithelial cells. Fitting genome-wide kinetic models to our time-resolved data, we find that most of the TGFβ target genes can be explained as direct targets of SMAD transcription factors, whereas the remainder show signs of complex regulation, involving delayed regulation and strong amplification at high TGFβ doses. Knockdown experiments followed by global RNA sequencing revealed transcription factors interacting with SMADs in feedforward loops to control delayed and dose-discriminating target genes, thereby reinforcing the specific epithelial-to-mesenchymal transition at high TGFβ doses. We identified early repressors, preventing premature activation, and a late activator, boosting gene expression responses for a sufficiently strong TGFβ stimulus. Taken together, we present a global view of TGFβ-dependent gene regulation and describe specificity mechanisms reinforcing cellular decision-making.
Collapse
Affiliation(s)
- Laura Hartmann
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Congxin Li
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Kolja Becker
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Lorenz Hexemer
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sonja Lenhardt
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sylvia Weiss
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Björn Voss
- Department of RNA-Biology & Bioinformatics, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
3
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk M. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. eLife 2024; 12:RP91434. [PMID: 38536963 PMCID: PMC10972565 DOI: 10.7554/elife.91434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Martin Matzuk
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
4
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
6
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk MM. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559321. [PMID: 38106095 PMCID: PMC10723262 DOI: 10.1101/2023.09.25.559321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
8
|
Chen PY, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Front Mol Biosci 2023; 10:1113061. [PMID: 37325472 PMCID: PMC10267471 DOI: 10.3389/fmolb.2023.1113061] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is named for the function it was originally discovered to perform-transformation of normal cells into aggressively growing malignant cells. It became apparent after more than 30 years of research, however, that TGFβ is a multifaceted molecule with a myriad of different activities. TGFβs are widely expressed with almost every cell in the human body producing one or another TGFβ family member and expressing its receptors. Importantly, specific effects of this growth factor family differ in different cell types and under different physiologic and pathologic conditions. One of the more important and critical TGFβ activities is the regulation of cell fate, especially in the vasculature, that will be the focus of this review.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Sluimer LM, Bullock E, Rätze MAK, Enserink L, Overbeeke C, Hornsveld M, Brunton VG, Derksen PWB, Tavares S. SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells. J Cell Sci 2023; 136:286925. [PMID: 36620935 DOI: 10.1242/jcs.260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.
Collapse
Affiliation(s)
- Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Celine Overbeeke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marten Hornsveld
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
10
|
Geng Z, Wang Q, Miao W, Wolf T, Chavez J, Giddings E, Hobbs R, DeGraff DJ, Wang Y, Stafford J, Gao Z. AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev Rep 2023; 19:531-549. [PMID: 36258139 PMCID: PMC9905272 DOI: 10.1007/s12015-022-10459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Qiang Wang
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Weili Miao
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Trevor Wolf
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jessenia Chavez
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Emily Giddings
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Ryan Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - James Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA.
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Lex RK, Vokes SA. Timing is everything: Transcriptional repression is not the default mode for regulating Hedgehog signaling. Bioessays 2022; 44:e2200139. [PMID: 36251875 PMCID: PMC9691524 DOI: 10.1002/bies.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022]
Abstract
Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.
Collapse
Affiliation(s)
- Rachel K. Lex
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Steven A. Vokes
- Department of Molecular Bioscienc es, University of Texas at Austin, 100 E 24th Street Stop A5000, Austin, TX 78712 USA
| |
Collapse
|
12
|
Witasp A, Luttropp K, Qureshi AR, Barany P, Heimbürger O, Wennberg L, Ekström TJ, Shiels PG, Stenvinkel P, Nordfors L. Longitudinal genome-wide DNA methylation changes in response to kidney failure replacement therapy. Sci Rep 2022; 12:470. [PMID: 35013499 PMCID: PMC8748627 DOI: 10.1038/s41598-021-04321-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is an emerging public health priority associated with high mortality rates and demanding treatment regimens, including life-style changes, medications or even dialysis or renal transplantation. Unavoidably, the uremic milieu disturbs homeostatic processes such as DNA methylation and other vital gene regulatory mechanisms. Here, we aimed to investigate how dialysis or kidney transplantation modifies the epigenome-wide methylation signature over 12 months of treatment. We used the Infinium HumanMethylation450 BeadChip on whole blood samples from CKD-patients undergoing either dialysis (n = 11) or kidney transplantation (n = 12) and 24 age- and sex-matched population-based controls. At baseline, comparison between patients and controls identified several significant (PFDR < 0.01) CpG methylation differences in genes with functions relevant to inflammation, cellular ageing and vascular calcification. Following 12 months, the global DNA methylation pattern of patients approached that seen in the control group. Notably, 413 CpG sites remained differentially methylated at follow-up in both treatment groups compared to controls. Together, these data indicate that the uremic milieu drives genome-wide methylation changes that are partially reversed with kidney failure replacement therapy. Differentially methylated CpG sites unaffected by treatment may be of particular interest as they could highlight candidate genes for kidney disease per se.
Collapse
Affiliation(s)
- Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Karin Luttropp
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Olof Heimbürger
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas J Ekström
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- College of Medical, Veterinary and Life Sciences Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden
| | - Louise Nordfors
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, M99, 141 86, Stockholm, Sweden.
