1
|
Sánchez RS, Lazarte MA, Abdala VSL, Sánchez SS. Antagonistic regulation of homeologous uncx.L and uncx.S genes orchestrates myotome and sclerotome differentiation in the evolutionarily divergent vertebral column of Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:350-367. [PMID: 38155515 DOI: 10.1002/jez.b.23235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.
Collapse
Affiliation(s)
- Romel S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Fisiología, Departamento Biomédico, Facultad de Medicina, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - María A Lazarte
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Virginia S L Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Sara S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
2
|
Nunes WVB, Oliveira DS, Dias GDR, Carvalho AB, Caruso ÍP, Biselli JM, Guegen N, Akkouche A, Burlet N, Vieira C, Carareto CMA. A comprehensive evolutionary scenario for the origin and neofunctionalization of the Drosophila speciation gene Odysseus (OdsH). G3 (BETHESDA, MD.) 2024; 14:jkad299. [PMID: 38156703 PMCID: PMC10917504 DOI: 10.1093/g3journal/jkad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.
Collapse
Affiliation(s)
- William Vilas Boas Nunes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Guilherme de Rezende Dias
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Ícaro Putinhon Caruso
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Joice Matos Biselli
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Nathalie Guegen
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Abdou Akkouche
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claudia M A Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| |
Collapse
|
3
|
Moreira P, Papatheodorou P, Deng S, Gopal S, Handley A, Powell DR, Pocock R. Nuclear factor Y is a pervasive regulator of neuronal gene expression. Cell Rep 2023; 42:113582. [PMID: 38096055 DOI: 10.1016/j.celrep.2023.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Nervous system function relies on the establishment of complex gene expression programs that provide neuron-type-specific and core pan-neuronal features. These complementary regulatory paradigms are controlled by terminal selector and parallel-acting transcription factors (TFs), respectively. Here, we identify the nuclear factor Y (NF-Y) TF as a pervasive direct and indirect regulator of both neuron-type-specific and pan-neuronal gene expression. Mapping global NF-Y targets reveals direct binding to the cis-regulatory regions of pan-neuronal genes and terminal selector TFs. We show that NFYA-1 controls pan-neuronal gene expression directly through binding to CCAAT boxes in target gene promoters and indirectly by regulating the expression of terminal selector TFs. Further, we find that NFYA-1 regulation of neuronal gene expression is important for neuronal activity and motor function. Thus, our research sheds light on how global neuronal gene expression programs are buffered through direct and indirect regulatory mechanisms.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Paul Papatheodorou
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Shuer Deng
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genet 2022; 18:e1010372. [PMID: 36178933 PMCID: PMC9524666 DOI: 10.1371/journal.pgen.1010372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Collapse
|
5
|
Gao X, Zhang M, Lyu M, Lin S, Luo X, You W, Ke C. Role of Bmal1 in mediating the cholinergic system to regulate the behavioral rhythm of nocturnal marine molluscs. Comput Struct Biotechnol J 2022; 20:2815-2830. [PMID: 35765646 PMCID: PMC9189711 DOI: 10.1016/j.csbj.2022.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
The circadian differential expression of AchE was identified using TMT quantitative proteomics; It was found that the Ach concentration and the expression levels of AchE and Bmal1 exhibit circadian cosine rhythm; The full-length sequences of AchE and nAchR were obtained by cloning technique and made available for phylogenetic analysis; The movement distance and duration of abalone increased after the injection of neostigmine methylsulfate as the AchE inhibitor; Bmal1 as the core circadian clock gene was proven to bind to AchE and nAchR, thereby regulating the movement behavior of abalone.
The circadian rhythm is one of the most general and important rhythms in biological organisms. In this study, continuous 24-h video recordings showed that the cumulative movement distance and duration of the abalone, Haliotis discus hannai, reached their maximum values between 20:00–00:00, but both were significantly lower between 08:00–12:00 than at any other time of day or night (P < 0.05). To investigate the causes of these diel differences in abalone movement behavior, their cerebral ganglia were harvested at 00:00 (group D) and 12:00 (group L) to screen for differentially expressed proteins using tandem mass tagging (TMT) quantitative proteomics. Seventy-five significantly different proteins were identified in group D vs. group L. The differences in acetylcholinesterase (AchE) expression levels between day- and nighttime and the key role in the cholinergic nervous system received particular attention during the investigation. A cosine rhythm analysis found that the concentration of acetylcholine (Ach) and the expression levels of AchE tended to be low during the day and high at night, and high during the day and low at night, respectively. However, the rhythmicity of the diel expression levels of acetylcholine receptor (nAchR) appeared to be insignificant (P > 0.05). Following the injection of three different concentrations of neostigmine methylsulfate, as an AchE inhibitor, the concentration of Ach in the hemolymph, and the expression levels of nAchR in the cerebral ganglia increased significantly (P < 0.05). Four hours after drug injection, the cumulative movement distance and duration of abalones were significantly higher than those in the uninjected control group, and the group injected with saline (P < 0.05). The expression levels of the core diurnal clock Bmal1 over a 24-h period also tended to be high during the day and low at night. First, a co-immunoprecipitation assay demonstrated the binding between Bmal1 and AchE or nAchR. A dual-luciferase gene test and electrophoretic mobility shift assay showed that Bmal1 bound to the promoter regions of AchE and nAchR. Twenty-four hours after silencing the Bmal1 gene, the expression levels of AchE and nAchR decreased significantly compared to those of the dsEGFP and PBS control groups, further showing that Bmal1 mediates the cholinergic system to regulate the behavioral rhythm of abalone. These findings shed light on the endocrine mechanism regulating the rhythmic behavior of abalone, and provide a reference for understanding the life history adaptation strategies of nocturnal organisms and the proliferation and protection of bottom dwelling economically important organisms.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
- Corresponding author.
