1
|
Qu Y, Henderson KA, Harper TA, Vargas HM. Scientific Review of the Proarrhythmic Risks of Oligonucleotide Therapeutics: Are Dedicated ICH S7B/E14 Studies Needed for Low-Risk Modalities? Clin Pharmacol Ther 2024; 116:96-105. [PMID: 38362953 DOI: 10.1002/cpt.3204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Oligonucleotide therapeutics (ONTs) represent a new modality with unique pharmacological and chemical properties that modulate gene expression with a high degree of target specificity mediated by complementary Watson-Crick base pair hybridization. To date, the proarrhythmic assessment of ONTs has been influenced by International Conference on Harmonization (ICH) E14 and S7B guidance. To document current hERG/QTc evaluation practices, we reviewed US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) Approval Packages (source: PharmaPendium.com) and collated preclinical and clinical studies for 17 marketed ONTs. In addition, clinical QTc data from 12 investigational ONTs were obtained from the literature. Of the marketed ONTs, eight were tested in the hERG assay with no inhibitory effect identified at the top concentration (range: 34-3,000 μM) tested. Fourteen of the ONTs were evaluated in nonhuman primate cardiovascular studies with 11 of them in dedicated telemetry studies. No effect on QTc intervals were observed (at high exposure multiples) in all studies. Clinically, four ONTs were evaluated in TQT studies; an additional six ONTs were assessed by concentration-QTc interval analysis, and six by routine safety electrocardiogram monitoring. None of the clinical studies identified a QTc prolongation risk; the same was true for the 12 investigational ONTs. A search of the FDA Adverse Event Database indicated no association between approved ONTs and proarrhythmias. Overall, the collective weight of evidence from 29 ONTs demonstrate no clinical proarrhythmic risk based on data obtained from ICH S7B/E14 studies. Thus, new ONTs may benefit from reduced testing strategies because they have no proarrhythmic risk, a similar cardiac safety profile as monoclonal antibodies, proteins, and peptides.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Kim A Henderson
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Tod A Harper
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
2
|
Sari Y, Sousa Rosa S, Jeffries J, Marques MPC. Comprehensive evaluation of T7 promoter for enhanced yield and quality in mRNA production. Sci Rep 2024; 14:9655. [PMID: 38671016 PMCID: PMC11053036 DOI: 10.1038/s41598-024-59978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L-1 of mRNA, with recent process optimisations increasing yields to 12 g L-1. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA. It is therefore imperative to reduce dsRNA to residual levels in order to avoid intensive purification steps, enabling cost-effective manufacturing processes. In this work, we exploit sequence modifications downstream of the T7 RNA polymerase promoter to increase mRNA yields whilst simultaneously minimising dsRNA. In particular, transcription performance was optimised by modifying the sequence downstream of the T7 promoter with additional AT-rich sequences. We have identified variants that were able to produce higher amounts of mRNA (up to 14 g L-1) in 45 min of reaction. These variants exhibited up to a 30% reduction in dsRNA byproduct levels compared to a wildtype T7 promoter, and have similar EGFP protein expression. The results show that optimising the non-coding regions can have an impact on mRNA production yields and quality, reducing overall manufacturing costs.
Collapse
Affiliation(s)
- Yustika Sari
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | - Sara Sousa Rosa
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jack Jeffries
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Saberi E, Mondal M, Paredes-Montero JR, Nawaz K, Brown JK, Qureshi JA. Optimal dsRNA Concentration for RNA Interference in Asian Citrus Psyllid. INSECTS 2024; 15:58. [PMID: 38249064 PMCID: PMC10816725 DOI: 10.3390/insects15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The Asian citrus psyllid (ACP) is a citrus pest and insect vector of "Candidatus Liberibacter asiaticus", the causal agent of citrus greening disease. Double-stranded RNA (dsRNA) biopesticides that trigger RNA interference (RNAi) offer an alternative to traditional insecticides. Standardized laboratory screening of dsRNA requires establishing the minimal effective concentration(s) that result in effective RNAi "penetrance" and trigger RNAi, resulting in one or more measurable phenotypes, herein, significant gene knockdown and the potential for mortality. In this study, knockdown was evaluated for a range of dsRNA concentrations of three ACP candidate genes, clathrin heavy chain (CHC), vacuolar ATPase subunit A (vATPase-A), and sucrose non-fermenting protein 7 (Snf7). Gene knockdown was quantified for ACP teneral adults and 3rd instar nymphs allowed a 48 h ingestion-access period (IAP) on 10, 50,100, 200, and 500 ng/µL dsRNA dissolved in 20% sucrose followed by a 5-day post-IAP on orange jasmine shoots. Significant gene knockdown (p < 0.05) in ACP third instar nymphs and adults ranged from 12-34% and 18-39%, 5 days post-IAP on dsRNA at 10-500 and 100-500 ng/µL, respectively. The threshold concentration beyond which no significant gene knockdown and adult mortality was observed post-48 h IAP and 10-day IAP, respectively, was determined as 200 ng/µL, a concentration indicative of optimal RNAi penetrance.
Collapse
Affiliation(s)
- Esmaeil Saberi
- Southwest Florida Research and Education Center, Department of Entomology and Nematology, IFAS, University of Florida, Immokalee, FL 34142, USA;
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
- RNAissance Ag, LLC, Saint Louis, MO 63132, USA
| | - Jorge R. Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, MI 48710, USA;
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil EC090112, Ecuador
| | - Kiran Nawaz
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
- RNAissance Ag, LLC, Saint Louis, MO 63132, USA
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
| | - Jawwad A. Qureshi
- Southwest Florida Research and Education Center, Department of Entomology and Nematology, IFAS, University of Florida, Immokalee, FL 34142, USA;
| |
Collapse
|
4
|
Chen J, Sheng CW, Peng Y, Wang K, Jiao Y, Palli SR, Cao H. Transcript Level and Sequence Matching Are Key Determinants of Off-Target Effects in RNAi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:577-589. [PMID: 38135672 DOI: 10.1021/acs.jafc.3c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Double-stranded RNA (dsRNA) pesticides, those based on RNA interference (RNAi) technology utilizing dsRNA, have shown potential for pest control. However, the off-target effects of dsRNA pose limitations to the widespread application of RNAi and raise concerns regarding potential side effects on other beneficial organisms. The precise impact and underlying factors of these off-target effects are still not well understood. Here, we found that the transcript level and sequence matching jointly regulate off-target effects of dsRNA. The much lower expressed target genes were knocked down to a lesser extent than genes with higher expression levels, and the critical sequence identity of off-target effects is approximately 80%. Moreover, off-target effects could be triggered by a contiguous matching sequence length exceeding 15 nt as well as nearly perfectly matching sequences with one or two base mismatches exceeding 19 nt. Increasing the dosage of dsRNA leads to more severe off-target effects. However, the length of mismatched dsRNA, the choice of different RNAi targets, and the location of target sites within the same gene do not affect the severity of off-target effects. These parameters can be used to guide the design of possibly selective sequences for RNAi, optimize the specificity and efficiency of dsRNA, and facilitate practical applications of RNAi for pest control.