| |
Collapse
|
13
|
Nam H, Kundu A, Karki S, Brinkley GJ, Chandrashekar DS, Kirkman RL, Liu J, Liberti MV, Locasale JW, Mitchell T, Varambally S, Sudarshan S. The TGF-β/HDAC7 axis suppresses TCA cycle metabolism in renal cancer. JCI Insight 2021; 6:148438. [PMID: 34609963 PMCID: PMC8663777 DOI: 10.1172/jci.insight.148438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Mounting evidence points to alterations in mitochondrial metabolism in renal cell carcinoma (RCC). However, the mechanisms that regulate the TCA cycle in RCC remain uncharacterized. Here, we demonstrate that loss of TCA cycle enzyme expression is retained in RCC metastatic tissues. Moreover, proteomic analysis demonstrates that reduced TCA cycle enzyme expression is far more pronounced in RCC relative to other tumor types. Loss of TCA cycle enzyme expression is correlated with reduced expression of the transcription factor PGC-1α, which is also lost in RCC tissues. PGC-1α reexpression in RCC cells restores the expression of TCA cycle enzymes in vitro and in vivo and leads to enhanced glucose carbon incorporation into TCA cycle intermediates. Mechanistically, TGF-β signaling, in concert with histone deacetylase 7 (HDAC7), suppresses TCA cycle enzyme expression. Our studies show that pharmacologic inhibition of TGF-β restores the expression of TCA cycle enzymes and suppresses tumor growth in an orthotopic model of RCC. Taken together, this investigation reveals a potentially novel role for the TGF-β/HDAC7 axis in global suppression of TCA cycle enzymes in RCC and provides insight into the molecular basis of altered mitochondrial metabolism in this malignancy.
Collapse
Affiliation(s)
| | | | | | | | - Darshan S Chandrashekar
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Maria V Liberti
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,O'Neal Comprehensive Cancer Center, UAB, Birmingham, Alabama, USA
| | - Sunil Sudarshan
- Department of Urology and.,O'Neal Comprehensive Cancer Center, UAB, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Xu H, Wu L, Nguyen HH, Mesa KR, Raghavan V, Episkopou V, Littman DR. Arkadia-SKI/SnoN signaling differentially regulates TGF-β-induced iTreg and Th17 cell differentiation. J Exp Med 2021; 218:212614. [PMID: 34473197 PMCID: PMC8421263 DOI: 10.1084/jem.20210777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β signaling is fundamental for both Th17 and regulatory T (Treg) cell differentiation. However, these cells differ in requirements for downstream signaling components, such as SMAD effectors. To further characterize mechanisms that distinguish TGF-β signaling requirements for Th17 and Treg cell differentiation, we investigated the role of Arkadia (RNF111), an E3 ubiquitin ligase that mediates TGF-β signaling during development. Inactivation of Arkadia in CD4+ T cells resulted in impaired Treg cell differentiation in vitro and loss of RORγt+FOXP3+ iTreg cells in the intestinal lamina propria, which increased susceptibility to microbiota-induced mucosal inflammation. In contrast, Arkadia was dispensable for Th17 cell responses. Furthermore, genetic ablation of two Arkadia substrates, the transcriptional corepressors SKI and SnoN, rescued Arkadia-deficient iTreg cell differentiation both in vitro and in vivo. These results reveal distinct TGF-β signaling modules governing Th17 and iTreg cell differentiation programs that could be targeted to selectively modulate T cell functions.
Collapse
Affiliation(s)
- Hao Xu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY
| | - Henry H Nguyen
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY
| | - Kailin R Mesa
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY
| | - Varsha Raghavan
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY
| | | | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY.,Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
15
|
Mukherjee S, Kar A, Khatun N, Datta P, Biswas A, Barik S. Familiarity Breeds Strategy: In Silico Untangling of the Molecular Complexity on Course of Autoimmune Liver Disease-to-Hepatocellular Carcinoma Transition Predicts Novel Transcriptional Signatures. Cells 2021; 10:1917. [PMID: 34440687 PMCID: PMC8394127 DOI: 10.3390/cells10081917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Autoimmune liver diseases (AILD) often lead to transformation of the liver tissues into hepatocellular carcinoma (HCC). Considering the drawbacks of surgical procedures in such cases, need of successful non-invasive therapeutic strategies and treatment modalities for AILD-associated-HCC still exists. Due to the lack of clear, sufficient knowledge about factors mediating AILD-to-HCC transition, an in silico approach was adopted to delineate the underlying molecular deterministic factors. Parallel enrichment analyses on two different public microarray datasets (GSE159676 and GSE62232) pinpointed the core transcriptional regulators as key players. Correlation between the expression kinetics of these transcriptional modules in AILD and HCC was found to be positive primarily with the advancement of hepatic fibrosis. Most of the regulatory interactions were operative during early (F0-F1) and intermediate fibrotic stages (F2-F3), while the extent of activity in the regulatory network considerably diminished at late stage of fibrosis/cirrhosis (F4). Additionally, most of the transcriptional targets with higher degrees of connectivity in the regulatory network (namely DCAF11, PKM2, DGAT2 and BCAT1) may be considered as potential candidates for biomarkers or clinical targets compared to their low-connectivity counterparts. In summary, this study uncovers new possibilities in the designing of novel prognostic and therapeutic regimen for autoimmunity-associated malignancy of liver in a disease progression-dependent fashion.
Collapse
Affiliation(s)
- Soumyadeep Mukherjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata 700026, India; (S.M.); (P.D.)
| | - Arpita Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, India; (A.K.); (N.K.)
| | - Najma Khatun
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, India; (A.K.); (N.K.)
| | - Puja Datta
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata 700026, India; (S.M.); (P.D.)
| | - Avik Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, India; (A.K.); (N.K.)
| | - Subhasis Barik
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata 700026, India; (S.M.); (P.D.)