| |
Collapse
|
6
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
7
|
Pereda AE, Miller AC. On the location of electrical synapses. Dev Cell 2021; 56:3178-3180. [PMID: 34875222 DOI: 10.1016/j.devcel.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Location is of critical functional relevance for synapses, including electrical synapses, which are a form of neuronal communication mediated by cell-cell channels. In this issue of Developmental Cell, Palumbos et al. identify a mechanism that supports the localization and function of electrical synapses with subcellular specificity.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Palumbos SD, Skelton R, McWhirter R, Mitchell A, Swann I, Heifner S, Von Stetina S, Miller DM. cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses. Dev Cell 2021; 56:3235-3249.e4. [PMID: 34741804 DOI: 10.1016/j.devcel.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here, we show that a developmental program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. We use live-cell imaging to visualize electrical synapses in vivo and an optogenetic assay to confirm that they are functional. In ventral A class (VA) motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments establish that cAMP regulates gap junction trafficking for the biogenesis of functional electrical synapses.
Collapse
Affiliation(s)
- Sierra D Palumbos
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA
| | - Rachel Skelton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Amanda Mitchell
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | - Isaiah Swann
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | | | - Stephen Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
9
|
Hobert O. Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 2021; 22:627-636. [PMID: 34446866 DOI: 10.1038/s41583-021-00497-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The enormous diversity of cell types that characterizes any animal nervous system is defined by neuron-type-specific gene batteries that endow cells with distinct anatomical and functional properties. To understand how such cellular diversity is genetically specified, one needs to understand the gene regulatory programmes that control the expression of cell-type-specific gene batteries. The small nervous system of the nematode Caenorhabditis elegans has been comprehensively mapped at the cellular and molecular levels, which has enabled extensive, nervous system-wide explorations into whether there are common underlying mechanisms that specify neuronal cell-type diversity. One principle that emerged from these studies is that transcription factors termed 'terminal selectors' coordinate the expression of individual members of neuron-type-specific gene batteries, thereby assigning unique identities to individual neuron types. Systematic mutant analyses and recent nervous system-wide expression analyses have revealed that one transcription factor family, the homeobox gene family, is broadly used throughout the entire C. elegans nervous system to specify neuronal identity as terminal selectors. I propose that the preponderance of homeobox genes in neuronal identity control is a reflection of an evolutionary trajectory in which an ancestral neuron type was specified by one or more ancestral homeobox genes, and that this functional linkage then duplicated and diversified to generate distinct cell types in an evolving nervous system.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
10
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Berghoff EG, Glenwinkel L, Bhattacharya A, Sun H, Varol E, Mohammadi N, Antone A, Feng Y, Nguyen K, Cook SJ, Wood JF, Masoudi N, Cros CC, Ramadan YH, Ferkey DM, Hall DH, Hobert O. The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. eLife 2021; 10:e64903. [PMID: 34165428 PMCID: PMC8225392 DOI: 10.7554/elife.64903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Collapse
Affiliation(s)
- Emily G Berghoff
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - HaoSheng Sun
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Nicki Mohammadi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Amelia Antone
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yi Feng
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Ken Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yasmin H Ramadan
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
12
|
Maertens T, Schöll E, Ruiz J, Hövel P. Multilayer network analysis of C. elegans: Looking into the locomotory circuitry. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Guan G, Fang M, Wong MK, Ho VWS, An X, Tang C, Huang X, Zhao Z. Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis. Dev Genes Evol 2020; 230:265-278. [PMID: 32556563 PMCID: PMC7371654 DOI: 10.1007/s00427-020-00662-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022]
Abstract
hlh-1 is a myogenic transcription factor required for body-wall muscle specification during embryogenesis in Caenorhabditis elegans. Despite its well-known role in muscle specification, comprehensive regulatory control upstream of hlh-1 remains poorly defined. Here, we first established a statistical reference for the spatiotemporal expression of hlh-1 at single-cell resolution up to the second last round of divisions for most of the cell lineages (from 4- to 350-cell stage) using 13 wild-type embryos. We next generated lineal expression of hlh-1 after RNA interference (RNAi) perturbation of 65 genes, which were selected based on their degree of conservation, mutant phenotypes, and known roles in development. We then compared the expression profiles between wild-type and RNAi embryos by clustering according to their lineal expression patterns using mean-shift and density-based clustering algorithms, which not only confirmed the roles of existing genes but also uncovered the potential functions of novel genes in muscle specification at multiple levels, including cellular, lineal, and embryonic levels. By combining the public data on protein-protein interactions, protein-DNA interactions, and genetic interactions with our RNAi data, we inferred regulatory pathways upstream of hlh-1 that function globally or locally. This work not only revealed diverse and multilevel regulatory mechanisms coordinating muscle differentiation during C. elegans embryogenesis but also laid a foundation for further characterizing the regulatory pathways controlling muscle specification at the cellular, lineal (local), or embryonic (global) level.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Meichen Fang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
14
|
Barabási DL, Barabási AL. A Genetic Model of the Connectome. Neuron 2020; 105:435-445.e5. [PMID: 31806491 PMCID: PMC7007360 DOI: 10.1016/j.neuron.2019.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022]
Abstract
The connectomes of organisms of the same species show remarkable architectural and often local wiring similarity, raising the question: where and how is neuronal connectivity encoded? Here, we start from the hypothesis that the genetic identity of neurons guides synapse and gap-junction formation and show that such genetically driven wiring predicts the existence of specific biclique motifs in the connectome. We identify a family of large, statistically significant biclique subgraphs in the connectomes of three species and show that within many of the observed bicliques the neurons share statistically significant expression patterns and morphological characteristics, supporting our expectation of common genetic factors that drive the synapse formation within these subgraphs. The proposed connectome model offers a self-consistent framework to link the genetics of an organism to the reproducible architecture of its connectome, offering experimentally falsifiable predictions on the genetic factors that drive the formation of individual neuronal circuits.