Collapse
Affiliation(s)
- Jiasheng Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Wang Sheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kangxu Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Luo D, Wu Z, Wang D, Zhang J, Shao F, Wang S, Cestellos-Blanco S, Xu D, Cao Y. Lateral flow immunoassay for rapid and sensitive detection of dsRNA contaminants in in vitro-transcribed mRNA products. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:445-453. [PMID: 37181450 PMCID: PMC10173069 DOI: 10.1016/j.omtn.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
High purity is essential in mRNA-based therapeutic applications. A major contaminant of in vitro-transcribed (IVT) mRNA manufacturing is double-stranded RNA (dsRNA), which can induce severe anti-viral immune responses. Detection methods, such as agarose gel electrophoresis, ELISA, and dot-blot assay, are used to detect the existence of dsRNA in IVT mRNA products. However, these methods are either not sensitive enough or time-consuming. To overcome these challenges, we develop a rapid, sensitive, and easy-to-implement colloidal gold nanoparticle-based lateral flow strip assay (LFSA) with sandwich format for the detection of dsRNA from IVT process. dsRNA contaminant can be determined visually on the test strip or quantitatively with a portable optical detector. This method allows for a 15 min detection of N1-methyl-pseudouridine (m1Ψ)-containing dsRNA with a detection limit of 69.32 ng/mL. Furthermore, we establish the correlation between the LFSA test results and the immune response caused by dsRNA in mice. The LFSA platform allows the rapid, sensitive, and quantitative monitoring of purity in massive IVT mRNA products and aids for the prevention of immunogenicity by dsRNA impurities.
Collapse
Affiliation(s)
- Dengwang Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daming Wang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
- Anbio Biotechnology Company, Xiamen, Fujian 361026, China
| | - Jieli Zhang
- Anbio Biotechnology Company, Xiamen, Fujian 361026, China
| | - Fei Shao
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Stefano Cestellos-Blanco
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author: Dawei Xu, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author: Yuhong Cao, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Beheshtizadeh N, Salimi A, Golmohammadi M, Ansari JM, Azami M. In-silico engineering of RNA nanoplatforms to promote the diabetic wound healing. BMC Chem 2023; 17:52. [PMID: 37291669 PMCID: PMC10251717 DOI: 10.1186/s13065-023-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
One of the most notable required features of wound healing is the enhancement of angiogenesis, which aids in the acceleration of regeneration. Poor angiogenesis during diabetic wound healing is linked to a shortage of pro-angiogenic or an increase in anti-angiogenic factors. As a result, a potential treatment method is to increase angiogenesis promoters and decrease suppressors. Incorporating microRNAs (miRNAs) and small interfering RNAs (siRNAs), two forms of quite small RNA molecules, is one way to make use of RNA interference. Several different types of antagomirs and siRNAs are now in the works to counteract the negative effects of miRNAs. The purpose of this research is to locate novel antagonists for miRNAs and siRNAs that target multiple genes to promote angiogenesis and wound healing in diabetic ulcers.In this context, we used gene ontology analysis by exploring across several datasets. Following data analysis, it was processed using a systems biology approach. The feasibility of incorporating the proposed siRNAs and miRNA antagomirs into polymeric bioresponsive nanocarriers for wound delivery was further investigated by means of a molecular dynamics (MD) simulation study. Among the three nanocarriers tested (Poly (lactic-co-glycolic acid) (PLGA), Polyethylenimine (PEI), and Chitosan (CTS), MD simulations show that the integration of PLGA/hsa-mir-422a is the most stable (total energy = -1202.62 KJ/mol, Gyration radius = 2.154 nm, and solvent-accessible surface area = 408.416 nm2). With values of -25.437 KJ/mol, 0.047 nm for the Gyration radius, and 204.563 nm2 for the SASA, the integration of the second siRNA/ Chitosan took the last place. The results of the systems biology and MD simulations show that the suggested RNA may be delivered through bioresponsive nanocarriers to speed up wound healing by boosting angiogenesis.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Students? Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mahsa Golmohammadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Javad Mohajer Ansari
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Anatomy, School of Medicine, Hormozgan University of Medical Sciences, Jomhuri Eslami Blvd, Bandar Abbas, 7919915519, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Yan F, Xiao X, Long C, Tang L, Wang C, Zhang M, Zhang J, Lin H, Huang H, Zhang Y, Li S. Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10212-9. [PMID: 37154998 DOI: 10.1007/s10126-023-10212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The U6 promoter, a typical RNA polymerase III promoter, is widely used to transcribe small RNAs in vector-based siRNA systems. The RNAi efficiency is mainly dependent on the transcriptional activity of the U6 promoter. However, studies have found that U6 promoters isolated from some fishes do not work well in distantly related species. To isolate a U6 promoter with high transcriptional efficiency from fish, in this study, we cloned five U6 promoters in orange-spotted grouper, of which only the grouper U6-1 (GU6-1) promoter contains the OCT element in the distant region. Functional studies revealed that the GU6-1 promoter has high transcriptional ability, which could efficiently transcribe shRNA and result in target gene knockdown in vitro and in vivo. Subsequently, the deletion or mutation of the OCT motif resulted in a significant decrease in promoter transcriptional activity, demonstrating that the OCT element plays an important role in enhancing the grouper U6 promoter transcription. Moreover, the transcriptional activity of the GU6-1 promoter showed little species specificity. It not only works in the grouper but also possesses high transcriptional activity in the zebrafish. Knockdown of the mstn gene in zebrafish and grouper through shRNA driven by the GU6-1 promoter could promote fish growth, suggesting that the GU6-1 promoter can be used as a potential molecular tool in aquaculture practice.
Collapse
Affiliation(s)
- Fengying Yan
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Xinxun Xiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chen Long
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Lin Tang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chongwei Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Mingqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, 572022, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China.
