1
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Zhang L, Chen X, Wang X, Zhou Y, Fang Y, Gu X, Zhang Z, Sun Q, Li N, Xu L, Tan F, Chai R, Qi J. AAV-mediated Gene Cocktails Enhance Supporting Cell Reprogramming and Hair Cell Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304551. [PMID: 38810137 PMCID: PMC11304307 DOI: 10.1002/advs.202304551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yuan Fang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xingliang Gu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Nianci Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology‐Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
3
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Ji H, Valperga G, Liao CP, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603289. [PMID: 39071424 PMCID: PMC11275782 DOI: 10.1101/2024.07.12.603289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
- Technische Universität, Braunschweig, Germany
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, OH
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | | | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
4
|
Wu SR, Zoghbi HY. The Atoh1-Cre Knock-In Allele Ectopically Labels a Subpopulation of Amacrine Cells and Bipolar Cells in Mouse Retina. eNeuro 2023; 10:ENEURO.0307-23.2023. [PMID: 37923392 PMCID: PMC10626521 DOI: 10.1523/eneuro.0307-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
The retina has diverse neuronal cell types derived from a common pool of retinal progenitors. Many molecular drivers, mostly transcription factors, have been identified to promote different cell fates. In Drosophila, atonal is required for specifying photoreceptors. In mice, there are two closely related atonal homologs, Atoh1 and Atoh7 While Atoh7 is known to promote the genesis of retinal ganglion cells, there is no study on the function of Atoh1 in retinal development. Here, we crossed Atoh1Cre/+ mice to mice carrying a Cre-dependent TdTomato reporter to track potential Atoh1-lineage neurons in retinas. We characterized a heterogeneous group of TdTomato+ retinal neurons that were detected at the postnatal stage, including glutamatergic amacrine cells, AII amacrine cells, and BC3b bipolar cells. Unexpectedly, we did not observe TdTomato+ retinal neurons in the mice with an Atoh1-FlpO knock-in allele and a Flp-dependent TdTomato reporter, suggesting Atoh1 is not expressed in the mouse retina. Consistent with these data, conditional removal of Atoh1 in the retina did not cause any observable phenotypes. Importantly, we did not detect Atoh1 expression in the retina at multiple ages using mice with Atoh1-GFP knock-in allele. Therefore, we conclude that Atoh1Cre/+ mice have ectopic Cre expression in the retina and that Atoh1 is not required for retinal development.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
5
|
Masoudi N, Schnabel R, Yemini E, Leyva-Díaz E, Hobert O. Cell-specific effects of the sole C. elegans Daughterless/E protein homolog, HLH-2, on nervous system development. Development 2023; 150:286219. [PMID: 36595352 PMCID: PMC10108603 DOI: 10.1242/dev.201366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans. To eliminate function of all proneuronal class I/II bHLH complexes, we therefore genetically removed maternal and zygotic hlh-2 gene activity. We observed broad effects on neurogenesis, but still detected normal neurogenesis in many distinct neuron-producing lineages of the central and peripheral nervous system. Moreover, we found that hlh-2 selectively affects some aspects of neuron differentiation while leaving others unaffected. Although our studies confirm the function of proneuronal class I/II bHLH complexes in many different lineages throughout a nervous system, we conclude that their function is not universal, but rather restricted by lineage, cell type and components of differentiation programs affected.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA.,University of Massachusetts, Department of Neurobiology, Worcester, MA 1605-2324, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
6
|