Collapse
Affiliation(s)
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Data and Network Science, Central European University, Budapest 1051, Hungary.
| |
Collapse
|
15
|
Feng W, Li Y, Dao P, Aburas J, Islam P, Elbaz B, Kolarzyk A, Brown AE, Kratsios P. A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life. eLife 2020; 9:50065. [PMID: 31902393 PMCID: PMC6944445 DOI: 10.7554/elife.50065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
To become and remain functional, individual neuron types must select during development and maintain throughout life their distinct terminal identity features, such as expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but also antagonizes LIN-39’s ability to activate terminal features of alternative neuronal identities. Loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic MN-specific, terminal features become activated and locomotion defects occur. The strategy of a terminal selector preventing a transcriptional switch may constitute a general principle for safeguarding neuronal identity throughout life.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - Anna Kolarzyk
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
16
|
Kaplan HS, Salazar Thula O, Khoss N, Zimmer M. Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales. Neuron 2019; 105:562-576.e9. [PMID: 31786012 PMCID: PMC7014571 DOI: 10.1016/j.neuron.2019.10.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Classical and modern ethological studies suggest that animal behavior is organized hierarchically across timescales, such that longer-timescale behaviors are composed of specific shorter-timescale actions. Despite progress relating neuronal dynamics to single-timescale behavior, it remains unclear how different timescale dynamics interact to give rise to such higher-order behavioral organization. Here, we show, in the nematode Caenorhabditis elegans, that a behavioral hierarchy spanning three timescales is implemented by nested neuronal dynamics. At the uppermost hierarchical level, slow neuronal population dynamics spanning brain and motor periphery control two faster motor neuron oscillations, toggling them between different activity states and functional roles. At lower hierarchical levels, these faster oscillations are further nested in a manner that enables flexible behavioral control in an otherwise rigid hierarchical framework. Our findings establish nested neuronal activity patterns as a repeated dynamical motif of the C. elegans nervous system, which together implement a controllable hierarchical organization of behavior. Slow dynamics across brain and motor circuits drive upper-hierarchy motor states Fast dynamics in motor circuits drive lower-hierarchy movements within these states Slower dynamics tightly constrain the state and function of faster ones This rigid hierarchy nevertheless enables flexible behavioral control
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oriana Salazar Thula
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Niklas Khoss
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria.
| |
Collapse
|
17
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Characterization of paralogous uncx transcription factor encoding genes in zebrafish. Gene X 2019; 721S:100011. [PMID: 31193955 PMCID: PMC6543554 DOI: 10.1016/j.gene.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
The paired-type homeodomain transcription factor Uncx is involved in multiple processes of embryogenesis in vertebrates. Reasoning that zebrafish genes uncx4.1 and uncx are orthologs of mouse Uncx, we studied their genomic environment and developmental expression. Evolutionary analyses indicate the zebrafish uncx genes as being paralogs deriving from teleost-specific whole-genome duplication. Whole-mount in situ mRNA hybridization of uncx transcripts in zebrafish embryos reveals novel expression domains, confirms those previously known, and suggests sub-functionalization of paralogs. Using genetic mutants and pharmacological inhibitors, we investigate the role of signaling pathways on the expression of zebrafish uncx genes in developing somites. In identifying putative functional role(s) of zebrafish uncx genes, we hypothesized that they encode transcription factors that coordinate growth and innervation of somitic muscles. The Uncx4.1 and Uncx genes derive from the teleost-specific whole-genome duplication. Uncx genes are expressed during embryogenesis in unique and overlapping domains. Uncx gene expression during somite differentiation is regulated by FGF signaling. Synteny and expression profiles correlate Uncx genes with axon guidance.
Collapse
Key Words
- AP, antero-posterior
- Ace, acerebellar
- CAMP, conserved ancestral microsyntenic pairs
- CNE, conserved non-coding elements
- CRM, cis-regulatory module
- CS, Corpuscle of Stannius
- CaP, caudal primary motor neuron axons
- Ce, cerebellum
- Development
- Di, diencephalon
- Elfn1, Extracellular Leucine Rich Repeat And Fibronectin Type III Domain Containing 1
- Ey, eye
- FB, forebrain
- FGF, fibroblast growth factor
- Flh, floating head
- HB, hindbrain
- HM, hybridization mix
- Hy, hypothalamus
- MO, morpholino
- Mical, molecule interacting with CasL
- No, notochord
- OP, olfactory placode
- OT, optic tectum
- PA, pharyngeal arches
- PSM, presomitic mesoderm
- SC, spinal cord
- Shh, sonic hedgehog
- Signaling pathway
- So, somites
- Synteny
- TSGD
- TSGD, teleost-specific genome duplication
- Te, telencephalon
- Th, thalamus
- Uncx
- VLP, ventro-lateral-posterior
- WIHC, whole-mount immunohistochemistry
- WISH, whole-mount in situ hybridization
- YE, yolk extension
- Yo, yolk
- Zebrafish
- cyc, cyclops
- fss, fused-somites
- hpf, hours post fertilization
- ptc, patched
- smu, slow-muscle-omitted
- syu, sonic-you
- yot, you-too
Collapse
|
19
|
Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 2019; 56:97-105. [PMID: 30665084 DOI: 10.1016/j.conb.2018.12.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/21/2022]
Abstract
How do post-mitotic neurons acquire and maintain their terminal identity? Genetic mutant analysis in the nematode Caenorhabditis elegans has revealed common molecular programs that control neuronal identity. Neuron type-specific combinations of transcription factors, called terminal selectors, act as master regulatory factors to initiate and maintain terminal identity programs through direct regulation of neuron type-specific effector genes. We will provide here an update on recent studies that solidify the terminal selector concept in worms, flies and chordates. We will also describe how the terminal selector concept has been expanded by recent work in C. elegans to explain neuronal subtype diversification and plasticity of neuronal identity.