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Wang H, Liu X, Tan L. Binding properties of a molecular "light switch" ruthenium(II) polypyridyl complex toward double- and triple-helical forms of RNA. Int J Biol Macromol 2023; 242:124710. [PMID: 37146854 DOI: 10.1016/j.ijbiomac.2023.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
To further develop new luminescent probes for RNA, a new ruthenium(II) polypyridyl complex [Ru(dmb)2dppz-idzo]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine, dppz-idzo = dppz-imidazolone) has been synthesized and characterized in this study. Binding properties of [Ru(dmb)2dppz-idzo]2+ to RNA duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U) have been explored by spectroscopic techniques and viscometry experiments. The binding modes of [Ru(dmb)2dppz-idzo]2+ to RNA duplex and triplex are intercalation as revealed from spectral titrations and viscosity experiments, while the binding strength of this complex to duplex structure is significantly greater than that of triplex structure. Fluorescence titrations indicate that [Ru(dmb)2dppz-idzo]2+ can act as a molecular "light switch" for both duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U), while [Ru(dmb)2dppz-idzo]2+ is more sensitive to poly(A) · poly(U) compared to poly(U) · poly(A) ∗ poly(U) and poly(U). Therefore, this complex can distinguish between RNA duplex, triplex and poly(U), and can as luminescent probes for the three RNAs used in this study. In addition, thermal denaturation studies show that [Ru(dmb)2dppz-idzo]2+ is able to significantly increase the Stabilization of RNA duplex and triplex. The results obtained in this study may contribute to further understanding of the binding of Ru(II) complexes with different structural RNAs.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
10
|
Joo Hong S, Hong Kim K. Effects of length and sequence of long double-stranded RNAs targeting ribonucleotide reductase 2 of white spot syndrome virus (WSSV) on protective efficacy against WSSV. J Invertebr Pathol 2023; 196:107869. [PMID: 36455669 DOI: 10.1016/j.jip.2022.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Long double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) has been a well-known mechanism against white spot syndrome virus (WSSV) in cultured shrimp. In the present study, we investigated the protective efficacy of dsRNAs targeting the ribonucleotide reductase 2 (rr2) gene of WSSV according to length and target sequence location. To produce different lengths of dsRNAs, the 640 bp rr2 fragment (fragment I) was split into two equal 320 bp fragments (fragment II and III), then each 320 bp fragment was redivided into two 160 bp fragments (fragment IV, V, VI, and VII). After the synthesis of seven kinds of dsRNA fragments, dsRNAs with the same length were mixed with each other, then used for the evaluation of dsRNA's length effect in Penaeus vannamei. The result showed that 160 bp long dsRNAs were as effective as 320 and 640 bp long dsRNAs in the protection of shrimp against WSSV infection, suggesting that the dsRNA length of 160 bp would be enough to be used as RNAi-mediated WSSV suppression in P. vannamei. However, as the 160 bp long dsRNAs used in the length effect experiment were not a single dsRNA population but a mixture of 160 bp dsRNA fragments covering the parent 640 bp long dsRNA, the sequence effect was not included in this RNAi efficacy. In the experiments to know the effect of not only length but also sequence of rr2-targeting long dsRNAs on the protective efficacy against WSSV, dsRNAs with a length of 640 bp (fragment I) and 320 bp (fragment II, III) showed a constant high defense ability, but the protection degree of long dsRNAs with a length of 160 bp was different depending on the kinds of the fragment, suggesting that the RNAi efficacy of some rr2-targeting long dsRNAs with a length of 160 bp might have sequences that are variable according to experimental conditions. In conclusion, this study showed that the protective ability of long dsRNAs in shrimp against WSSV infection can be affected by the length and sequence of the long dsRNAs.
Collapse
Affiliation(s)
- Soon Joo Hong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
11
|
Hwang H, Chang HR, Baek D. Determinants of Functional MicroRNA Targeting. Mol Cells 2023; 46:21-32. [PMID: 36697234 PMCID: PMC9880601 DOI: 10.14348/molcells.2023.2157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Qu Y, Kirby R, Davies R, Jinat A, Stabilini S, Wu B, Yu L, Gao B, Vargas HM. Time Is a Critical Factor When Evaluating Oligonucleotide Therapeutics in Human Ether-a-Go-Go-Related Gene Assays. Nucleic Acid Ther 2022; 33:132-140. [PMID: 36576986 PMCID: PMC10066779 DOI: 10.1089/nat.2022.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In accord with International Conference on Harmonization S7B guidelines, an in vitro human ether-a-go-go-related gene (hERG) assay is one component of an integrated risk assessment for delayed ventricular repolarization. Function of hERG could be affected by direct (acute) mechanisms, or by indirect (chronic) mechanisms. Some approved oligonucleotide therapeutics had submitted hERG data to regulatory agents, which were all collected with the same protocol used for small-molecule testing (incubation time <20 min; acute), however, oligonucleotides have unique mechanisms and time courses of action (indirect). To reframe the hERG testing strategy for silencing RNA (siRNA), an investigation was performed to assess the time course for siRNA-mediated inhibition of hERG function and gene expression. Commercially available siRNAs of hERG were evaluated in a stable hERG-expressed cell line by whole-cell voltage clamp using automated electrophysiology and polymerase chain reaction. In the acute hERG study, no effects were observed after treatment with 100 nM siRNA for 20 min. The chronic effects of 100 nM siRNAs on hERG function were evaluated and recorded over 8-48 h following transfection. At 8 h there was no significant effect, whereas 77% reduction was observed at 48 h. Measurement of hERG mRNA levels demonstrated a 79% and 93% decrease of hERG mRNA at 8 and 48 h, respectively, consistent with inhibition of hERG transcription. The results indicate that an anti-hERG siRNA requires a long exposure time (48 h) in the hERG assay to produce a maximal reduction in hERG current; short exposures (20 min-8 h) had no effect. These findings imply that off-target profiling of novel oligonucleotides could benefit from using hERG protocol with long incubation times to de-risk potential off-target (indirect) effects on the hERG channel. This hERG assay modification may be important to consider if the findings are used to support an integrated nonclinical-clinical risk assessment for QTc (the duration of the QT interval adjusted for heart rate) prolongation.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Robert Kirby
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Richard Davies
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Ayesha Jinat
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | | | - Bin Wu
- Hybrid Modality Engineering, Amgen, Inc., Thousand Oaks, California, USA
| | - Longchuan Yu
- Cardiometabolic Disorders, Amgen, Inc., Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| |
Collapse
|
13
|
Au SKW, Portelli IV, DeWitte-Orr SJ. Using long, sequence-specific dsRNA to knockdown inducible protein expression and virus production via an RNAi-like mechanism. FISH & SHELLFISH IMMUNOLOGY 2022; 131:945-957. [PMID: 36351544 DOI: 10.1016/j.fsi.2022.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
RNA interference (RNAi) is a powerful innate immune mechanism to knock down translation of specific proteins whose machinery is conserved from plants to mammals. The template used to determine which mRNA's translation is inhibited is dsRNA, whose origin can range from viruses (long dsRNA, ∼100-1000s bp) to host (micro(mi)RNA, ∼20mers). While miRNA-mediated RNAi is well described in vertebrates, the ability of long dsRNA to guide RNAi-mediated translation inhibition in vertebrates is controversial. Indeed, as long dsRNA is so effective at inducing type I interferons (IFNs), and IFNs down-regulate RNAi machinery, it is believed that IFN-competent cells are not capable of using long dsRNA for RNAi. In the present study the ability of long, sequence specific dsRNA to knock down both host protein expression and viral replication is investigated in IFN-competent rainbow trout cells. Before exploring RNAi effects, the optimal dsRNA concentration that would funnel into RNAi without triggering the IFN response was determined. After which, the ability of sequence specific long dsRNA to target knockdown via RNAi was evaluated in: (1) uninfected host cells using inducible luciferase gene expression and (2) host cells infected with chum salmon reovirus (CSV), frog virus 3 (FV3) or viral hemorrhagic septicemia virus genotype IVa (VHSV-IVa). Induced expression studies utilized RTG-P1, a luciferase reporter cell line, and dsRNA containing luciferase sequence (dsRNA-Luc) or a mis-matched sequence (dsRNA-GFP), and subsequent luminescence intensity was measured. Anti-CSV studies used dsRNA-CSVseg7 and dsRNA-CSVseg10 to target CSV segment 7 and CSV segment 10 respectively. Inhibition of virus replication was measured by viral titration and RT-qPCR. Taking advantage of the fact that long dsRNA can accommodate more sequences than miRNAs, the antiviral capability of dsRNA molecules containing both CSV segment 7 and segment 10 simultaneously was also measured. Target sequence appears important, as dsRNA-FV3MCP did not knock down FV3 titres, and while dsRNA-VHSV-N knocked down VHSV-IVa, dsRNA-VHSV-G and dsRNA-VHSV-M did not. This is the first study in fish to provide evidence that sequence specific long dsRNA induces potent gene expression silencing and antiviral responses in vitro via an RNAi-like mechanism instead of an IFN-dependent response.