| |
Collapse
|
16
|
White MPJ, Smyth DJ, Cook L, Ziegler SF, Levings MK, Maizels RM. The parasite cytokine mimic Hp-TGM potently replicates the regulatory effects of TGF-β on murine CD4 + T cells. Immunol Cell Biol 2021; 99:848-864. [PMID: 33988885 PMCID: PMC9214624 DOI: 10.1111/imcb.12479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor‐beta (TGF‐β) family proteins mediate many vital biological functions in growth, development and regulation of the immune system. TGF‐β itself controls immune homeostasis and inflammation, including conversion of naïve CD4+ T cells into Foxp3+ regulatory T cells (Tregs) in the presence of interleukin‐2 and T‐cell receptor ligands. The helminth parasite Heligmosomoides polygyrus exploits this pathway through a structurally novel TGF‐β mimic (Hp‐TGM), which binds to mammalian TGF‐β receptors and induces Tregs. Here, we performed detailed comparisons of Hp‐TGM with mammalian TGF‐β. Compared with TGF‐β, Hp‐TGM induced greater numbers of Foxp3+ Tregs (iTregs), with more intense Foxp3 expression. Both ligands upregulated Treg functional markers CD73, CD103 and programmed death‐ligand 1, but Hp‐TGM induced significantly higher CD39 expression than did TGF‐β. Interestingly, in contrast to canonical TGF‐β signaling through Smad2/3, Hp‐TGM stimulation was slower and more sustained. Gene expression profiles induced by TGF‐β and Hp‐TGM were remarkably similar, and both types of iTregs suppressed T‐cell responses in vitro and experimental autoimmune encephalomyelitis‐driven inflammation in vivo. In vitro, both types of iTregs were equally stable under inflammatory conditions, but Hp‐TGM‐induced iTregs were more stable in vivo during dextran sodium sulfate‐induced colitis, with greater retention of Foxp3 expression and lower conversion to a ROR‐γt+ phenotype. Altogether, results from this study suggest that the parasite cytokine mimic, Hp‐TGM, may deliver a qualitatively different signal to CD4+ T cells with downstream consequences for the long‐term stability of iTregs. These data highlight the potential of Hp‐TGM as a new modulator of T‐cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Laura Cook
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Steven F Ziegler
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Megan K Levings
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
18
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, Carmignac V, Faivre L, Joshi D, Kjær S, Hill CS. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. eLife 2021; 10:e63545. [PMID: 33416497 PMCID: PMC7834018 DOI: 10.7554/elife.63545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-β signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-β-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.
Collapse
Affiliation(s)
- Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roger George
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrew G Purkiss
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Rebecca A Randall
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roksana Ogrodowicz
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Laurence Faivre
- INSERM - Université de Bourgogne UMR1231 GAD, FHU-TRANSLADDijonFrance
| | - Dhira Joshi
- Peptide Chemistry Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Svend Kjær
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
20
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
21
|
Miyazono KI, Ito T, Fukatsu Y, Wada H, Kurisaki A, Tanokura M. Structural basis for transcriptional coactivator recognition by SMAD2 in TGF-β signaling. Sci Signal 2020; 13:13/662/eabb9043. [PMID: 33323411 DOI: 10.1126/scisignal.abb9043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) proteins regulate multiple cellular functions, including cell proliferation, apoptosis, and extracellular matrix formation. The dysregulation of TGF-β signaling causes diseases such as cancer and fibrosis, and therefore, understanding the biochemical basis of TGF-β signal transduction is important for elucidating pathogenic mechanisms in these diseases. SMAD proteins are transcription factors that mediate TGF-β signaling-dependent gene expression. The transcriptional coactivator CBP directly interacts with the MH2 domains of SMAD2 to activate SMAD complex-dependent gene expression. Here, we report the structural basis for CBP recognition by SMAD2. The crystal structures of the SMAD2 MH2 domain in complex with the SMAD2-binding region of CBP showed that CBP forms an amphiphilic helix on the hydrophobic surface of SMAD2. The expression of a mutated CBP peptide that showed increased SMAD2 binding repressed SMAD2-dependent gene expression in response to TGF-β signaling in cultured cells. Disrupting the interaction between SMAD2 and CBP may therefore be a promising strategy for suppressing SMAD-dependent gene expression.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yui Fukatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hikaru Wada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
22
|
Xu L, Zhou X, Wu Y, Yang J, Xu H. A novel SNW/SKIP domain-containing protein, Bx42, is involved in the antibacterial responses of Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103788. [PMID: 32692995 DOI: 10.1016/j.dci.2020.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Bx42, the homologue of SNW1 in mammals, is involved in pre-mRNA splicing and transcriptional regulation. However, the presence and function of Bx42 have remained poorly understood in invertebrates until now. In the current study, a novel SNW domain-containing protein (MnBx42) from Macrobrachium nipponense was identified, and its potential role in the immune response was investigated. The full-length MnBx42 was 7467 bp with an open reading frame of 1653 bp, encoding 550 amino acids. Real-time PCR analysis suggested that MnBx42 was predominantly expressed in the intestine, gills and hepatopancreas, and immunofluorescence assays indicated that it was located in the nucleus. Its expression level was significantly decreased in M. nipponense post-challenge with white spot syndrome virus (WSSV) as well as Aeromonas hydrophila and Staphylococcus aureus, implying its participation in the innate immune response. The knockdown of MnBx42 in vivo notably increased the susceptibility of the prawns to bacterial infection, markedly increased the bacterial load in the gills, and significantly attenuated the phagocytic activity of haemocytes. Dual-luciferase reporter assays illustrated that MnBx42 could activate the NF-κB pathway. Consistent with this, when MnBx42 was silenced in vivo, the expression levels of antimicrobial peptides (AMPs), including ALF2, ALF3, ALF4, ALF5, Cru1 and Cru2, and NF-κB signalling genes, including dorsal, relish, TAK1, TAB1, Ikkβ, and Ikkε, were significantly reduced. Taken together, these findings may provide new insights about Bx42 in crustaceans and pave the way for a better understanding of the crustacean innate immune system.