Collapse
|
20
|
Zheng C, Jin FQ, Trippe BL, Wu J, Chalfie M. Inhibition of cell fate repressors secures the differentiation of the touch receptor neurons of Caenorhabditis elegans. Development 2018; 145:dev.168096. [PMID: 30291162 DOI: 10.1242/dev.168096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Terminal differentiation generates the specialized features and functions that allow postmitotic cells to acquire their distinguishing characteristics. This process is thought to be controlled by transcription factors called 'terminal selectors' that directly activate a set of downstream effector genes. In Caenorhabditis elegans, the differentiation of both the mechanosensory touch receptor neurons (TRNs) and the multidendritic nociceptor FLP neurons uses the terminal selectors UNC-86 and MEC-3. The FLP neurons fail to activate TRN genes, however, because a complex of two transcriptional repressors (EGL-44/EGL-46) prevents their expression. Here, we show that the ZEB family transcriptional factor ZAG-1 promotes TRN differentiation not by activating TRN genes but by preventing the expression of EGL-44/EGL-46. As EGL-44/EGL-46 also inhibits the production of ZAG-1, these proteins form a bistable, negative-feedback loop that regulates the choice between the two neuronal fates.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Felix Qiaochu Jin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brian Loeber Trippe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ji Wu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhardt TM, Bergs AC, Gottschalk A. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. eLife 2018; 7:34997. [PMID: 30204083 PMCID: PMC6173582 DOI: 10.7554/elife.34997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Department of Biology, Functional Genomics and Proteomics Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Olga Bazhanova
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Tim M Gemeinhardt
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Amelie Cf Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
da Silveira TL, Zamberlan DC, Arantes LP, Machado ML, da Silva TC, Câmara DDF, Santamaría A, Aschner M, Soares FAA. Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology 2018; 67:94-101. [PMID: 29702159 DOI: 10.1016/j.neuro.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
Quinolinic acid (QUIN) is an endogenous neurotoxin that acts as an N-methyl-D-aspartate receptor (NMDAR) agonist generating a toxic cascade, which can lead to neurodegeneration. The action of QUIN in Caenorhabditis elegans and the neurotoxins that allow the study of glutamatergic system disorders have not been carefully addressed. The effects of QUIN on toxicological and behavioral parameters in VM487 and VC2623 transgenic, as well as wild-type (WT) animals were performed to evaluate whether QUIN could be used as a neurotoxin in C. elegans. QUIN reduced survival of WT worms in a dose-dependent manner. A sublethal dose of QUIN (20 mM) increased reactive oxygen species (ROS) levels in an nmr-1/NMDAR-dependent manner, activated the DAF-16/FOXO transcription factor, and increased expression of the antioxidant enzymes, superoxide dismutase-3, glutathione S-transferase-4, and heat shock protein-16.2. QUIN did not change motor behavioral parameters, but altered the sensory behavior in N2 and VM487 worms. Notably, the effect of QUIN on the sensory behavioral parameters might occur, at least in part, secondary to increased ROS. However, the touch response behavior indicates a mechanism of action that is independent of ROS generation. In addition, non-lethal doses of QUIN triggered neurodegeneration in glutamatergic neurons. Our findings indicate that C. elegans might be useful as a model for studies of QUIN as a glutamatergic neurotoxin in rodent models.
Collapse
Affiliation(s)
- Tássia Limana da Silveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Daniele Coradine Zamberlan
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marina Lopes Machado
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Thayanara Cruz da Silva
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Daniela de Freitas Câmara
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269 Ciudad de México, Mexico
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | - Felix Alexandre Antunes Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
23
|
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron 2017; 93:80-98. [PMID: 28056346 DOI: 10.1016/j.neuron.2016.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.
Collapse
|
24
|
Kratsios P, Kerk SY, Catela C, Liang J, Vidal B, Bayer EA, Feng W, De La Cruz ED, Croci L, Consalez GG, Mizumoto K, Hobert O. An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. eLife 2017; 6. [PMID: 28677525 PMCID: PMC5498135 DOI: 10.7554/elife.25751] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Sze Yen Kerk
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Joseph Liang
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Estanisla Daniel De La Cruz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
25
|
Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing. G3-GENES GENOMES GENETICS 2016; 6:4077-4086. [PMID: 27729432 PMCID: PMC5144976 DOI: 10.1534/g3.116.034165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.