Collapse
Affiliation(s)
- Sarah K W Au
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Iliana V Portelli
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Stephanie J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
14
|
Zhang Z, Ren H, Chen Z, Zhang Y, Zhang Z, Luo Y, Wang S, Feng X, Xu L. Dumbbell-Shaped Antisense Oligonucleotide Prodrugs Showed Improved Antinuclease Stability and Anticancer Efficacy. Mol Pharm 2022; 19:3915-3921. [DOI: 10.1021/acs.molpharmaceut.2c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhe Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Hongqian Ren
- Department of Clinical Research Center, Dazhou Central Hospital, Sichuan 635000, China
| | - Zuyi Chen
- School of Pharmacy, China Medical University, Shenyang 110122, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yaling Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zhuolin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Shiyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
15
|
Waldron E, Tanhehco YC. Under the Hood: The Molecular Biology Driving Gene Therapy for the Treatment of Sickle Cell Disease. Transfus Apher Sci 2022; 61:103566. [DOI: 10.1016/j.transci.2022.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Development of an Organ-Directed Exosome-Based siRNA-Carrier Derived from Autologous Serum for Lung Metastases and Testing in the B16/BL6 Spontaneous Lung Metastasis Model. Pharmaceutics 2022; 14:pharmaceutics14040815. [PMID: 35456649 PMCID: PMC9025519 DOI: 10.3390/pharmaceutics14040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles that are known to carry various messages to distant cells. It was recently reported that cancer-derived exosomes are orientated to metastatic organs. However, there are no reports on drug carrier development using autologous serum-derived exosomes in vivo. The purpose of this study was to deliver therapeutic siRNAs for melanoma lung metastases using autologous serum-derived exosomes. Primary tumors were induced by subcutaneously injecting melanoma cells into the hindlimbs of female C57BL/6 mice. Primary tumors were surgically removed on day 14. On day 21 after tumor removal, lung metastases were evaluated. Exosomes were isolated from serum collected from mice on days 0, 3, 7, 10, and 14 after primary tumor inoculation. After isolating serum exosomes, siRNA-loaded exosomes were prepared. siRNA-loaded exosomes were intravenously injected into the B16/BL6 spontaneous lung metastasis model mice on days 0, 3, 7, and 10 after tumor removal. siRNA-loaded exosomes prepared with autologous serum-derived exosomes significantly decreased the number of metastatic lung colonies. Autologous serum-derived exosomes, which have high organ accumulation, could potentially be used as efficient carriers of therapeutic siRNAs for melanoma patients with lung metastases.
Collapse
|
17
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Dedeoğlu BG, Noyan S. Experimental MicroRNA Targeting Validation. Methods Mol Biol 2022; 2257:79-90. [PMID: 34432274 DOI: 10.1007/978-1-0716-1170-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as a new dimension of posttranscriptional regulation. It is well defined that most human protein-coding genes are regulated by one or more miRNAs. Therefore, it is crucial to identify genes targeted by the miRNAs to better understand their functions. Although bioinformatics tools have the ability to identify target candidates it is still essential to identify physiological targets by experimental approaches. Currently, the majority of miRNA-target experimental validation approaches assess the changes in target expression in mRNA or protein level upon miRNA upregulation or downregulation. Additionally, finding out direct physical interactions between miRNAs and their targets is also among the experimental techniques. In this chapter we reviewed the existing experimental techniques for miRNA target identification by considering their advantages and potential drawbacks.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
20
|
Yang TH. An Aggregation Method to Identify the RNA Meta-Stable Secondary Structure and its Functionally Interpretable Structure Ensemble. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:75-86. [PMID: 34014829 DOI: 10.1109/tcbb.2021.3082396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA can provide vital cellular functions through its secondary or tertiary structure. Due to the low-throughput nature of experimental approaches, studies on RNA structures mainly resort to computational methods. However, current existing tools fail to consider RNA structure ensembles and do not provide ways to decipher functional hypotheses for the new predictions. In this research, a novel method was proposed to identify the functionally interpretable structure ensemble of a given RNA sequence and provide the meta-stable structure, or the most frequently observed functional RNA cellular conformation, based on the ensemble. In the prediction of meta-stable structures, the proposed method outperformed existing tools on a yeast test set. The inferred functional aspects were then manually checked and demonstrated a micro-averaging F1 value of 0.92. Further, a biological example of the yeast ASH1-E1 element was discussed to articulate that these functional aspects can also suggest testable hypotheses. Then the proposed method was verified to be well applicable to other species through a human test set. Finally, the proposed method was demonstrated to show resistance to sequence length-dependent performance deterioration.
Collapse
|
21
|
Tips and Tools to Understand Direct Membrane Translocation of siRNA-Loaded WRAP-Based Nanoparticles. Methods Mol Biol 2021. [PMID: 34766308 DOI: 10.1007/978-1-0716-1752-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell-penetrating peptide (CPP)-based approaches are excellent method for delivering cell-impermeable compounds/therapeutics such as proteins, antibodies, antisense oligonucleotides, siRNAs, plasmids, and drugs, as covalently or noncovalently conjugated cargo into cells. Nowadays, it is generally accepted that cellular internalization of these CPP-cargoes or CPP-nanoparticles occur via endocytosis-dependent mechanisms or by direct cell translocation.Here, we describe a subset of biophysical and biological methods which can be used to dissect the internalization mechanism of CPPs. Presented protocols and results were shown for the recently developed siRNA-loaded WRAP-based nanoparticles. The rapid and efficient cell delivery of WRAP encapsulated siRNA could be attributed to the main direct cellular translocation of the nanoparticles even if, to some extent, endocytosis-dependent internalization occurred.Deciphering the internalization mechanism is still an important requirement to understand and to optimize the action mode of CPPs or CPP-based nanoparticles as transfection reagents.
Collapse
|
22
|
Hazekawa M, Nishinakagawa T, Mori T, Yoshida M, Uchida T, Ishibashi D. Preparation of siRNA-PLGA/Fab'-PLGA mixed micellar system with target cell-specific recognition. Sci Rep 2021; 11:16789. [PMID: 34408228 PMCID: PMC8373956 DOI: 10.1038/s41598-021-96245-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
Small interfering RNAs (siRNAs) are susceptible to nucleases and degrade quickly in vivo. Moreover, siRNAs demonstrate poor cellular uptake and cannot cross the cell membrane because of its polyanionic characteristics. To overcome these challenges, an intelligent gene delivery system that protects siRNAs from nucleases and facilitates siRNA cellular uptake is required. We previously reported the potential of siRNA-poly(D,L-lactic-co-glycolic acid; PLGA) micelles as an effective siRNA delivery tool in a murine peritoneal dissemination model by local injection. However, there was no effective formulation for siRNA delivery to target cells via intravenous injection. This study aimed to prepare siRNA-PLGA/Fab'-PLGA mixed micelles for siRNA delivery to target floating cells and evaluate its formulation in vitro. As the target siRNA protein in CEMx174, CyclinB1 levels were significantly reduced when siRNA-PLGA/Fab'-PLGA mixed micelles were added to cells compared with siRNA-PLGA micelles. siRNA-PLGA/Fab'-PLGA mixed micelles have high cell permeability and high target cell accumulation by endocytosis because flow cytometry detected labeling micelles in target cells. This study supports siRNA-PLGA/Fab'-PLGA mixed micelles as an effective siRNA delivery tool. This formulation can be administered systemically in dosage form against target cells, including cancer metastasis or blood cancer.