Zhang J, Zhu M, Li Q, Tang T, Wen L, Zhong J, Zhang R, Yu XQ, Lu Y. Genome-wide identification and characterization of basic helix-loop-helix transcription factors in Spodoptera litura upon pathogen infection. INSECT SCIENCE 2022; 29:977-992. [PMID: 34687267 DOI: 10.1111/1744-7917.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Soares DS, Homem CC, Castro DS. Function of Proneural Genes Ascl1 and Asense in Neurogenesis: How Similar Are They? Front Cell Dev Biol 2022; 10:838431. [PMID: 35252201 PMCID: PMC8894194 DOI: 10.3389/fcell.2022.838431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Proneural genes were initially identified in Drosophila, where pioneer work on these important regulators of neural development was performed, and from which the term proneural function was coined. Subsequently, their counterparts in vertebrates were identified, and their function in neural development extensively characterized. The function of proneural transcription factors in flies and vertebrates is, however, very distinct. In flies, proneural genes play an early role in neural induction, by endowing neural competence to ectodermal cells. In contrast, vertebrate proneural genes are expressed only after neural specification, in neural stem and progenitor cells, where they play key regulatory functions in quiescence, proliferation, and neuronal differentiation. An exception to this scenario is the Drosophila proneural gene asense, which has a late onset of expression in neural stem cells of the developing embryo and larvae, similar to its vertebrate counterparts. Although the role of Asense remains poorly investigated, its expression pattern is suggestive of functions more in line with those of vertebrate proneural genes. Here, we revise our current understanding of the multiple activities of Asense and of its closest vertebrate homologue Ascl1 in neural stem/progenitor cell biology, and discuss possible parallels between the two transcription factors in neurogenesis regulation.
Collapse
Affiliation(s)
- Diogo S. Soares
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina C.F. Homem
- CEDOC, Nova Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
- *Correspondence: Catarina C.F. Homem, ; Diogo S. Castro,
| | - Diogo S. Castro
- i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- *Correspondence: Catarina C.F. Homem, ; Diogo S. Castro,
| |
Collapse
|
8
|
Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity. PLoS Biol 2018; 16:e2004979. [PMID: 29672507 PMCID: PMC5908064 DOI: 10.1371/journal.pbio.2004979] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor-encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an "ur-" bHLH gene.
Collapse
|
9
|
Costa A, Powell LM, Lowell S, Jarman AP. Atoh1 in sensory hair cell development: constraints and cofactors. Semin Cell Dev Biol 2017; 65:60-68. [DOI: 10.1016/j.semcdb.2016.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
10
|
van Weert LTCM, Buurstede JC, Mahfouz A, Braakhuis PSM, Polman JAE, Sips HCM, Roozendaal B, Balog J, de Kloet ER, Datson NA, Meijer OC. NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain. Endocrinology 2017; 158:1511-1522. [PMID: 28324065 DOI: 10.1210/en.2016-1422] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
In the limbic brain, mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) both function as receptors for the naturally occurring glucocorticoids (corticosterone/cortisol) but mediate distinct effects on cellular physiology via transcriptional mechanisms. The transcriptional basis for specificity of these MR- vs GR-mediated effects is unknown. To address this conundrum, we have identified the extent of MR/GR DNA-binding selectivity in the rat hippocampus using chromatin immunoprecipitation followed by sequencing. We found 918 and 1450 nonoverlapping binding sites for MR and GR, respectively. Furthermore, 475 loci were co-occupied by MR and GR. De novo motif analysis resulted in a similar binding motif for both receptors at 100% of the target loci, which matched the known glucocorticoid response element (GRE). In addition, the Atoh/NeuroD consensus sequence was found in co-occurrence with all MR-specific binding sites but was absent for GR-specific or MR-GR overlapping sites. Basic helix-loop-helix family members Neurod1, Neurod2, and Neurod6 showed hippocampal expression and were hypothesized to bind the Atoh motif. Neurod2 was detected at rat hippocampal MR binding sites but not at GR-exclusive sites. All three NeuroD transcription factors acted as DNA-binding-dependent coactivators for both MR and GR in reporter assays in heterologous HEK293 cells, likely via indirect interactions with the receptors. In conclusion, a NeuroD family member binding to an additional motif near the GRE seems to drive specificity for MR over GR binding at hippocampal binding sites.