Collapse
|
26
|
Campbell RF, Walthall WW. Meis/UNC-62 isoform dependent regulation of CoupTF-II/UNC-55 and GABAergic motor neuron subtype differentiation. Dev Biol 2016; 419:250-261. [PMID: 27634571 DOI: 10.1016/j.ydbio.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- CRISPR-Cas Systems
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/biosynthesis
- Caenorhabditis elegans Proteins/physiology
- GABAergic Neurons/cytology
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks/genetics
- Genes, Reporter
- Homeodomain Proteins/physiology
- Motor Neurons/classification
- Motor Neurons/cytology
- Neurogenesis/genetics
- Promoter Regions, Genetic/genetics
- Protein Isoforms/physiology
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription Factors
- Transcription, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Richard F Campbell
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
27
|
Huber P, Crum T, Okkema PG. Function of the C. elegans T-box factor TBX-2 depends on interaction with the UNC-37/Groucho corepressor. Dev Biol 2016; 416:266-276. [PMID: 27265867 DOI: 10.1016/j.ydbio.2016.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
T-box transcription factors are important regulators of development in all animals, and altered expression of T-box factors has been identified in an increasing number of diseases and cancers. Despite these important roles, the mechanism of T-box factor activity is not well understood. We have previously shown that the Caenorhabditis elegans Tbx2 subfamily member TBX-2 functions as a transcriptional repressor to specify ABa-derived pharyngeal muscle, and that this function depends on SUMOylation. Here we show that TBX-2 function also depends on interaction with the Groucho-family corepressor UNC-37. TBX-2 interacts with UNC-37 in yeast two-hybrid assays via a highly conserved engrailed homology 1 (eh1) motif located near the TBX-2 C-terminus. Reducing unc-37 phenocopies tbx-2 mutants, resulting in a specific loss of anterior ABa-derived pharyngeal muscles and derepression of the tbx-2 promoter. Moreover, double mutants containing hypomorphic alleles of unc-37 and tbx-2 exhibit enhanced phenotypes, providing strong genetic evidence that unc-37 and tbx-2 share common functions in vivo. To test whether interaction with UNC-37 is necessary for TBX-2 activity, we developed a transgene rescue assay using a tbx-2 containing fosmid and found that mutating the tbx-2 eh1 motif reduced rescue of a tbx-2 null mutant. These results indicate that TBX-2 function in vivo depends on interaction with UNC-37. As many T-box factors contain eh1 motifs, we suggest that interaction with Groucho-family corepressors is a common mechanism contributing to their activity.
Collapse
Affiliation(s)
- Paul Huber
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA
| | - Tanya Crum
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter G Okkema
- Department of Biological Sciences, Molecular, Cellular & Developmental Biology Research Group, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Hobert O. A map of terminal regulators of neuronal identity in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:474-98. [PMID: 27136279 PMCID: PMC4911249 DOI: 10.1002/wdev.233] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022]
Abstract
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In-depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron-type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity-defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474-498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
29
|
Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2016; 2:16006. [PMID: 28725724 PMCID: PMC5515535 DOI: 10.1038/npjmgrav.2016.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/14/2015] [Accepted: 01/10/2016] [Indexed: 01/12/2023] Open
Abstract
Skeletal muscle wasting is a major obstacle for long-term space exploration. Similar to astronauts, the nematode Caenorhabditis elegans displays negative muscular and physical effects when in microgravity in space. It remains unclear what signaling molecules and behavior(s) cause these negative alterations. Here we studied key signaling molecules involved in alterations of C. elegans physique in response to fluid dynamics in ground-based experiments. Placing worms in space on a 1G accelerator increased a myosin heavy chain, myo-3, and a transforming growth factor-β (TGF-β), dbl-1, gene expression. These changes also occurred when the fluid dynamic parameters viscosity/drag resistance or depth of liquid culture were increased on the ground. In addition, body length increased in wild type and body wall cuticle collagen mutants, rol-6 and dpy-5, grown in liquid culture. In contrast, body length did not increase in TGF-β, dbl-1, or downstream signaling pathway, sma-4/Smad, mutants. Similarly, a D1-like dopamine receptor, DOP-4, and a mechanosensory channel, UNC-8, were required for increased dbl-1 expression and altered physique in liquid culture. As C. elegans contraction rates are much higher when swimming in liquid than when crawling on an agar surface, we also examined the relationship between body length enhancement and rate of contraction. Mutants with significantly reduced contraction rates were typically smaller. However, in dop-4, dbl-1, and sma-4 mutants, contraction rates still increased in liquid. These results suggest that neuromuscular signaling via TGF-β/DBL-1 acts to alter body physique in response to environmental conditions including fluid dynamics.
Collapse
|
30
|
|
31
|
Kaplan REW, Chen Y, Moore BT, Jordan JM, Maxwell CS, Schindler AJ, Baugh LR. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest. PLoS Genet 2015; 11:e1005731. [PMID: 26656736 PMCID: PMC4676721 DOI: 10.1371/journal.pgen.1005731] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development. Animals must cope with feast and famine in the wild. Environmental fluctuations require a balancing act between development in favorable conditions and survival during starvation. Disruption of the pathways that govern this balance can lead to cancer, where cells proliferate when they should not, and metabolic diseases, where nutrient sensing is impaired. In the roundworm Caenorhabditis elegans, larval development is controlled by nutrient availability. Larvae are able to survive starvation by stopping development and starting again after feeding. Stopping and starting development in this multicellular animal requires signaling to coordinate development across tissues and organs. How such coordination is accomplished is poorly understood. Insulin/insulin-like growth factor (IGF) signaling governs larval development in response to nutrient availability. Here we show that insulin/IGF signaling activity in one tissue can affect the development of other tissues, suggesting regulation of additional signaling pathways. We identified two pathways that promote development in fed larvae and are repressed by lack of insulin/IGF signaling in starved larvae. Repression of these pathways is crucial to stopping development throughout the animal during starvation. These three pathways are widely conserved and associated with disease, suggesting the nutrient-dependent regulatory network they comprise is important to human health.