Collapse
Affiliation(s)
- Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takeshi Mori
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, 9-Bancho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, 9-Bancho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Takahiro Uchida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, 9-Bancho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Daisuke Ishibashi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
23
|
Dou L, Tao X, Zhao W, Zheng G, Lu Y, Tong W, Zhang Y, Shen Y, Li H, Walhidayah T, Ren X, Lu H, Lin J, Li T, Li T, Li Y, Zhang J. shRNA targeting nonstructural protein inhibits the replication of severe fever with thrombocytopenia syndrome virus. Future Virol 2021. [DOI: 10.2217/fvl-2020-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To explore whether shRNA targeting nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) could inhibit SFTSV replication in Vero cells. Materials & methods: SFTSV used in this experiment was propagated in Vero cells and stored at -20°C. shRNA plasmid against NSs of SFTSV was transfected to Vero cells and infected with SFTSV, after which western blotting and tissue culture infective dose (TCID50) were used to measure the virus titers. Results: shRNA against NSs protein decreased the expression of NSs and inhibited the replication of SFTSV. Conclusion: The constructed SFTSV NSs-shRNA plasmid could inhibit the replication of SFTSV. It was concluded that SFTSV NSs-shRNA could inhibit virus replication for at least 72 h. shRNA-mediated antiviral effects were dose-dependent.
Collapse
Affiliation(s)
- Lili Dou
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Xiaoli Tao
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Wei Zhao
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Guofeng Zheng
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110005, China
| | - Ying Lu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Wei Tong
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Yibo Zhang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Yanfei Shen
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Hui Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Taufik Walhidayah
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Xiaofeng Ren
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Hengzhang Lu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Jiafeng Lin
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Tingting Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Tengfei Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Yonggang Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jinzhou Medical University, Liaoning, Jinzhou, 121200, China
| | - Jun Zhang
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110005, China
| |
Collapse
|
24
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Veigl SJ. Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:30. [PMID: 33624250 DOI: 10.1007/s40656-021-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The discovery of RNA interference in 1998 has made a lasting impact on biological research. Identifying the regulatory role of small RNAs changed the modes of molecular biological inquiry as well as biologists' understanding of genetic regulation. This article examines the early years of small RNA biology's success story. I query which factors had to come together so that small RNA research came into life in the blink of an eye. I primarily look at scientific repertoires as facilitators of rapid scientific change. I show that for a short period of time, between the years 1998 and 2002, different model organism communities, investigative strategies, technological innovations, and research interests could be successfully aligned to take small RNA research off the ground. I discuss how the keystone discoveries were situated in specific experimental traditions and what strategies were employed to establish these discoveries as more general phenomena. Providing thus a practice-based approach of rapid scientific change, I ask how to relate the change in propositional bits of scientific knowledge with changes in scientific practice.
Collapse
Affiliation(s)
- Sophie Juliane Veigl
- Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv, Israel.
| |
Collapse
|
26
|
Small RNAs Are Implicated in Regulation of Gene and Transposable Element Expression in the Protist Trichomonas vaginalis. mSphere 2021; 6:6/1/e01061-20. [PMID: 33408230 PMCID: PMC7845603 DOI: 10.1128/msphere.01061-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral sexually transmitted infection worldwide. Repetitive elements, including transposable elements (TEs) and virally derived repeats, comprise more than half of the ∼160-Mb T. vaginalis genome. An intriguing question is how the parasite controls its potentially lethal complement of mobile elements, which can disrupt transcription of protein-coding genes and genome functions. In this study, we generated high-throughput RNA sequencing (RNA-Seq) and small RNA-Seq data sets in triplicate for the T. vaginalis G3 reference strain and characterized the mRNA and small RNA populations and their mapping patterns along all six chromosomes. Mapping the RNA-Seq transcripts to the genome revealed that the majority of genes predicted within repetitive elements are not expressed. Interestingly, we identified a novel species of small RNA that maps bidirectionally along the chromosomes and is correlated with reduced protein-coding gene expression and reduced RNA-Seq coverage in repetitive elements. This novel small RNA family may play a regulatory role in gene and repetitive element expression. Our results identify a possible small RNA pathway mechanism by which the parasite regulates expression of genes and TEs and raise intriguing questions as to the role repeats may play in shaping T. vaginalis genome evolution and the diversity of small RNA pathways in general. IMPORTANCE Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Given its evident success in this niche, it is paradoxical that T. vaginalis harbors in its genome thousands of transposable elements that have the potential to be extremely detrimental to normal genomic function. In many organisms, transposon expression is regulated by the activity of endogenously expressed short (∼21 to 35 nucleotides [nt]) small RNA molecules that effect gene silencing by targeting mRNAs for degradation or by recruiting epigenetic silencing machinery to locations in the genome. Our research has identified small RNA molecules correlated with reduced expression of T. vaginalis genes and transposons. This suggests that a small RNA pathway is a major contributor to gene expression patterns in the parasite and opens up new avenues for investigation into small RNA biogenesis, function, and diversity.
Collapse
|
27
|
Abstract
The discovery of new classes of non-coding RNAs has always been preceded or accompanied by technological breakthroughs, and these outstanding progresses in transcriptomics approaches enabled to regularly add new members to the list. From the first detection of tRNAs, through the revolution of miRNAs discovery, to the recent identification of eRNAs or the identification of new functions for already known ncRNAs, this introductive review provides a very concise historical and functional overview of most prominent small regulatory non-coding RNA families.
Collapse
Affiliation(s)
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
28
|
Brown CR, Gupta S, Qin J, Racie T, He G, Lentini S, Malone R, Yu M, Matsuda S, Shulga-Morskaya S, Nair AV, Theile CS, Schmidt K, Shahraz A, Goel V, Parmar RG, Zlatev I, Schlegel MK, Nair JK, Jayaraman M, Manoharan M, Brown D, Maier MA, Jadhav V. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res 2020; 48:11827-11844. [PMID: 32808038 PMCID: PMC7708070 DOI: 10.1093/nar/gkaa670] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc–siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc–siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.