Collapse
Affiliation(s)
- Lisa T C M van Weert
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Jacobus C Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, 2628 CD, Delft, The Netherlands
| | - Pamela S M Braakhuis
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - E Ronald de Kloet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Nicole A Datson
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
11
|
Weinberger S, Topping MP, Yan J, Claeys A, Geest ND, Ozbay D, Hassan T, He X, Albert JT, Hassan BA, Ramaekers A. Evolutionary changes in transcription factor coding sequence quantitatively alter sensory organ development and function. eLife 2017; 6. [PMID: 28406397 PMCID: PMC5432213 DOI: 10.7554/elife.26402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Animals are characterized by a set of highly conserved developmental regulators. Changes in the cis-regulatory elements of these regulators are thought to constitute the major driver of morphological evolution. However, the role of coding sequence evolution remains unresolved. To address this question, we used the Atonal family of proneural transcription factors as a model. Drosophila atonal coding sequence was endogenously replaced with that of atonal homologues (ATHs) at key phylogenetic positions, non-ATH proneural genes, and the closest homologue to ancestral proneural genes. ATHs and the ancestral-like coding sequences rescued sensory organ fate in atonal mutants, in contrast to non-ATHs. Surprisingly, different ATH factors displayed different levels of proneural activity as reflected by the number and functionality of sense organs. This proneural potency gradient correlated directly with ATH protein stability, including in response to Notch signaling, independently of mRNA levels or codon usage. This establishes a distinct and ancient function for ATHs and demonstrates that coding sequence evolution can underlie quantitative variation in sensory development and function. DOI:http://dx.doi.org/10.7554/eLife.26402.001
Collapse
Affiliation(s)
- Simon Weinberger
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium.,Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School Group Biomedicine, Leuven, Belgium
| | - Matthew P Topping
- Ear Institute, University College London, London, United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Jiekun Yan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Annelies Claeys
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Natalie De Geest
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Duru Ozbay
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Talah Hassan
- Ear Institute, University College London, London, United Kingdom
| | - Xiaoli He
- Ear Institute, University College London, London, United Kingdom
| | - Joerg T Albert
- Ear Institute, University College London, London, United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium.,Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School Group Biomedicine, Leuven, Belgium.,Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, Paris, France
| | - Ariane Ramaekers
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium.,Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, Paris, France
| |
Collapse
|
12
|
Gálvez H, Abelló G, Giraldez F. Signaling and Transcription Factors during Inner Ear Development: The Generation of Hair Cells and Otic Neurons. Front Cell Dev Biol 2017; 5:21. [PMID: 28393066 PMCID: PMC5364141 DOI: 10.3389/fcell.2017.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Integration between cell signals and bHLH transcription factors plays a prominent role during the development of hair cells of the inner ear. Hair cells are the sensory receptors of the inner ear, responsible for the mechano-transduction of sound waves into electrical signals. They derive from multipotent progenitors that reside in the otic placode. Progenitor commitment is the result of cell signaling from the surrounding tissues that result in the restricted expression of SoxB1 transcription factors, Sox2 and Sox3. In turn, they induce the expression of Neurog1 and Atoh1, two bHLH factors that specify neuronal and hair cell fates, respectively. Neuronal and hair cell development, however, do not occur simultaneously. Hair cell development is prevented during neurogenesis and prosensory stages, resulting in the delay of hair cell development with respect to neuron production. Negative interactions between Neurog1 and Atoh1, and of Atoh1 with other bHLH factors driven by Notch signaling, like Hey1 and Hes5, account for this delay. In summary, the regulation of Atoh1 and hair cell development relies on interactions between cell signaling and bHLH transcription factors that dictate cell fate and timing decisions during development. Interestingly, these mechanisms operate as well during hair cell regeneration after damage and during stem cell directed differentiation, making developmental studies instrumental for improving therapies for hearing impairment.