Collapse
Affiliation(s)
- Rebecca E. W. Kaplan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yutao Chen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brad T. Moore
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James M. Jordan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Colin S. Maxwell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Adam J. Schindler
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Spencer WC, McWhirter R, Miller T, Strasbourger P, Thompson O, Hillier LW, Waterston RH, Miller DM. Isolation of specific neurons from C. elegans larvae for gene expression profiling. PLoS One 2014; 9:e112102. [PMID: 25372608 PMCID: PMC4221280 DOI: 10.1371/journal.pone.0112102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The simple and well-described structure of the C. elegans nervous system offers an unprecedented opportunity to identify the genetic programs that define the connectivity and function of individual neurons and their circuits. A correspondingly precise gene expression map of C. elegans neurons would facilitate the application of genetic methods toward this goal. Here we describe a powerful new approach, SeqCeL (RNA-Seq of C. elegans cells) for producing gene expression profiles of specific larval C. elegans neurons. METHODS AND RESULTS We have exploited available GFP reporter lines for FACS isolation of specific larval C. elegans neurons for RNA-Seq analysis. Our analysis showed that diverse classes of neurons are accessible to this approach. To demonstrate the applicability of this strategy to rare neuron types, we generated RNA-Seq profiles of the NSM serotonergic neurons that occur as a single bilateral pair of cells in the C. elegans pharynx. These data detected >1,000 NSM enriched transcripts, including the majority of previously known NSM-expressed genes. SIGNIFICANCE This work offers a simple and robust protocol for expression profiling studies of post-embryonic C. elegans neurons and thus provides an important new method for identifying candidate genes for key roles in neuron-specific development and function.
Collapse
Affiliation(s)
- W. Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tyne Miller
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Pnina Strasbourger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Owen Thompson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - LaDeana W. Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sugi T, Ohtani Y. Simplified method for cell-specific gene expression analysis in Caenorhabditis elegans. Biochem Biophys Res Commun 2014; 450:330-4. [PMID: 24942876 DOI: 10.1016/j.bbrc.2014.05.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
In the neural circuit functional identities of individual neurons are mainly specified by their differential gene expression patterns. Unveiling functional roles of each neuron requires cell-specific interrogation of neural circuitry in the context of gene expressions. The mRNA tagging strategy in Caenorhabditis elegans is a powerful technique, in which cell-specific transcripts can be isolated by co-immunoprecipitating the complexes of mRNAs and epitope-tagged poly(A) binding protein (3× FLAG-PAB-1), expressed in target neurons. However, the conventional protocol requires laborious and time-consuming procedures; chromosomal integration of gene encoding 3× FLAG-PAB-1 and bleaching of obtained integrant animals for the isolation of huge amounts of synchronized animals. In this paper, we have presented a simplified methodology for cell-specific mRNA tagging analysis in C. elegans. We show that mRNA tagging was achieved using transgenic animals expressing 3× FLAG-PAB-1 as an extrachromosomal array under the control of the flp-18 promoter, without the chromosomal integration procedure. Furthermore, we successfully isolated cell-specific mRNAs from adult transgenic animals synchronously grown from eggs laid by gravid adults during a time window of 3h. This simplification facilitates the implementation of cell-specific gene expression analysis of C. elegans, which contributes to the understanding of neural circuitry at a cell-specific resolution.
Collapse
Affiliation(s)
- Takuma Sugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japanese Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Japan.
| | - Yasuko Ohtani
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Mowrey WR, Bennett JR, Portman DS. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans. J Neurosci 2014; 34:1579-91. [PMID: 24478342 PMCID: PMC3905135 DOI: 10.1523/jneurosci.4352-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022] Open
Abstract
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.
Collapse
Affiliation(s)
| | | | - Douglas S. Portman
- Center for Neural Development and Disease
- Department of Biomedical Genetics, and
- Department of Biology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
36
|
Abstract
Crossovers play mechanical roles in meiotic chromosome segregation, generate genetic diversity by producing new allelic combinations, and facilitate evolution by decoupling linked alleles. In almost every species studied to date, crossover distributions are dramatically nonuniform, differing among sexes and across genomes, with spatial variation in crossover rates on scales from whole chromosomes to subkilobase hotspots. To understand the regulatory forces dictating these heterogeneous distributions a crucial first step is the fine-scale characterization of crossover distributions. Here we define the wild-type distribution of crossovers along a region of the C. elegans chromosome II at unprecedented resolution, using recombinant chromosomes of 243 hermaphrodites and 226 males. We find that well-characterized large-scale domains, with little fine-scale rate heterogeneity, dominate this region's crossover landscape. Using the Gini coefficient as a summary statistic, we find that this region of the C. elegans genome has the least heterogeneous fine-scale crossover distribution yet observed among model organisms, and we show by simulation that the data are incompatible with a mammalian-type hotspot-rich landscape. The large-scale structural domains-the low-recombination center and the high-recombination arm-have a discrete boundary that we localize to a small region. This boundary coincides with the arm-center boundary defined both by nuclear-envelope attachment of DNA in somatic cells and GC content, consistent with proposals that these features of chromosome organization may be mechanical causes and evolutionary consequences of crossover recombination.