Collapse
Affiliation(s)
- Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Xiefei Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Yue Wu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - JingJing Yang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
23
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
24
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
25
|
Cappelli C, Sepulveda H, Rivas S, Pola V, Urzúa U, Donoso G, Sagredo E, Carrero D, Casanova-Ortiz E, Sagredo A, González M, Manterola M, Nardocci G, Armisén R, Montecino M, Marcelain K. Ski Is Required for Tri-Methylation of H3K9 in Major Satellite and for Repression of Pericentromeric Genes: Mmp3, Mmp10 and Mmp13, in Mouse Fibroblasts. J Mol Biol 2020; 432:3222-3238. [PMID: 32198114 DOI: 10.1016/j.jmb.2020.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Abstract
Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
Collapse
Affiliation(s)
- Claudio Cappelli
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Sepulveda
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Solange Rivas
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Pola
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gerardo Donoso
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David Carrero
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marisel González
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcia Manterola
- Instituto de Ciencias Biomédicas. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gino Nardocci
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ricardo Armisén
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Martin Montecino
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
27
|
A new mutational hotspot in the SKI gene in the context of MFS/TAA molecular diagnosis. Hum Genet 2020; 139:461-472. [PMID: 31980905 DOI: 10.1007/s00439-019-02102-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
SKI pathogenic variations are associated with Shprintzen-Goldberg Syndrome (SGS), a rare systemic connective tissue disorder characterized by craniofacial, skeletal and cardiovascular features. So far, the clinical description, including intellectual disability, has been relatively homogeneous, and the known pathogenic variations were located in two different hotspots of the SKI gene. In the course of diagnosing Marfan syndrome and related disorders, we identified nine sporadic probands (aged 2-47 years) carrying three different likely pathogenic or pathogenic variants in the SKI gene affecting the same amino acid (Thr180). Seven of these molecular events were confirmed de novo. All probands displayed a milder morphological phenotype with a marfanoid habitus that did not initially lead to a clinical diagnosis of SGS. Only three of them had learning disorders, and none had intellectual disability. Six out of nine presented thoracic aortic aneurysm, which led to preventive surgery in the oldest case. This report extends the phenotypic spectrum of variants identified in the SKI gene. We describe a new mutational hotspot associated with a marfanoid syndrome with no intellectual disability. Cardiovascular involvement was confirmed in a significant number of cases, highlighting the importance of accurately diagnosing SGS and ensuring appropriate medical treatment and follow-up.
Collapse
|
28
|
Zhao X, Fang Y, Wang X, Yang Z, Li D, Tian M, Kang P. Knockdown of Ski decreases osteosarcoma cell proliferation and migration by suppressing the PI3K/Akt signaling pathway. Int J Oncol 2019; 56:206-218. [PMID: 31746363 PMCID: PMC6910224 DOI: 10.3892/ijo.2019.4914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Ski, an evolutionary conserved protein, is involved in the development of a number of tumors, such as Barrett's esophagus, leukemia, colorectal cancer, gastric cancer, pancreatic cancer, hemangiomas and melanoma. However, studies on the functions of Ski in osteosarcoma (OS) are limited. In this study, firstly the differential expression of Ski in OS tissues and osteochondroma tissues was detected, and the expression of Ski in both human OS cell lines (MG63 and U2OS) and normal osteoblasts (hFoB1.19) was then detected. The results demonstrated that Ski expression was significantly upregulated in both human OS tissues and cell lines. The results led us to hypothesize that Ski may play an essential role in the pathological process of OS. Thus, Ski specific small interfere RNA (Ski-siRNA) was used. The results revealed that OS cell proliferation was markedly inhibited following the knockdown of Ski, which was identified by CCK8 assay, EdU staining and cell cycle analysis. In addition, OS cell migration was significantly suppressed following Ski knockdown, which was identified by wound healing assay. Moreover, the protein levels of p-PI3K and p-Akt in OS cells declined prominently following Ski knockdown. On the whole, the findings of this study revealed that Ski expression was significantly upregulated in OS tissue and OS cells. The knockdown of Ski decreased OS cell proliferation and migration, which was mediated by blocking the PI3K/Akt signaling pathway. Thus, Ski may act as a tumor promoter gene in tumorigenesis, and Ski may prove to be a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuying Fang
- Weifang Maternal and Child Health Hospital, Weifang, Shandong 261000, P.R. China
| | - Xingwen Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhouyuan Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Donghai Li
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan Univerisity, Chengdu, Sichuan 610041, P.R. China
| | - Pengde Kang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Zhang Y, Yang J, Yang J, Li J, Zhang M. CREB activity is required for epidermal growth factor‐induced mouse cumulus expansion. Mol Reprod Dev 2019; 86:1887-1900. [DOI: 10.1002/mrd.23285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jian Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| |
Collapse
|
30
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
31
|
Miyazono KI, Ohno Y, Wada H, Ito T, Fukatsu Y, Kurisaki A, Asashima M, Tanokura M. Structural basis for receptor-regulated SMAD recognition by MAN1. Nucleic Acids Res 2019; 46:12139-12153. [PMID: 30321401 PMCID: PMC6294489 DOI: 10.1093/nar/gky925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/04/2018] [Indexed: 01/15/2023] Open
Abstract
Receptor-regulated SMAD (R-SMAD: SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8) proteins are key transcription factors of the transforming growth factor-β (TGF-β) superfamily of cytokines. MAN1, an integral protein of the inner nuclear membrane, is a SMAD cofactor that terminates TGF-β superfamily signals. Heterozygous loss-of-function mutations in MAN1 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. MAN1 interacts with MAD homology 2 (MH2) domains of R-SMAD proteins using its C-terminal U2AF homology motif (UHM) domain and UHM ligand motif (ULM) and facilitates R-SMAD dephosphorylation. Here, we report the structural basis for R-SMAD recognition by MAN1. The SMAD2–MAN1 and SMAD1–MAN1 complex structures show that an intramolecular UHM–ULM interaction of MAN1 forms a hydrophobic surface that interacts with a hydrophobic surface among the H2 helix, the strands β8 and β9, and the L3 loop of the MH2 domains of R-SMAD proteins. The complex structures also show the mechanism by which SMAD cofactors distinguish R-SMAD proteins that possess a highly conserved molecular surface.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yosuke Ohno
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hikaru Wada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yui Fukatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Makoto Asashima
- Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Taguchi L, Miyakuni K, Morishita Y, Morikawa T, Fukayama M, Miyazono K, Ehata S. c-Ski accelerates renal cancer progression by attenuating transforming growth factor β signaling. Cancer Sci 2019; 110:2063-2074. [PMID: 30972853 PMCID: PMC6550129 DOI: 10.1111/cas.14018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
Although transforming growth factor beta (TGF‐β) is known to be involved in the pathogenesis and progression of many cancers, its role in renal cancer has not been fully investigated. In the present study, we examined the role of TGF‐β in clear cell renal carcinoma (ccRCC) progression in vitro and in vivo. First, expression levels of TGF‐β signaling pathway components were examined. Microarray and immunohistochemical analyses showed that the expression of c‐Ski, a transcriptional corepressor of Smad‐dependent TGF‐β and bone morphogenetic protein (BMP) signaling, was higher in ccRCC tissues than in normal renal tissues. Next, a functional analysis of c‐Ski effects was carried out. Bioluminescence imaging of renal orthotopic tumor models demonstrated that overexpression of c‐Ski in human ccRCC cells promoted in vivo tumor formation. Enhancement of tumor formation was also reproduced by the introduction of a dominant‐negative mutant TGF‐β type II receptor into ccRCC cells. In contrast, introduction of the BMP signaling inhibitor Noggin failed to accelerate tumor formation, suggesting that the tumor‐promoting effect of c‐Ski depends on the inhibition of TGF‐β signaling rather than of BMP signaling. Finally, the molecular mechanism of the tumor‐suppressive role of TGF‐β was assessed. Although TGF‐β signaling did not affect tumor angiogenesis, apoptosis of ccRCC cells was induced by TGF‐β. Taken together, these findings suggest that c‐Ski suppresses TGF‐β signaling in ccRCC cells, which, in turn, attenuates the tumor‐suppressive effect of TGF‐β.