Collapse
Affiliation(s)
- Héctor Gálvez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Gina Abelló
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
13
|
Yuan L, Hu S, Okray Z, Ren X, De Geest N, Claeys A, Yan J, Bellefroid E, Hassan BA, Quan XJ. The Drosophila neurogenin Tap functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance. Development 2016; 143:2760-6. [PMID: 27385016 PMCID: PMC5004907 DOI: 10.1242/dev.134155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/27/2016] [Indexed: 11/20/2022]
Abstract
The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled. Summary: Mammalian neurogenins are proneural factors, but the Drosophila homolog Tap is not, instead acting to prevent axonal outgrowth, likely by regulating the planar cell polarity pathway via Dishevelled.
Collapse
Affiliation(s)
- Liqun Yuan
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Shu Hu
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School of Medicine, Leuven 3000, Belgium Medical College, Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Zeynep Okray
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Xi Ren
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies 6041, Belgium
| | - Natalie De Geest
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Annelies Claeys
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Jiekun Yan
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Eric Bellefroid
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies 6041, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium Program in Molecular and Developmental Genetics, Doctoral School for Biomedical Sciences, University of Leuven School of Medicine, Leuven 3000, Belgium
| | - Xiao-Jiang Quan
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium Center for Human Genetics, University of Leuven School of Medicine, Leuven 3000, Belgium
| |
Collapse
|
14
|
Quan XJ, Yuan L, Tiberi L, Claeys A, De Geest N, Yan J, van der Kant R, Xie W, Klisch T, Shymkowitz J, Rousseau F, Bollen M, Beullens M, Zoghbi H, Vanderhaeghen P, Hassan B. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis. Cell 2016; 164:460-75. [DOI: 10.1016/j.cell.2015.12.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 11/28/2022]
|
15
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
16
|
Hartenstein V, Reh TA. Homologies between vertebrate and invertebrate eyes. Results Probl Cell Differ 2015; 37:219-55. [PMID: 25707078 DOI: 10.1007/978-3-540-45398-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Volker Hartenstein
- Department of Biology, University of California, Los Angeles, California, USA
| | | |
Collapse
|
17
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Maurer KA, Riesenberg AN, Brown NL. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014; 141:3243-54. [PMID: 25100656 DOI: 10.1242/dev.106245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch signaling regulates basic helix-loop-helix (bHLH) factors as an evolutionarily conserved module, but the tissue-specific mechanisms are incompletely elucidated. In the mouse retina, bHLH genes Atoh7 and Neurog2 have distinct functions, with Atoh7 regulating retinal competence and Neurog2 required for progression of neurogenesis. These transcription factors are extensively co-expressed, suggesting similar regulation. We directly compared Atoh7 and Neurog2 regulation at the earliest stages of retinal neurogenesis in a broad spectrum of Notch pathway mutants. Notch1 and Rbpj normally block Atoh7 and Neurog2 expression. However, the combined activities of Notch1, Notch3 and Rbpj regulate Neurog2 patterning in the distal retina. Downstream of the Notch complex, we found the Hes1 repressor mediates Atoh7 suppression, but Hes1, Hes3 and Hes5 do not regulate Neurog2 expression. We also tested Notch-mediated regulation of Jag1 and Pax6 in the distal retina, to establish the appropriate context for Neurog2 patterning. We found that Notch1;Notch3 and Rbpj block co-expression of Jag1 and Neurog2, while specifically stimulating Pax6 within an adjacent domain. Our data suggest that Notch signaling controls the overall tempo of retinogenesis, by integrating cell fate specification, the wave of neurogenesis and the developmental status of cells ahead of this wave.
Collapse
Affiliation(s)
- Kate A Maurer
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
19
|
Yuan L, Hassan BA. Neurogenins in brain development and disease: an overview. Arch Biochem Biophys 2014; 558:10-3. [PMID: 24950022 DOI: 10.1016/j.abb.2014.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
The production of neurons, astrocytes and oligodendrocytes is regulated by a group of transcription factors, which determine cell fates and specify subtype identities in the nervous system. Here we focus on profiling the distinct roles of Neurogenin (Ngn or Neurog) family members during the neuronal development. Ngn proteins are tightly regulated to be expressed at defined times and positions of different progenitor cell pools. In addition to their well-elucidated proneural function, Ngn proteins play various critical roles to specify or maintain cell fate and regulate neurite outgrowth and targeting in the central nervous system. Finally, Ngns have been associated with neuronal disorders. Therefore understanding the function and regulation of Ngns will not only improve the understanding of the molecular mechanism underlying the development of nervous system, but may also provide insight into neuronal disease.