Collapse
Affiliation(s)
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - June Qin
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Timothy Racie
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Guo He
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Scott Lentini
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Ryan Malone
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Mikyung Yu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | - Anil V Nair
- MGH Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Karyn Schmidt
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Azar Shahraz
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Varun Goel
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | | | | | - Dennis Brown
- MGH Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Vasant Jadhav
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers (Basel) 2020; 12:cancers12123695. [PMID: 33317042 PMCID: PMC7763270 DOI: 10.3390/cancers12123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) are a recently discovered class of molecules in the cell, with potential to be utilized as therapeutic targets in cancer. A number of lncRNAs have been described to play important roles in tumor progression and drive molecular processes involved in cell proliferation, apoptosis or invasion. However, the vast majority of lncRNAs have not been studied in the context of cancer thus far. With the advent of CRISPR/Cas genome editing, high-throughput functional screening approaches to identify lncRNAs that impact cancer growth are becoming more accessible. Here, we review currently available methods to study hundreds to thousands of lncRNAs in parallel to elucidate their role in tumorigenesis and cancer progression. Abstract Recent technological advancements such as CRISPR/Cas-based systems enable multiplexed, high-throughput screening for new therapeutic targets in cancer. While numerous functional screens have been performed on protein-coding genes to date, long non-coding RNAs (lncRNAs) represent an emerging class of potential oncogenes and tumor suppressors, with only a handful of large-scale screens performed thus far. Here, we review in detail currently available screening approaches to identify new lncRNA drivers of tumorigenesis and tumor progression. We discuss the various approaches of genomic and transcriptional targeting using CRISPR/Cas9, as well as methods to post-transcriptionally target lncRNAs via RNA interference (RNAi), antisense oligonucleotides (ASOs) and CRISPR/Cas13. We discuss potential advantages, caveats and future applications of each method to provide an overview and guide on investigating lncRNAs as new therapeutic targets in cancer.
Collapse
|
30
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
31
|
Vincristine and prednisone regulates cellular and exosomal miR-181a expression differently within the first time diagnosed and the relapsed leukemia B cells. Leuk Res Rep 2020; 14:100221. [PMID: 33094092 PMCID: PMC7568182 DOI: 10.1016/j.lrr.2020.100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
We explored the effect of vincristine and prednisone on cellular and exosomal miR-181a expression in first time diagnosed leukemia and relapsed leukemia. Vincristine and prednisone induced apoptosis/pro-apoptotic genes in first time diagnosed leukemia, and suppressed the cellular and exosomal miR-181a expression. In contrast, vincristine and prednisone could not induce apoptosis/pro-apoptotic genes in relapsed leukemia, and could not change the expression of cellular or exosomal miR-181a. In conclusion, the non-suppressive nature of miR-181a in relapsed leukemia might contribute to the chemo-resistance and this suggests a potential role of miR-181a-inhibitor along with the chemotherapy in the treatment of relapsed leukemia.
Collapse
|
32
|
Kitamura Y, Kandeel M, Kondo T, Tanaka A, Makino Y, Miyamoto N, Shibata A, Ikeda M, Kitade Y. Sulfonamide antibiotics inhibit RNAi by binding to human Argonaute protein 2 PAZ. Bioorg Med Chem Lett 2020; 30:127637. [PMID: 33132114 DOI: 10.1016/j.bmcl.2020.127637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
We found that sulfisomidine, a sulfonamide antibiotic, potently binds to the Piwi/Argonaute/Zwille (PAZ) domain of human Argonaute protein 2 and inhibits RNA interference (RNAi). To elucidate the effect on RNAi of strong affinity of the 3'-ends in small interfering RNA (siRNA) to the PAZ domain, chemically modified siRNAs bearing sulfisomidine at the 3'-end were synthesized.
Collapse
Affiliation(s)
- Yoshiaki Kitamura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Tomoya Kondo
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Tanaka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yohei Makino
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Noriko Miyamoto
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan
| | - Aya Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan; Institute of Nano-Life-Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan; Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan.
| |
Collapse
|
33
|
Ito K, Angata K, Kuno A, Okumura A, Sakamoto K, Inoue R, Morita N, Watashi K, Wakita T, Tanaka Y, Sugiyama M, Mizokami M, Yoneda M, Narimatsu H. Screening siRNAs against host glycosylation pathways to develop novel antiviral agents against hepatitis B virus. Hepatol Res 2020; 50:1128-1140. [PMID: 32738016 DOI: 10.1111/hepr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) relies on glycosylation for crucial functions, such as entry into host cells, proteolytic processing and protein trafficking. The aim of this study was to identify candidate molecules for the development of novel antiviral agents against HBV using an siRNA screening system targeting the host glycosylation pathway. METHODS HepG2.2.15.7 cells that consistently produce HBV were employed for our in vitro study. We investigated the effects of siRNAs that target 88 different host glycogenes on hepatitis B surface antigen (HBsAg) and HBV DNA secretion using the siRNA screening system. RESULTS We identified four glycogenes that reduced HBsAg and/or HBV DNA secretion; however, the observed results for two of them may be due to siRNA off-target effects. Knocking down ST8SIA3, a member of the sialyltransferase family, significantly reduced both HBsAg and HBV DNA secretion. Knocking down GALNT7, which transfers N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus, also significantly reduced both HBsAg and HBV DNA levels. CONCLUSIONS These results showed that knocking down the ST8SIA3 and GALNT7 glycogenes inhibited HBsAg and HBV DNA secretion in HepG2.2.15.7 cells, indicating that the host glycosylation pathway is important for the HBV life cycle and could be a potential target for the development of novel anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kiyohiko Angata
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naoko Morita
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
34
|
Haque S, Vaiselbuh SR. Silencing of Exosomal miR-181a Reverses Pediatric Acute Lymphocytic Leukemia Cell Proliferation. Pharmaceuticals (Basel) 2020; 13:ph13090241. [PMID: 32932883 PMCID: PMC7558769 DOI: 10.3390/ph13090241] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes are cell-generated nano-vesicles found in most biological fluids. Major components of their cargo are lipids, proteins, RNA, DNA, and non-coding RNAs. The miRNAs carried within exosomes reveal real-time information regarding disease status in leukemia and other cancers, and therefore exosomes have been studied as novel biomarkers for cancer. We investigated the impact of exosomes on cell proliferation in pediatric acute lymphocytic leukemia (PALL) and its reversal by silencing of exo-miR-181a. We isolated exosomes from the serum of PALL patients (Exo-PALL) and conditioned medium of leukemic cell lines (Exo-CM). We found that Exo-PALL promotes cell proliferation in leukemic B cell lines by gene regulation. This exosome-induced cell proliferation is a precise event with the up-regulation of proliferative (PCNA, Ki-67) and pro-survival genes (MCL-1, and BCL2) and suppression of pro-apoptotic genes (BAD, BAX). Exo-PALL and Exo-CM both show over expression of miR-181a compared to healthy donor control exosomes (Exo-HD). Specific silencing of exosomal miR-181a using a miR-181a inhibitor confirms that miR-181a inhibitor treatment reverses Exo-PALL/Exo-CM-induced leukemic cell proliferation in vitro. Altogether, this study suggests that exosomal miR-181a inhibition can be a novel target for growth suppression in pediatric lymphatic leukemia.
Collapse
Affiliation(s)
- Shabirul Haque
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA;
- Correspondence: or
| | - Sarah R. Vaiselbuh
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Pediatrics, Staten Island University Hospital, Northwell Health, 475 Seaview Ave, Staten Island, NY 10305, USA
| |
Collapse
|
35
|
Nitschko V, Kunzelmann S, Fröhlich T, Arnold GJ, Förstemann K. Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila. Nucleic Acids Res 2020; 48:3906-3921. [PMID: 32025726 PMCID: PMC7144943 DOI: 10.1093/nar/gkaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.