Collapse
|
37
|
Zhang J, Li X, Jevince AR, Guan L, Wang J, Hall DH, Huang X, Ding M. Neuronal target identification requires AHA-1-mediated fine-tuning of Wnt signaling in C. elegans. PLoS Genet 2013; 9:e1003618. [PMID: 23825972 PMCID: PMC3694823 DOI: 10.1371/journal.pgen.1003618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/23/2013] [Indexed: 11/29/2022] Open
Abstract
Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with PLM is influenced by Wnt signaling. We further identified two PAS-bHLH family transcription factors, AHA-1 and AHR-1, which function cell-autonomously within BDU and PLM to facilitate the target identification process. aha-1 and ahr-1 act genetically upstream of cam-1. CAM-1, a membrane-bound receptor tyrosine kinase, is present on both BDU and PLM cells and likely serves as a Wnt antagonist. By binding to a cis-regulatory element in the cam-1 promoter, AHA-1 enhances cam-1 transcription. Our study reveals a Wnt-dependent fine-tuning mechanism that is crucial for mutual target cell identification during the formation of gap junction connections. The establishment of functional neuronal circuits requires that different neurons respond selectively to guidance molecules at particular times and in specific locations. In the target region, where cells connect, the same guidance molecules steer the growth of neurites from both the neuron and its target cell. The spatial, temporal, and cell-type-specific regulation of neuronal connection needs to be tightly regulated and precisely coordinated within the neuron and its target cell to achieve effective connection. In this study, we found that the precise connectivity of the BDU interneuron and the PLM mechanoreceptor in the nematode worm Caenorhabditis elegans is influenced by Wnt signaling. BDU-PLM contact also depends on the transcription factor AHA-1, which functions within both BDU and PLM cells to enhance transcription of the gene encoding the trans-membrane receptor CAM-1. CAM-1 is present on BDU and PLM and likely serves as a Wnt antagonist, thus linking transcriptional regulation by AHA-1 to modulation of Wnt signaling. Therefore, our study reveals a locally confined, cell type-specific and cell-autonomous mechanism that mediates mutual target identification.
Collapse
Affiliation(s)
- Jingyan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Angela R. Jevince
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XH); (MD)
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XH); (MD)
| |
Collapse
|
38
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
39
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
40
|
Schneider J, Skelton RL, Von Stetina SE, Middelkoop TC, van Oudenaarden A, Korswagen HC, Miller DM. UNC-4 antagonizes Wnt signaling to regulate synaptic choice in the C. elegans motor circuit. Development 2012; 139:2234-45. [PMID: 22619391 DOI: 10.1242/dev.075184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.
Collapse
Affiliation(s)
- Judsen Schneider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Okazaki A, Sudo Y, Takagi S. Optical silencing of C. elegans cells with arch proton pump. PLoS One 2012; 7:e35370. [PMID: 22629299 PMCID: PMC3357435 DOI: 10.1371/journal.pone.0035370] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans.
Collapse
Affiliation(s)
- Ayako Okazaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
42
|
Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 2011; 15:205-14. [PMID: 22119902 PMCID: PMC3267877 DOI: 10.1038/nn.2989] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/28/2011] [Indexed: 11/08/2022]
Abstract
Cholinergic motor neurons are defined by the coexpression of a battery of genes encoding proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that, in the nematode Caenorhabditis elegans, all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate, are co-regulated by a shared cis-regulatory signature and a common trans-acting factor, the phylogenetically conserved COE (Collier, Olf, EBF)-type transcription factor UNC-3. UNC-3 initiated and maintained expression of cholinergic fate markers and was sufficient to induce cholinergic fate in other neuron types. UNC-3 furthermore operated in negative feedforward loops to induce the expression of transcription factors that repress individual UNC-3-induced terminal fate markers, resulting in diversification of motor neuron differentiation programs in specific motor neuron subtypes. A chordate ortholog of UNC-3, Ciona intestinalis COE, was also both required and sufficient for inducing a cholinergic fate. Thus, UNC-3 is a terminal selector for cholinergic motor neuron differentiation whose function is conserved across phylogeny.
Collapse
|
43
|
Reis AMC, Mills WK, Ramachandran I, Friedberg EC, Thompson D, Queimado L. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 2011; 40:206-19. [PMID: 21911361 PMCID: PMC3245927 DOI: 10.1093/nar/gkr704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.
Collapse
Affiliation(s)
- António M C Reis
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bamps S, Wirtz J, Hope IA. Distinct mechanisms for delimiting expression of four Caenorhabditis elegans transcription factor genes encoding activators or repressors. Mol Genet Genomics 2011; 286:95-107. [PMID: 21655972 DOI: 10.1007/s00438-011-0630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/21/2011] [Indexed: 02/07/2023]
Abstract
Regulatory transcription factors operate in networks, conferring biological robustness that makes dissection of such gene control processes difficult. The nematode Caenorhabditis elegans is a powerful molecular genetic system that allows the close scrutiny needed to understand these processes in an animal, in vivo. Strikingly lower levels of gene expression were observed when a gfp reporter was inserted into C. elegans transcription factor genes, in their broader genomic context, in comparison to when the reporter was fused to just the promoter regions. The lower level of expression is more consistent with endogenous levels of the gene products, based on independent protein and transcript assays. Through successive precise manipulations of the reporter fusion genes, elements essential for the lower level of expression were localised to the protein-coding region. With a closer focus on four transcription factor genes, the expression of both genes encoding transcriptional activators was found to be restricted by a post-transcriptional mechanism while expression of both genes encoding transcriptional repressors was delimited by transcriptional repression. An element through which the transcriptional repression acts for unc-4 was localised to a 30 base-pair region of a protein-encoding exon, with potentially wider implications for how homeobox genes operate. The hypothesis that the distinction in mechanisms delimiting expression of the two types of transcription factor genes, as observed here, may apply more widely is raised. This leads to observations concerning the implications of these different mechanisms on stochastic noise in gene expression and the consequent significance for developmental decisions in general.