Collapse
Affiliation(s)
- Liqun Yuan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
21
|
Bai L, Kiyama T, Li H, Wang SW. Birth of cone bipolar cells, but not rod bipolar cells, is associated with existing RGCs. PLoS One 2014; 9:e83686. [PMID: 24392091 PMCID: PMC3879276 DOI: 10.1371/journal.pone.0083686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
Retinal ganglion cells (RGCs) play important roles in retinogenesis. They are required for normal retinal histogenesis and retinal cell number balance. Developmental RGC loss is typically characterized by initial retinal neuronal number imbalance and subsequent loss of retinal neurons. However, it is not clear whether loss of a specific non-RGC cell type in the RGC-depleted retina is due to reduced cell production or subsequent degeneration. Taking advantage of three knockout mice with varying degrees of RGC depletion, we re-examined bipolar cell production in these retinas from various aspects. Results show that generation of the cone bipolar cells is correlated with the existing number of RGCs. However, generation of the rod bipolar cells is unaffected by RGC shortage. Results report the first observation that RGCs selectively influence the genesis of subsequent retinal cell types.
Collapse
Affiliation(s)
- Ling Bai
- Department of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Takae Kiyama
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
| | - Hongyan Li
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
| | - Steven W. Wang
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:5-18. [PMID: 24281353 DOI: 10.1007/s00359-013-0865-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.
Collapse
|
23
|
Jarman AP, Groves AK. The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 2013; 24:438-47. [PMID: 23548731 DOI: 10.1016/j.semcdb.2013.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022]
Abstract
Mechanosensation is an evolutionarily ancient sensory modality seen in all main animal groups. Mechanosensation can be mediated by sensory neurons or by dedicated receptor cells that form synapses with sensory neurons. Evidence over the last 15-20 years suggests that both classes of mechanosensory cells can be specified by the atonal class of basic helix-loop-helix transcription factors. In this review we discuss recent work addressing how atonal factors specify mechanosensitive cells in vertebrates and invertebrates, and how the redeployment of these factors underlies the regeneration of mechanosensitive cells in some vertebrate groups.
Collapse
Affiliation(s)
- Andrew P Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
24
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
25
|
Duncan JS, Fritzsch B. Evolution of Sound and Balance Perception: Innovations that Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat Rec (Hoboken) 2012; 295:1760-74. [DOI: 10.1002/ar.22573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/20/2023]
|
26
|
Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem 2010; 286:8437-8447. [PMID: 21190938 DOI: 10.1074/jbc.m110.191684] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metamorphosis in insects is regulated by juvenile hormone (JH) and ecdysteroids. The mechanism of 20-hydroxyecdysone (20E), but not of JH action, is well understood. A basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family member, methoprene tolerant (Met), plays an important role in JH action. Microarray analysis and RNA interference (RNAi) were used to identify 69 genes that require Met for their hydroprene-regulated expression in the red flour beetle, Tribolium castaneum. Quantitative real time PCR analysis confirmed microarray data for 13 of the 16 hydroprene-response genes tested. The members of the bHLH-PAS family often function as heterodimers to regulate gene expression and Met is a member of this family. To determine whether other members of the bHLH-PAS family are required for the expression of JH-response genes, we employed RNAi to knockdown the expression of all 11 members of the bHLH-PAS family and studied the expression of JH-response genes in RNAi insects. These studies showed that besides Met, another member of this family, steroid receptor co-activator (SRC) is required for the expression of 15 JH-response genes tested. Moreover, studies in JH responsive Aag-2 cells revealed that Aedes aegypti homologues of both Met and SRC are required for the expression of the JH-response gene, kr-h1, and SRC is required for expression of ecdysone-response genes. These data suggest the steroid receptor co-activator plays key roles in both JH and 20E action suggesting that this may be an important molecule that mediates cross-talk between JH and 20E to prevent metamorphosis.