Collapse
Affiliation(s)
- Luna Taguchi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA 2019; 5:ncrna5010023. [PMID: 30871125 PMCID: PMC6468348 DOI: 10.3390/ncrna5010023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The function of microRNAs (miRNAs) during fibrosis and the downstream regulation of gene expression by these miRNAs have become of great biological interest. miR-155 is consistently upregulated in fibrotic disorders, and its ablation downregulates collagen synthesis. Studies demonstrate the integral role of miR-155 in fibrosis, as it mediates TGF-β1 signaling to drive collagen synthesis. In this review, we summarize recent findings on the association between miR-155 and fibrotic disorders. We discuss the cross-signaling between macrophages and fibroblasts that orchestrates the upregulation of collagen synthesis mediated by miR-155. As miR-155 is involved in the activation of the innate and adaptive immune systems, specific targeting of miR-155 in pathologic cells that make excessive collagen could be a viable option before the depletion of miR-155 becomes an attractive antifibrotic approach.
Collapse
|
34
|
Rass M, Oestreich S, Guetter S, Fischer S, Schneuwly S. The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex. PLoS Genet 2019; 15:e1007940. [PMID: 30730884 PMCID: PMC6382215 DOI: 10.1371/journal.pgen.1007940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/20/2019] [Accepted: 01/07/2019] [Indexed: 01/14/2023] Open
Abstract
Members of the Ski/Sno protein family are classified as proto-oncogenes and act as negative regulators of the TGF-ß/BMP-pathways in vertebrates and invertebrates. A newly identified member of this protein family is fussel (fuss), the Drosophila homologue of the human functional Smad suppressing elements (fussel-15 and fussel-18). We and others have shown that Fuss interacts with SMAD4 and that overexpression leads to a strong inhibition of Dpp signaling. However, to be able to characterize the endogenous Fuss function in Drosophila melanogaster, we have generated a number of state of the art tools including anti-Fuss antibodies, specific fuss-Gal4 lines and fuss mutant fly lines via the CRISPR/Cas9 system. Fuss is a predominantly nuclear, postmitotic protein, mainly expressed in interneurons and fuss mutants are fully viable without any obvious developmental phenotype. To identify potential target genes or cells affected in fuss mutants, we conducted targeted DamID experiments in adult flies, which revealed the function of fuss in bitter gustatory neurons. We fully characterized fuss expression in the adult proboscis and by using food choice assays we were able to show that fuss mutants display defects in detecting bitter compounds. This correlated with a reduction of gustatory receptor gene expression (Gr33a, Gr66a, Gr93a) providing a molecular link to the behavioral phenotype. In addition, Fuss interacts with Rpd3, and downregulation of rpd3 in gustatory neurons phenocopies the loss of Fuss expression. Surprisingly, there is no colocalization of Fuss with phosphorylated Mad in the larval central nervous system, excluding a direct involvement of Fuss in Dpp/BMP signaling. Here we provide a first and exciting link of Fuss function in gustatory bitter neurons. Although gustatory receptors have been well characterized, little is known regarding the differentiation and maturation of gustatory neurons. This work therefore reveals Fuss as a pivotal element for the proper differentiation of bitter gustatory neurons acting within a chromatin modifying complex.