Collapse
Affiliation(s)
- Sophie Bamps
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
45
|
Abstract
The development of an organism depends on individual cells receiving and executing their specific fates, although how this process is regulated remains largely unknown. Here, we identify a mechanism by which a specific cell fate, apoptosis, is determined through the cooperative efforts of Hox and E2F proteins. E2F transcription factors are critical, conserved regulators of the cell cycle and apoptosis. However, little is known about the two most recently discovered mammalian E2Fs-E2F7 and E2F8. In the nematode Caenorhabditis elegans, we identify a novel E2F7/8 homolog, EFL-3, and show that EFL-3 functions cooperatively with LIN-39, providing the first example in which these two major developmental pathways-E2F and Hox-are able to directly regulate the same target gene. Our studies demonstrate that LIN-39 and EFL-3 function in a cell type-specific context to regulate transcription of the egl-1 BH3-only cell death gene and to determine cell fate during development.
Collapse
|
46
|
Abstract
With unique genetic and cell biological strengths, C. elegans has emerged as a powerful model system for studying many biological processes. These processes are typically regulated by complex genetic networks consisting of genes. Identifying those genes and organizing them into genetic pathways are two major steps toward understanding the mechanisms that regulate biological events. Forward genetic screens with various designs are a traditional approach for identifying candidate genes. The completion of the genome sequencing in C. elegans and the advent of high-throughput experimental techniques have led to the development of two additional powerful approaches: functional genomics and systems biology. Genes that are discovered by these approaches can be ordered into interacting pathways through a variety of strategies, involving genetics, cell biology, biochemistry, and functional genomics, to gain a more complete understanding of how gene regulatory networks control a particular biological process. The aim of this review is to provide an overview of the approaches available to identify and construct the genetic pathways using C. elegans.
Collapse
Affiliation(s)
- Zheng Wang
- Dept. of Biology, Duke University, Durham NC
| | | |
Collapse
|
47
|
Jafari G, Appleford PJ, Seago J, Pocock R, Woollard A. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mech Dev 2010; 128:49-58. [PMID: 20933597 DOI: 10.1016/j.mod.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells. We find that mab-9 expression in unc-37 mutants is also elevated in DA motor neurons, consistent with known roles for UNC-37 as a co-repressor with UNC-4. These results identify mab-9 as a novel target of the UNC-4/UNC-37 repressor complex in motor neurons, and suggest that mis-expression of mab-9 may contribute to the neuronal wiring defects in unc-4 and unc-37 mutants.
Collapse
Affiliation(s)
- Gholamali Jafari
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Uncx regulates proliferation of neural progenitor cells and neuronal survival in the olfactory epithelium. Mol Cell Neurosci 2010; 45:398-407. [PMID: 20692344 DOI: 10.1016/j.mcn.2010.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 12/31/2022] Open
Abstract
Uncx (Phd1, Chx4) is a paired homeobox transcription factor gene. It and its probable functional partners, Tle co-repressors, were expressed by neurally-fated basal progenitor cells and olfactory sensory neurons of the olfactory epithelium. Uncx expression was rare in olfactory epithelia of Ascl1(-/-) mice, but common in Neurog1(-/-) mice. In Uncx(-/-) mice olfactory progenitor cell proliferation, progenitor cell number, olfactory sensory neuron survival, and Umodl1 and Kcnc4 mRNAs were reduced. Evidence of sensory neuron activity and functional connections to the olfactory bulb argue that decreased neuronal survival was not due to loss of trophic support or activity-dependent mechanisms. These data suggest that UNCX acts downstream of neural determination factors to broadly control transcriptional mechanisms used by neural progenitor cells to specify neural phenotypes.
Collapse
|
49
|
Flowers EB, Poole RJ, Tursun B, Bashllari E, Pe'er I, Hobert O. The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in C. elegans. Development 2010; 137:1799-805. [PMID: 20431118 DOI: 10.1242/dev.046219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcriptional co-repressors of the Groucho/TLE family are important regulators of development in many species. A subset of Groucho/TLE family members that lack the C-terminal WD40 domains have been proposed to act as dominant-negative regulators of Groucho/TLE proteins, yet such a role has not been conclusively proven. Through a mutant screen for genes controlling a left/right asymmetric cell fate decision in the nervous system of the nematode C. elegans, we have retrieved loss-of-function alleles in two distinct loci that display identical phenotypes in neuronal fate specification and in other developmental contexts. Using the novel technology of whole-genome sequencing, we find that these loci encode the C. elegans ortholog of Groucho, UNC-37, and, surprisingly, a short Groucho-like protein, LSY-22, that is similar to truncated Groucho proteins in other species. Besides their phenotypic similarities, unc-37 and lsy-22 show genetic interactions and UNC-37 and LSY-22 proteins also physically bind to each other in vivo. Our findings suggest that rather than acting as negative regulators of Groucho, small Groucho-like proteins may promote Groucho function. We propose that Groucho-mediated gene regulatory events involve heteromeric complexes of distinct Groucho-like proteins.
Collapse
Affiliation(s)
- Eileen B Flowers
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 2010; 3:366-76. [PMID: 20083577 DOI: 10.1242/dmm.003442] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuroligins are postsynaptic cell adhesion proteins that bind specifically to presynaptic membrane proteins called neurexins. Mutations in human neuroligin genes are associated with autism spectrum disorders in some families. The nematode Caenorhabditis elegans has a single neuroligin gene (nlg-1), and approximately a sixth of C. elegans neurons, including some sensory neurons, interneurons and a subset of cholinergic motor neurons, express a neuroligin transcriptional reporter. Neuroligin-deficient mutants of C. elegans are viable, and they do not appear deficient in any major motor functions. However, neuroligin mutants are defective in a subset of sensory behaviors and sensory processing, and are hypersensitive to oxidative stress and mercury compounds; the behavioral deficits are strikingly similar to traits frequently associated with autism spectrum disorders. Our results suggest a possible link between genetic defects in synapse formation or function, and sensitivity to environmental factors in the development of autism spectrum disorders.
Collapse
Affiliation(s)
- Jerrod W Hunter
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|