Collapse
Affiliation(s)
- Zhaolin Zhang
- From the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Jingjing Xu
- From the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Zhentao Sheng
- From the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Yipeng Sui
- From the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Subba R Palli
- From the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546.
| |
Collapse
|
27
|
Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 2008; 180:2095-110. [PMID: 18832354 DOI: 10.1534/genetics.108.093302] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina.
Collapse
|
28
|
Lin CH, Hansen S, Wang Z, Storm DR, Tapscott SJ, Olson JM. The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning. Proc Natl Acad Sci U S A 2005; 102:14877-82. [PMID: 16203979 PMCID: PMC1239945 DOI: 10.1073/pnas.0506785102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The amygdala is centrally involved in formation of emotional memory and response to fear or risk. We have demonstrated that the lateral and basolateral amygdala nuclei fail to form in neuroD2 null mice and neuroD2 heterozygotes have fewer neurons in this region. NeuroD2 heterozygous mice show profound deficits in emotional learning as assessed by fear conditioning. Unconditioned fear was also diminished in neuroD2 heterozygotes compared to wild-type controls. Several key molecular regulators of emotional learning were diminished in the brains of neuroD2 heterozygotes including Ulip1, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, and GABA(A) receptor. Thus, neuroD2 is essential for amygdala development and genes involved in amygdala function are altered in neuroD2-deficient mice.
Collapse
Affiliation(s)
- Chin-Hsing Lin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
29
|
Fritzsch B, Piatigorsky J, Tessmar-Raible K, Jékely G, Guy K, Raible F, Wittbrodt J, Arendt D. Ancestry of Photic and Mechanic Sensation? Science 2005; 308:1113-1114. [PMID: 15908343 DOI: 10.1126/science.308.5725.1113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Göpfert MC, Humphris ADL, Albert JT, Robert D, Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci U S A 2005; 102:325-30. [PMID: 15623551 PMCID: PMC544284 DOI: 10.1073/pnas.0405741102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 11/27/2004] [Indexed: 11/18/2022] Open
Abstract
In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB(2), btv(5P1), and nompA(2)) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear.
Collapse
Affiliation(s)
- M C Göpfert
- Volkswagen Foundation Research Group, Institute of Zoology, University of Cologne, Weyertal 119, D-50923 Cologne, Germany.
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Giagtzoglou N, Koumbanakis KA, Fullard J, Zarifi I, Delidakis C. Role of the Sc C terminus in transcriptional activation and E(spl) repressor recruitment. J Biol Chem 2004; 280:1299-305. [PMID: 15507447 DOI: 10.1074/jbc.m408949200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurogenesis in all animals is triggered by the activity of a group of basic helix-loop-helix transcription factors, the proneural proteins, whose expression endows ectodermal regions with neural potential. The eventual commitment to a neural precursor fate involves the interplay of these proneural transcriptional activators with a number of other transcription factors that fine tune transcriptional responses at target genes. Most prominent among the factors antagonizing proneural protein activity are the HES basic helix-loop-helix proteins. We have previously shown that two HES proteins of Drosophila, E(spl)mgamma and E(spl)m7, interact with the proneural protein Sc and thereby get recruited onto Sc target genes to repress transcription. Using in vivo and in vitro assays we have now discovered an important dual role for the Sc C-terminal domain. On one hand it acts as a transcription activation domain, and on the other it is used to recruit E(spl) proteins. In vivo, the Sc C-terminal domain is required for E(spl) recruitment in an enhancer context-dependent fashion, suggesting that in some enhancers alternative interaction surfaces can be used to recruit E(spl) proteins.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Vasilika Vouton, Heraklion, GR 71110, Greece
| | | | | | | | | |
Collapse
|
33
|
Pi H, Huang SK, Tang CY, Sun YH, Chien CT. phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development. Proc Natl Acad Sci U S A 2004; 101:8378-83. [PMID: 15148389 PMCID: PMC420402 DOI: 10.1073/pnas.0306010101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proneural basic helix-loop-helix (bHLH) proteins initiate neurogenesis in both vertebrates and invertebrates. The Drosophila Achaete (Ac) and Scute (Sc) proteins are among the first identified members of the large bHLH proneural protein family. phyllopod (phyl), encoding an ubiquitin ligase adaptor, is required for ac- and sc-dependent external sensory (ES) organ development. Expression of phyl is directly activated by Ac and Sc. Forced expression of phyl rescues ES organ formation in ac and sc double mutants. phyl and senseless, encoding a Zn-finger transcriptional factor, depend on each other in ES organ development. Our results provide the first example that bHLH proneural proteins promote neurogenesis through regulation of protein degradation.