Collapse
Affiliation(s)
- Volker Nitschko
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Stefan Kunzelmann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Georg J Arnold
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Klaus Förstemann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| |
Collapse
|
36
|
Christiaens O, Niu J, Nji Tizi Taning C. RNAi in Insects: A Revolution in Fundamental Research and Pest Control Applications. INSECTS 2020; 11:E415. [PMID: 32635402 PMCID: PMC7411770 DOI: 10.3390/insects11070415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023]
Abstract
In this editorial for the Special Issue on 'RNAi in insect pest control', three important applications of RNA interference (RNAi) in insects are briefly discussed and linked to the different studies published in this Special Issue. The discovery of the RNAi mechanism revolutionized entomological research, as it presented researchers with a tool to knock down genes, which is easily applicable in a wide range of insect species. Furthermore, RNAi also provides crop protection with a novel and promising pest control mode-of-action. The sequence-dependent nature allows RNAi-based control strategies to be highly species selective and the active molecule, a natural biological molecule known as double-stranded RNA (dsRNA), has a short environmental persistence. However, more research is needed to investigate different cellular and physiological barriers, such as cellular uptake and dsRNA degradation in the digestive system in insects, in order to provide efficient control methods against a wide range of insect pest species. Finally, the RNAi pathway is an important part of the innate antiviral immune defence of insects, and could even lead to applications targeting viruses in beneficial insects such as honeybees in the future.
Collapse
Affiliation(s)
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | | |
Collapse
|
37
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
38
|
Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. ADVANCED THERAPEUTICS 2020; 3:1900206. [PMID: 34164572 PMCID: PMC8218910 DOI: 10.1002/adtp.201900206] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid delivery provides effective options to control intracellular gene expression and protein production. Efficient delivery of nucleic acid typically requires delivery vehicles to facilitate the entry of nucleic acid into cells. Among non-viral delivery vehicles, cationic materials are favored because of their high loading capacity of nucleic acids and prominent cellular uptake efficiency through electrostatic interaction. However, cationic moieties at high dosage tend to induce severe cytotoxicity due to the interference on cell membrane integrity. In contrast, non-cationic materials present alternative delivery approaches with less safety concerns than cationic materials. In this Progress Report, principles of non-cationic material design for nucleic acid delivery are discussed. Examples of such non-cationic platforms are highlighted, including complexation or conjugation with nucleic acids and self-assembled nucleic acid structures.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
39
|
Abstract
Spherical nucleic acids (SNAs) are nanostructures formed by chemically conjugating short linear strands of oligonucleotides to a nanoparticle template. When made with modified small interfering RNA (siRNA) duplexes, SNAs act as single-entity transfection and gene silencing agents and have been used as lead therapeutic constructs in several disease models. However, the manner in which modified siRNA duplex strands that comprise the SNA lead to gene silencing is not understood. Herein, a systematic analysis of siRNA biochemistry involving SNAs shows that Dicer cleaves the modified siRNA duplex from the surface of the nanoparticle, and the liberated siRNA subsequently functions in a way that is dependent on the canonical RNA interference mechanism. By leveraging this understanding, a class of SNAs was chemically designed which increases the siRNA content by an order of magnitude through covalent attachment of each strand of the duplex. As a consequence of increased nucleic acid content, this nanostructure architecture exhibits less cell cytotoxicity than conventional SNAs without a decrease in siRNA activity.
Collapse
|
40
|
Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci 2020; 142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
41
|
Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protoc 2019; 4:bpz017. [PMID: 32161809 PMCID: PMC6994087 DOI: 10.1093/biomethods/bpz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) makeup a considerable part of the non-coding human genome and had been well-established as crucial players in an array of biological processes. In spite of their abundance and versatile roles, their functional characteristics remain largely undiscovered mainly due to the lack of suitable genetic manipulation tools. The emerging CRISPR/Cas9 technology has been widely adapted in several studies that aim to screen and identify novel lncRNAs as well as interrogate the functional properties of specific lncRNAs. However, the complexity of lncRNAs genes and the regulatory mechanisms that govern their transcription, as well as their unique functionality pose several limitations the utilization of classic CRISPR methods in lncRNAs functional studies. Here, we overview the unique characteristics of lncRNAs transcription and function and the suitability of the CRISPR toolbox for applications in functional characterization of lncRNAs. We discuss some of the novel variations to the classic CRISPR/Cas9 system that have been tailored and applied previously to study several aspects of lncRNAs functionality. Finally, we share perspectives on the potential applications of various CRISPR systems, including RNA-targeting, in the direct editing and manipulation of lncRNAs.
Collapse
Affiliation(s)
- Dahlia A Awwad
- Center of X-Ray Determination of Structure of Matter (CXDS), Helmi Institute of Biomedical Research, Zewail City of Science and Technology, Giza, Cairo, Egypt
| |
Collapse
|
42
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
43
|
Jiao Y, Wang J, Deng R, Yu X, Wang X. AcMNPV-miR-3 is a miRNA encoded by Autographa californica nucleopolyhedrovirus and regulates the viral infection by targeting ac101. Virus Res 2019; 267:49-58. [PMID: 31077766 DOI: 10.1016/j.virusres.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs), which are small noncoding RNAs found in plants, animals, and many viruses, regulate various biological processes. Our group has previously reported the first miRNA encoded by Autographa californica multiple Nucleopolyhedrovirus (AcMNPV), AcMNPV-miR-1, which regulates the expression of three viral genes. This study characterizes another miRNA encoded by AcMNPV, AcMNPV-miR-3. This miRNA is located on the opposite strand of the viral gene ac101 coding sequence in the AcMNPV genome, and it can be detected at 6 h post-infection and accumulated to a peak around 12 h post-infection in AcMNPV infected Sf9 cells. Five viral genes (ac101, ac23, ac25, ac86, and ac98) were verified to be regulated by AcMNPV-miR-3. Ac101 was markedly down-regulated by AcMNPV-miR-3 that may be via a siRNA-like cleavage mode. Administrating excessive AcMNPV-miR-3 resulted in decreased production of infectious budded virions (BV) and accelerated the formation of occlusion-derived virions (ODV). These results suggest that AcMNPV-miR-3 may play a regulatory role in BV and ODV production.
Collapse
Affiliation(s)
- Yingzhen Jiao
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinwen Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Riqiang Deng
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinghua Yu
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xunzhang Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
44
|
Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB. RNAi-Based Biocontrol of Wheat Nematodes Using Natural Poly-Component Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:483. [PMID: 31057585 PMCID: PMC6479188 DOI: 10.3389/fpls.2019.00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
With the growing global demands on sustainable food production, one of the biggest challenges to agriculture is associated with crop losses due to parasitic nematodes. While chemical pesticides have been quite successful in crop protection and mitigation of damage from parasites, their potential harm to humans and environment, as well as the emergence of nematode resistance, have necessitated the development of viable alternatives to chemical pesticides. One of the most promising and targeted approaches to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi). In this study we explore the possibility of using biostimulants obtained from metabolites of soil streptomycetes to protect wheat (Triticum aestivum L.) against the cereal cyst nematode Heterodera avenae by means of inducing RNAi in wheat plants. Theoretical models of uptake of organic compounds by plants, and within-plant RNAi dynamics, have provided us with useful insights regarding the choice of routes for delivery of RNAi-inducing biostimulants into plants. We then conducted in planta experiments with several streptomycete-derived biostimulants, which have demonstrated the efficiency of these biostimulants at improving plant growth and development, as well as in providing resistance against the cereal cyst nematode. Using dot blot hybridization we demonstrate that biostimulants trigger a significant increase of the production in plant cells of si/miRNA complementary with plant and nematode mRNA. Wheat germ cell-free experiments show that these si/miRNAs are indeed very effective at silencing the translation of nematode mRNA having complementary sequences, thus reducing the level of nematode infestation and improving plant resistance to nematodes. Thus, we conclude that natural biostimulants produced from metabolites of soil streptomycetes provide an effective tool for biocontrol of wheat nematode.