Collapse
Affiliation(s)
- Mathias Rass
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Svenja Oestreich
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Severin Guetter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Susanne Fischer
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
35
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Muench DE, Ferchen K, Velu CS, Pradhan K, Chetal K, Chen X, Weirauch MT, Colmenares C, Verma A, Salomonis N, Grimes HL. SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24-e34. [PMID: 30249787 PMCID: PMC6251005 DOI: 10.1182/blood-2018-06-860890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway controls hematopoietic stem cell (HSC) behavior in the marrow niche; however, TGF-β signaling becomes chronic in early-stage myelodysplastic syndrome (MDS). Although TGF-β signaling normally induces negative feedback, in early-stage MDS, high levels of microRNA-21 (miR-21) contribute to chronic TGF-β signaling. We found that a TGF-β signal-correlated gene signature is sufficient to identify an MDS patient population with abnormal RNA splicing (eg, CSF3R) independent of splicing factor mutations and coincident with low HNRNPK activity. Levels of SKI messenger RNA (mRNA) encoding a TGF-β antagonist are sufficient to identify these patients. However, MDS patients with high SKI mRNA and chronic TGF-β signaling lack SKI protein because of miR-21 activity. To determine the impact of SKI loss, we examined murine Ski -/- HSC function. First, competitive HSC transplants revealed a profound defect in stem cell fitness (competitive disadvantage) but not specification, homing, or multilineage production. Aged recipients of Ski -/- HSCs exhibited mild phenotypes similar to phenotypes in those with macrocytic anemia. Second, blastocyst complementation revealed a dramatic block in Ski -/- hematopoiesis in the absence of transplantation. Similar to SKI-high MDS patient samples, Ski -/- HSCs strikingly upregulated TGF-β signaling and deregulated expression of spliceosome genes (including Hnrnpk). Moreover, novel single-cell splicing analyses demonstrated that Ski -/- HSCs and high levels of SKI expression in MDS patient samples share abnormal alternative splicing of common genes (including those that encode splicing factors). We conclude that miR-21-mediated loss of SKI activates TGF-β signaling and alternative splicing to impair the competitive advantage of normal HSCs (fitness), which could contribute to selection of early-stage MDS-genic clones.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chinavenmeni S Velu
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Matthew T Weirauch
- Division of Biomedical Informatics
- Center for Autoimmune Genomics and Etiology, and
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; and
| | | | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
37
|
Takeda N, Hara H, Fujiwara T, Kanaya T, Maemura S, Komuro I. TGF-β Signaling-Related Genes and Thoracic Aortic Aneurysms and Dissections. Int J Mol Sci 2018; 19:ijms19072125. [PMID: 30037098 PMCID: PMC6073540 DOI: 10.3390/ijms19072125] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-β (TGF)-β signaling plays a crucial role in the development and maintenance of various organs, including the vasculature. Accordingly, the mutations in TGF-β signaling pathway-related genes cause heritable disorders of the connective tissue, such as Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), and Shprintzen-Goldberg syndrome (SGS), and these syndromes may affect skeletal, ocular, pulmonary, and cardiovascular systems. Aortic root aneurysms are common problems that can result in aortic dissection or rupture, which is the leading cause of sudden death in the natural history of MFS and LDS, and recent improvements in surgical treatment have improved life expectancy. However, there is currently no genotype-specific medical treatment. Accumulating evidence suggest that not only structural weakness of connective tissue but also increased TGF-β signaling contributes to the complicated pathogenesis of aortic aneurysm formation, but a comprehensive understanding of governing molecular mechanisms remains lacking. Inhibition of angiotensin II receptor signaling and endothelial dysfunction have gained attention as a possible MFS treatment strategy, but interactions with TGF-β signaling remain elusive. Heterozygous loss-of-function mutations in TGF-β receptors 1 and 2 (TGFBR1 and TGFBR2) cause LDS, but TGF-β signaling is activated in the aorta (referred to as the TGF-β paradox) by mechanisms yet to be elucidated. In this review, we present and discuss the current understanding of molecular mechanisms responsible for aortopathies of MFS and related disorders.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Hironori Hara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tsubasa Kanaya
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Sonoko Maemura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
38
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
39
|
Frech M, Teichler S, Feld C, Bouchard C, Berberich H, Sorg K, Mernberger M, Bullinger L, Bauer UM, Neubauer A. MYB induces the expression of the oncogenic corepressor SKI in acute myeloid leukemia. Oncotarget 2018; 9:22423-22435. [PMID: 29854289 PMCID: PMC5976475 DOI: 10.18632/oncotarget.25051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) arises through clonal expansion of transformed myeloid progenitor cells. The SKI proto-oncogene is highly upregulated in different solid tumors and leukemic cells, but little is known about its transcriptional regulation during leukemogenesis. MYB is an important hematopoietic transcription factor involved in proliferation as well as differentiation and upregulated in most human acute leukemias. Here, we find that MYB protein binds within the regulatory region of the SKI gene in AML cells. Reporter gene assays using MYB binding sites present in the SKI gene locus show MYB-dependent transcriptional activation. SiRNA-mediated depletion of MYB in leukemic cell lines reveals that MYB is crucial for SKI gene expression. Consistently, we observed a positive correlation of MYB and SKI expression in leukemic cell lines and in samples of AML patients. Moreover, MYB and SKI both were downregulated by treatment with histone deacetylase inhibitors. Strikingly, differentiation of AML cells induced by depletion of MYB is attenuated by overexpression of SKI. Our findings identify SKI as a novel MYB target gene, relevant for the MYB-induced differentiation block in leukemic cells.
Collapse
Affiliation(s)
- Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Sabine Teichler
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Christine Feld
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany.,Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Caroline Bouchard
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Hannah Berberich
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Katharina Sorg
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps University Marburg, Marburg 35043, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| |
Collapse
|
40
|
Ghosh M, Öner D, Duca RC, Bekaert B, Vanoirbeek JAJ, Godderis L, Hoet PHM. Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells. Oncotarget 2018; 9:20351-20365. [PMID: 29755656 PMCID: PMC5945544 DOI: 10.18632/oncotarget.24866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have identified carbon nanotube (CNT)-induced epigenetic changes as one of the key players in patho-physiological response. In the present study, we investigated whether CNT exposure is associated with epigenetic changes in human bronchial epithelial cells (16 HBE), in vitro. We focused on global DNA methylation, methylation of LINE-1 elements and promoter sequence of twelve functionally important genes (SKI, DNMT1, HDAC4, NPAT, ATM, BCL2L11, MAP3K10, PIK3R2, MYO1C, TCF3, FGFR 1 and AGRN). Additionally, we studied the influence of CNT exposure on miRNA expression. Using a LC-MS/MS method and pyrosequencing for LINE-1, we observed no significant changes in global DNA methylation (%) between the concentrations of multi-walled and single-walled CNT (MWCNT and SWCNT, respectively). Significant changes in sequence-specific methylation was observed in at least one CpG site for DNMT1 (SWCNT), HDAC4 (MWCNT), NPAT/ATM (MWCNT and SWCNT), MAP3K10 (MWCNT), PIK3R2 (MWCNT and SWCNT) and MYO1C (SWCNT). While changes in DNA methylation of the genes were relatively small, these changes were associated with changes in RNA expression, especially for MWCNT. However, the study did not reveal any significant alteration in the miRNA expression, associated with MWCNT and SWCNT exposure. Based on our results, mainly MWCNT influence DNA methylation and expression of the studied genes and could have significant impact on several critical cellular processes.