Collapse
Affiliation(s)
- Haiwei Pi
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Weber T, Gopfert MC, Winter H, Zimmermann U, Kohler H, Meier A, Hendrich O, Rohbock K, Robert D, Knipper M. Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci U S A 2003; 100:7690-5. [PMID: 12782792 PMCID: PMC164649 DOI: 10.1073/pnas.1330557100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prestin, the fifth member of the anion transporter family SLC26, is the outer hair cell molecular motor thought to be responsible for active mechanical amplification in the mammalian cochlea. Active amplification is present in a variety of other auditory systems, yet the prevailing view is that prestin is a motor molecule unique to mammalian ears. Here we identify prestin-related SLC26 proteins that are expressed in the auditory organs of nonmammalian vertebrates and insects. Sequence comparisons revealed the presence of SLC26 proteins in fish (Danio, GenBank accession no. AY278118, and Anguilla, GenBank accession no. BAC16761), mosquitoes (Anopheles, GenBank accession nos. EAA07232 and EAA07052), and flies (Drosophila, GenBank accession no. AAF49285). The fly and zebrafish homologues were cloned and, by using in situ hybridization, shown to be expressed in the auditory organs. In mosquitoes, in turn, the expression of prestin homologues was demonstrated for the auditory organ by using highly specific riboprobes against rat prestin. We conclude that prestin-related SLC26 proteins are widespread, possibly ancestral, constituents of auditory organs and are likely to serve salient roles in mammals and across taxa.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Neurobiology, Elfriede-Aulhorn-Strasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Van De Bor V, Heitzler P, Leger S, Plessy C, Giangrande A. Precocious expression of the Glide/Gcm glial-promoting factor in Drosophila induces neurogenesis. Genetics 2002; 160:1095-106. [PMID: 11901125 PMCID: PMC1462002 DOI: 10.1093/genetics/160.3.1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurons and glial cells depend on similar developmental pathways and often originate from common precursors; however, the differentiation of one or the other cell type depends on the activation of cell-specific pathways. In Drosophila, the differentiation of glial cells depends on a transcription factor, Glide/Gcm. This glial-promoting factor is both necessary and sufficient to induce the central and peripheral glial fates at the expense of the neuronal fate. In a screen for mutations affecting the adult peripheral nervous system, we have found a dominant mutation inducing supernumerary sensory organs. Surprisingly, this mutation is allelic to glide/gcm and induces precocious glide/gcm expression, which, in turn, activates the proneural genes. As a consequence, sensory organs are induced. Thus, temporal misregulation of the Glide/Gcm glial-promoting factor reveals a novel potential for this cell fate determinant. At the molecular level, this implies unpredicted features of the glide/gcm pathway. These findings also emphasize the requirement for both spatial and temporal glide/gcm regulation to achieve proper cell specification within the nervous system.