Collapse
Affiliation(s)
| | - Farzad Fatehi
- Department of Mathematics, University of Sussex, Brighton, United Kingdom
| | - Victoria A. Tsygankova
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla O. Biliavska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Galyna O. Iutynska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
45
|
Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. Glypican-3 gene silencing for ovarian cancer using siRNA-PLGA hybrid micelles in a murine peritoneal dissemination model. J Pharmacol Sci 2019; 139:231-239. [DOI: 10.1016/j.jphs.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 01/31/2023] Open
|
46
|
Abstract
The first published description of therapeutic applications of antisense oligonucleotide (ASO) technology occurred in the late 1970s and was followed by the founding of commercial companies focused on developing antisense therapeutics in the late 1980s. Since the late 1980s, there has been steady progress in improving the technology platform, taking advantage of advances in oligonucleotide chemistry and formulations as well as increased understanding of the distribution and safety of ASOs. There are several approved ASO drugs and a broad pipeline in development. In addition, advances in understanding human disease, including the genetic basis for most monogenic diseases and the availability of the full human genome sequence, have created numerous therapeutic applications for the technology. I summarize the state of the technology and highlight how advances in the technology position ASOs to be an important contributor to future medicines.
Collapse
|
47
|
Nagase K, Hasegawa M, Ayano E, Maitani Y, Kanazawa H. Effect of Polymer Phase Transition Behavior on Temperature-Responsive Polymer-Modified Liposomes for siRNA Transfection. Int J Mol Sci 2019; 20:E430. [PMID: 30669495 PMCID: PMC6358841 DOI: 10.3390/ijms20020430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Small interfering RNAs (siRNAs) have been attracting significant attention owing to their gene silencing properties, which can be utilized to treat intractable diseases. In this study, two temperature-responsive liposomal siRNA carriers were prepared by modifying liposomes with different polymers-poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAAm-co-DMAPAAm)) and poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) P(NIPAAm-co-DMAAm). The phase transition of P(NIPAAm-co-DMAPAAm) was sharper than that of P(NIPAAm-co-DMAAm), which is attributed to the lower co-monomer content. The temperature dependent fixed aqueous layer thickness (FALT) of the prepared liposomes indicated that modifying liposomes with P(NIPAAm-co-DMAPAAm) led to a significant change in the thickness of the fixed aqueous monolayer between 37 °C and 42 °C; while P(NIPAAm-co-DMAAm) modification led to FALT changes over a broader temperature range. The temperature-responsive liposomes exhibited cellular uptake at 42 °C, but were not taken up by cells at 37 °C. This is likely because the thermoresponsive hydrophilic/hydrophobic changes at the liposome surface induced temperature-responsive cellular uptake. Additionally, siRNA transfection of cells for the prevention of luciferase and vascular endothelial growth factor (VEGF) expression was modulated by external temperature changes. P(NIPAAm-co-DMAPAAm) modified liposomes in particular exhibited effective siRNA transfection properties with low cytotoxicity compared with P(NIPAAm-co-DMAAm) modified analogues. These results indicated that the prepared temperature-responsive liposomes could be used as effective siRNA carriers whose transfection properties can be modulated by temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Momoko Hasegawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Eri Ayano
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Yoshie Maitani
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
48
|
Abstract
RNA interference (RNAi) is the biological process of mRNA degradation induced by complementary sequences double-stranded (ds) small interfering RNAs (siRNA) and suppression of target gene expression. Exogenous siRNAs (perfectly paired dsRNAs of ∼21–25 nt in length) play an important role in host defense against RNA viruses and in transcriptional and post-transcriptional gene regulation in plants and other eukaryotes. Using RNAi technology by transfecting synthetic siRNAs into eukaryotic cells to silence genes has become an indispensable tool to investigate gene functions, and siRNA-based therapy is being developed to knockdown genes implicated in diseases. Other examples of RNAi technology include method of producing highly potent and purified siRNAs directly from Escherichiacoli cells, based on an unexpected discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes a cryptic siRNA-like RNA species in bacteria. Those siRNAs, named as pro-siRNA for “prokaryotic siRNA”, are bacterial RNase III products that have chemical and functional properties that like eukaryotic siRNAs.
Collapse
|
49
|
Jiang Z, Cui W, Prasad P, Touve MA, Gianneschi NC, Mager J, Thayumanavan S. Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA-Polymer Complexes for RNA Delivery. Biomacromolecules 2018; 20:435-442. [PMID: 30525500 DOI: 10.1021/acs.biomac.8b01321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) requires the intracellular delivery of RNA molecules to initiate the neutralization of targeted mRNA molecules, inhibiting the expression or translation of the targeted gene. Current polymers and lipids that are used to deliver RNA molecules are generally required to be positively charged, to achieve complexation with RNA and the cellular internalization. However, positive surface charge has been implicated as the reason for toxicity in many of these systems. Herein, we report a novel strategy to generate noncationic RNA-polymer complexes for RNA delivery with low cytotoxicity. We use an in situ electrostatic complexation using a methylated pyridinium group, which is simultaneously removed during the RNA binding step. The resultant complexes demonstrate successful knockdown in preimplantation mammalian embryos, thus providing a new approach for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Mollie A Touve
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Nathan C Gianneschi
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | | | | |
Collapse
|
50
|
Kalinava N, Ni JZ, Gajic Z, Kim M, Ushakov H, Gu SG. C. elegans Heterochromatin Factor SET-32 Plays an Essential Role in Transgenerational Establishment of Nuclear RNAi-Mediated Epigenetic Silencing. Cell Rep 2018; 25:2273-2284.e3. [PMID: 30463021 PMCID: PMC6317888 DOI: 10.1016/j.celrep.2018.10.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The dynamic process by which nuclear RNAi engages a transcriptionally active target, before the repressive state is stably established, remains largely a mystery. Here, we found that the onset of exogenous dsRNA-induced nuclear RNAi in C. elegans is a transgenerational process, and it requires a putative histone methyltransferase (HMT), SET-32. By developing a CRISPR-based genetic approach, we found that silencing establishment at the endogenous targets of germline nuclear RNAi also requires SET-32. Although SET-32 and two H3K9 HMTs, MET-2 and SET-25, are dispensable for the maintenance of silencing, they do contribute to transcriptional repression in mutants that lack the germline nuclear Argonaute protein HRDE-1, suggesting a conditional role of heterochromatin in the maintenance phase. Our study indicates that (1) establishment and maintenance of siRNA-guided transcriptional repression are two distinct processes with different genetic requirements and (2) the rate-limiting step of the establishment phase is a transgenerational, chromatin-based process.
Collapse
Affiliation(s)
- Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Zoran Gajic
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Matthew Kim
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Helen Ushakov
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|