Collapse
Affiliation(s)
- Manosij Ghosh
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Deniz Öner
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Radu C Duca
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Bram Bekaert
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, University of Leuven, Leuven, Belgium.,Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Lode Godderis
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium.,Idewe, External Service for Prevention and Protection at Work, B-3001 Heverlee, Belgium
| | - Peter H M Hoet
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| |
Collapse
|
41
|
Miyazono KI, Moriwaki S, Ito T, Kurisaki A, Asashima M, Tanokura M. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Sci Signal 2018; 11:11/523/eaao7227. [PMID: 29588413 DOI: 10.1126/scisignal.aao7227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily of cytokines regulates various biological processes, including cell proliferation, immune responses, autophagy, and senescence. Dysregulation of TGF-β signaling causes various diseases, such as cancer and fibrosis. SMAD2 and SMAD3 are core transcription factors involved in TGF-β signaling, and they form heterotrimeric complexes with SMAD4 (SMAD2-SMAD2-SMAD4, SMAD3-SMAD3-SMAD4, and SMAD2-SMAD3-SMAD4) in response to TGF-β signaling. These heterotrimeric complexes interact with cofactors to control the expression of TGF-β-dependent genes. SMAD2 and SMAD3 may promote or repress target genes depending on whether they form complexes with other transcription factors, coactivators, or corepressors; therefore, the selection of specific cofactors is critical for the appropriate activity of these transcription factors. To reveal the structural basis by which SMAD2 and SMAD3 select cofactors, we determined the crystal structures of SMAD3 in complex with the transcription factor FOXH1 and SMAD2 in complex with the transcriptional corepressor SKI. The structures of the complexes show that the MAD homology 2 (MH2) domains of SMAD2 and SMAD3 have multiple hydrophobic patches on their surfaces. The cofactors tether to various subsets of these patches to interact with SMAD2 and SMAD3 in a cooperative or competitive manner to control the output of TGF-β signaling.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Saho Moriwaki
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoko Ito
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Kurisaki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8560, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Makoto Asashima
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8560, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
42
|
Silencing of c-Ski augments TGF-b1-induced epithelial-mesenchymal transition in cardiomyocyte H9C2 cells. Cardiol J 2018; 26:66-76. [PMID: 29570207 DOI: 10.5603/cj.a2018.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/09/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The shRNA lentiviral vector was constructed to silence c-Ski expression in cardiac mus- cle cells, with the aim of exploring the role of c-Ski in transforming growth factor b1 (TGF-b1)-induced epithelial-mesenchymal transitions (EMT) in H9C2 cells. METHODS Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect c-Ski ex- pression at protein and messenger ribonucleic acid (mRNA) levels in 5 different cell lines. Then, lentiviral vector was constructed to silence or overexpress c-Ski in H9C2 cells. MTT and/or soft agar assay and tran- swell assay were used to detect cell proliferation and migration, respectively. The expression levels of c-Ski under different concentrations of TGF-b1 stimulation were detected by RT-qPCR and immunocytochemi- cal analysis. In the presence or absence of TGF-b1 stimulation, the proteins' expression levels of a-SMA, FN and E-cadherin, which are closely correlated with the process of EMT, were measured by western blot after c-Ski silencing or overexpression. Meanwhile, the effect of c-Ski on Samd3 phosphorylation with TGF-b1 stimulation was investigated. RESULTS There is a high expression of c-Ski at protein and mRNA levels in H9C2 cell line, which first demonstrated the presence of c-Ski expression in H9C2 cells. Overexpression of c-Ski significantly increased H9C2 cell proliferation. The ability of c-Ski gene silencing to suppress cell proliferation was gradually enhanced, and inhibition efficiency was the highest after 6 to 7 d of transfection. Moreover, H9C2 cells with c-Ski knockdown gained significantly aggressive invasive potential when compared with the control group. TGF-b1 stimulation could dose-independently reduce c-Ski expression in H9C2 cells and lead to obvious down-regulated expression of E-cadherin. Interestingly, c-Ski could restore E-cadherin expression while suppressing a-SMA and/or FN expression stimulated by TGF-b1. How- ever, shRNA-induced c-Ski knockdown aggravated only the TGF-b1-induced EMT. Moreover, c-Ski- -shRNA also promoted the phosphorylation of Samd3 induced by TGF-b1. CONCLUSIONS c-Ski expression in cardiac muscle cells could be down-regulated by TGF-b1. Silencing of c-Ski gene was accompanied by down-regulation of E-cadherin, up-regulation of a-SMA and/or FN and Smad3 phosphorylation induced by TGF-b1, promoting EMT process. Therefore, c-Ski may be closely associated with TGF-b1-induced EMT and play an important role in cardiac fibrosis develop- ment and progression.