Collapse
Affiliation(s)
- Véronique Van De Bor
- Institut de Génétique et Biologie Moléculaire et Cellulaire IGBMC/CNRS/ULP/INSERM-BP 163 67404 Illkirch, c.u. de Strasbourg, France
| | | | | | | | | |
Collapse
|
36
|
Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 2002; 16:324-38. [PMID: 11825874 PMCID: PMC155336 DOI: 10.1101/gad.940902] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural bHLH genes Mash1 and Ngn2 are expressed in complementary populations of neural progenitors in the central and peripheral nervous systems. Here, we have systematically compared the activities of the two genes during neural development by generating replacement mutations in mice in which the coding sequences of Mash1 and Ngn2 were swapped. Using this approach, we demonstrate that Mash1 has the capacity to respecify the identity of neuronal populations normally derived from Ngn2-expressing progenitors in the dorsal telencephalon and ventral spinal cord. In contrast, misexpression of Ngn2 in Mash1-expressing progenitors does not result in any overt change in neuronal phenotype. Taken together, these results demonstrate that Mash1 and Ngn2 have divergent functions in specification of neuronal subtype identity, with Mash1 having the characteristics of an instructive determinant whereas Ngn2 functions as a permissive factor that must act in combination with other factors to specify neuronal phenotypes. Moreover, the ectopic expression of Ngn2 can rescue the neurogenesis defects of Mash1 null mutants in the ventral telencephalon and sympathetic ganglia but not in the ventral spinal cord and the locus coeruleus, indicating that Mash1 contribution to the specification of neuronal fates varies greatly in different lineages, presumably depending on the presence of other determinants of neuronal identity.
Collapse
Affiliation(s)
- Carlos M Parras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404 Illkirch cedex, C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
37
|
Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, Nabeshima Y, Shimamura K, Nakafuku M. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 2001; 31:757-71. [PMID: 11567615 DOI: 10.1016/s0896-6273(01)00413-5] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Distinct classes of neurons are generated at defined times and positions during development of the nervous system. It remains elusive how specification of neuronal identity coordinates with acquisition of pan-neuronal properties. Here we show that basic helix-loop-helix (bHLH) transcription factors Olig2 and Neurogenin2 (Ngn2) play vital roles in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Olig2 and Ngn2 are specifically coexpressed in motoneuron progenitors. Misexpression studies in chick demonstrate the specific, combinatorial actions of Olig2 and Ngn2 in motoneuron generation. Our results further revealed crossregulatory interactions between bHLH and homeodomain transcription factors in the specification of motoneurons. We suggest that distinct classes of transcription factors collaborate to generate motoneurons in the ventral neural tube.
Collapse
Affiliation(s)
- R Mizuguchi
- Department of Neurobioloy, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ledent V, Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 2001; 11:754-70. [PMID: 11337472 PMCID: PMC311049 DOI: 10.1101/gr.177001] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins are transcription factors that play important roles during the development of various metazoans including fly, nematode, and vertebrates. They are also involved in human diseases, particularly in cancerogenesis. We made an extensive search for bHLH sequences in the completely sequenced genomes of Caenorhabditis elegans and of Drosophila melanogaster. We found 35 and 56 different genes, respectively, which may represent the complete set of bHLH of these organisms. A phylogenetic analysis of these genes, together with a large number (>350) of bHLH from other sources, led us to define 44 orthologous families among which 36 include bHLH from animals only, and two have representatives in both yeasts and animals. In addition, we identified two bHLH motifs present only in yeast, and four that are present only in plants; however, the latter number is certainly an underestimate. Most animal families (35/38) comprise fly, nematode, and vertebrate genes, suggesting that their common ancestor, which lived in pre-Cambrian times (600 million years ago) already owned as many as 35 different bHLH genes.
Collapse
Affiliation(s)
- V Ledent
- Belgian EMBnet Node, Bioinformatics Laboratory, Université Libre de Bruxelles, Department of Molecular Biology, B-6041 Gosselies, Belgium
| | | |
Collapse
|