Collapse
|
43
|
Zhao X, Zhou K, Li Z, Nan W, Wang J, Xia Y, Zhang H. Knockdown of Ski decreased the reactive astrocytes proliferation in vitro induced by oxygen‐glucose deprivation/reoxygenation. J Cell Biochem 2018; 119:4548-4558. [DOI: 10.1002/jcb.26597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Zhao
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Kai‐Sheng Zhou
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Zhong‐Hao Li
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Jing Wang
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Ya‐Yi Xia
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
| | - Hai‐Hong Zhang
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
| |
Collapse
|
44
|
Tamiya H, Kim H, Klymenko O, Kim H, Feng Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, Brown K, Kluger H, Zhang H, Iwai K, Ronai ZA. SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. J Clin Invest 2018; 128:517-530. [PMID: 29227283 PMCID: PMC5749505 DOI: 10.1172/jci95410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/31/2017] [Indexed: 02/05/2023] Open
Abstract
SHARPIN, an adaptor for the linear ubiquitin chain assembly complex (LUBAC), plays important roles in NF-κB signaling and inflammation. Here, we have demonstrated a LUBAC-independent role for SHARPIN in regulating melanoma growth. We observed that SHARPIN interacted with PRMT5, a type II protein arginine methyltransferase, and increased its multiprotein complex and methyltransferase activity. Activated PRMT5 controlled the expression of the transcription factors SOX10 and MITF by SHARPIN-dependent arginine dimethylation and inhibition of the transcriptional corepressor SKI. Activation of PRMT5 by SHARPIN counteracted PRMT5 inhibition by methylthioadenosine, a substrate of methylthioadenosine phosphorylase, which is codeleted with cyclin-dependent kinase inhibitor 2A (CDKN2A) in approximately 15% of human cancers. Collectively, we identified a LUBAC-independent role for SHARPIN in enhancing PRMT5 activity that contributes to melanomagenesis through the SKI/SOX10 regulatory axis.
Collapse
Affiliation(s)
- Hironari Tamiya
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hyungsoo Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Oleksiy Klymenko
- Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| | - Heejung Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jee Yun Han
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ayako Murao
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Scott J. Snipas
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lucia Jilaveanu
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, Connecticut, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Harriet Kluger
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, Connecticut, USA
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ze’ev A. Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, Iwamoto N, Steiert B, Lattermann S, Wäsch M, Stepath M, Matter MS, Heikenwälder M, Hoffmann K, Deharde D, Damm G, Seehofer D, Muciek M, Gretz N, Lehmann WD, Timmer J, Klingmüller U. Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression. Cell Syst 2018; 6:75-89.e11. [DOI: 10.1016/j.cels.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/23/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
|
46
|
Levinson KB, Bagg A. Atypical Chronic Myeloid Leukemia, BCR/ABL1 Negative. MOLECULAR PATHOLOGY LIBRARY 2018. [DOI: 10.1007/978-3-319-62146-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
47
|
Seoane J, Gomis RR. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022277. [PMID: 28246180 DOI: 10.1101/cshperspect.a022277] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) induces a pleiotropic pathway that is modulated by the cellular context and its integration with other signaling pathways. In cancer, the pleiotropic reaction to TGF-β leads to a diverse and varied set of gene responses that range from cytostatic and apoptotic tumor-suppressive ones in early stage tumors, to proliferative, invasive, angiogenic, and oncogenic ones in advanced cancer. Here, we review the knowledge accumulated about the molecular mechanisms involved in the dual response to TGF-β in cancer, and how tumor cells evolve to evade the tumor-suppressive responses of this signaling pathway and then hijack the signal, converting it into an oncogenic factor. Only through the detailed study of this complexity can the suitability of the TGF-β pathway as a therapeutic target against cancer be evaluated.
Collapse
Affiliation(s)
- Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
48
|
Xie M, Wu X, Zhang J, Zhang J, Li X. Ski regulates Smads and TAZ signaling to suppress lung cancer progression. Mol Carcinog 2017; 56:2178-2189. [PMID: 28398634 DOI: 10.1002/mc.22661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/28/2017] [Accepted: 04/08/2017] [Indexed: 12/11/2022]
Abstract
Ski, the transforming protein of the avian Sloan-Kettering retrovirus, displays both pro- and anti-oncogenic activities in human cancer. The mechanisms underlying these conflicting observations have not been fully understood. Herein, we investigated the mechanism underlying the tumor suppressor activity of Ski. To investigate the effect of Ski re-activation on TGF-β and Hippo/TAZ pathway, we measured its effect on the endogenous Smad target genes (PAI-1 and P15INK4B ) and TAZ target gene CTGF. The results revealed that Ski exerted its inhibitory activity in TGF-β1/Smad signaling pathway. Ski inhibited TAZ by increasing their phosphorylation by Lats2 and did not alter the localization of TAZ. Ski inhibited lung cancer growth and invasion. Ski methylation correlated with decreased mRNA expression in human lung cancer cell lines. Thus, Ski inhibited the function of TGF-β and TAZ through multiple mechanisms in human lung cancer.
Collapse
Affiliation(s)
- Mian Xie
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in Southern China, Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jinjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiexia Zhang
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangxiang Li
- China State Key Laboratory of Respiratory Disease and Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Zhou F, Xie F, Jin K, Zhang Z, Clerici M, Gao R, van Dinther M, Sixma TK, Huang H, Zhang L, Ten Dijke P. USP4 inhibits SMAD4 monoubiquitination and promotes activin and BMP signaling. EMBO J 2017; 36:1623-1639. [PMID: 28468752 DOI: 10.15252/embj.201695372] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
SMAD4 is a common intracellular effector for TGF-β family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin-specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand-induced regulatory (R)-SMAD-SMAD4 complex formation. Whereas the interaction of the negative regulator c-SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c-SKI-SMAD2 complex and triggers c-SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF-β family signaling. An increase in monoubiquitinated SMAD4 in USP4-depleted mouse embryonic stem cells (mESCs) decreased both the BMP- and activin-induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin- and BMP-mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity.
Collapse
Affiliation(s)
- Fangfang Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands.,Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Feng Xie
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Ke Jin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Zhengkui Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Marcello Clerici
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rui Gao
- Faculty of Basic Medical Sciences, Chonqing Medical University, Chongqing, China
| | - Maarten van Dinther
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Titia K Sixma
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huizhe Huang
- Faculty of Basic Medical Sciences, Chonqing Medical University, Chongqing, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China .,Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Walldén K, Nyman T, Hällberg BM. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex. Sci Rep 2017; 7:46370. [PMID: 28397834 PMCID: PMC5387736 DOI: 10.1038/srep46370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, DESY-Campus, 22603 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|