1
|
Li W, Yang J, Chen Y, Xu N, Liu J, Wang J. Thermo-adaptive evolution of Corynebacterium glutamicum reveals the regulatory functions of fasR and hrcA in heat tolerance. Microb Cell Fact 2024; 23:294. [PMID: 39468526 PMCID: PMC11520817 DOI: 10.1186/s12934-024-02568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND High-temperature fermentation technology is promising in improving fermentation speed and product quality, and thereby widely used in various fields such as food, pharmaceuticals, and biofuels. However, extreme temperature conditions can disrupt cell membrane structures and interfere with the functionality of biological macromolecules (e.g. proteins and RNA), exerting detrimental effects on cellular viability and fermentation capability. RESULTS Herein, a microbial thermotolerance improvement strategy was developed based on adaptive laboratory evolution (ALE) for efficient high-temperature fermentation. Employing this strategy, we have successfully obtained Corynebacterium glutamicum strains with superior resistance to high temperatures. Specifically, the genome analysis indicated that the evolved strains harbored 13 missense genetic mutations and 3 same-sense genetic mutations compared to the non-evolved parent strain. Besides, reverse transcription quantitative PCR analysis (RT qPCR) of the hrcA-L119P mutant demonstrated that both groEL genes were upregulated under 42 °C, which enabled the construction of robust strains with improved heat tolerance. Furthermore, a significant increase in FAS-IA and FAS-IB expression of the fasR-L102F strain was proved to play a key role in protecting cells against heat stress. CONCLUSIONS This work systematically reveals the thermotolerance mechanisms of Corynebacterium glutamicum and opens a new avenue for revolutionizing the design of cell factories to boost fermentation efficiency.
Collapse
Affiliation(s)
- Weidong Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Jian Yang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China.
| |
Collapse
|
2
|
Ho K, Harshey RM. Clustering of rRNA operons in E. coli is disrupted by σ H. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614170. [PMID: 39345417 PMCID: PMC11429968 DOI: 10.1101/2024.09.20.614170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Chromosomal organization in E. coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or 'clustering' of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies - fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
3
|
Chen H, Jiang S, Xu K, Ding Z, Wang J, Cao M, Yuan J. Design of Thermoresponsive Genetic Controls with Minimal Heat-Shock Response. ACS Synth Biol 2024; 13:3032-3040. [PMID: 39150992 DOI: 10.1021/acssynbio.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
As temperature serves as a versatile input signal, thermoresponsive genetic controls have gained significant interest for recombinant protein production and metabolic engineering applications. The conventional thermoresponsive systems normally require the continuous exposure of heat stimuli to trigger the prolonged expression of targeted genes, and the accompanied heat-shock response is detrimental to the bioproduction process. In this study, we present the design of thermoresponsive quorum-sensing (ThermoQS) circuits to make Escherichia coli record transient heat stimuli. By conversion of the heat input into the accumulation of quorum-sensing molecules such as acyl-homoserine lactone derived from Pseudomonas aeruginosa, sustained gene expressions were achieved by a minimal heat stimulus. Moreover, we also demonstrated that we reprogrammed the E. coli Lac operon to make it respond to heat stimuli with an impressive signal-to-noise ratio (S/N) of 15.3. Taken together, we envision that the ThermoQS systems reported in this study are expected to remarkably diminish both design and experimental expenditures for future metabolic engineering applications.
Collapse
Affiliation(s)
- Haofeng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shan Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kaixuan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ziyu Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiangkai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
4
|
González-González A, Batarseh TN, Rodríguez-Verdugo A, Gaut BS. Patterns of Fitness and Gene Expression Epistasis Generated by Beneficial Mutations in the rho and rpoB Genes of Escherichia coli during High-Temperature Adaptation. Mol Biol Evol 2024; 41:msae187. [PMID: 39235107 PMCID: PMC11414761 DOI: 10.1093/molbev/msae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Epistasis is caused by genetic interactions among mutations that affect fitness. To characterize properties and potential mechanisms of epistasis, we engineered eight double mutants that combined mutations from the rho and rpoB genes of Escherichia coli. The two genes encode essential functions for transcription, and the mutations in each gene were chosen because they were beneficial for adaptation to thermal stress (42.2 °C). The double mutants exhibited patterns of fitness epistasis that included diminishing returns epistasis at 42.2 °C, stronger diminishing returns between mutations with larger beneficial effects and both negative and positive (sign) epistasis across environments (20.0 °C and 37.0 °C). By assessing gene expression between single and double mutants, we detected hundreds of genes with gene expression epistasis. Previous work postulated that highly connected hub genes in coexpression networks have low epistasis, but we found the opposite: hub genes had high epistasis values in both coexpression and protein-protein interaction networks. We hypothesized that elevated epistasis in hub genes reflected that they were enriched for targets of Rho termination but that was not the case. Altogether, gene expression and coexpression analyses revealed that thermal adaptation occurred in modules, through modulation of ribonucleotide biosynthetic processes and ribosome assembly, the attenuation of expression in genes related to heat shock and stress responses, and with an overall trend toward restoring gene expression toward the unstressed state.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Tiffany N Batarseh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | | | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Kędzierska B, Stodolna A, Bryszkowska K, Dylewski M, Potrykus K. A simple and unified protocol to purify all seven Escherichia coli RNA polymerase sigma factors. J Appl Genet 2024; 65:615-625. [PMID: 38709457 PMCID: PMC11310293 DOI: 10.1007/s13353-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.
Collapse
Affiliation(s)
- Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Stodolna
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Bryszkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Maciej Dylewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
6
|
Kernfeld E, Keener R, Cahan P, Battle A. Transcriptome data are insufficient to control false discoveries in regulatory network inference. Cell Syst 2024; 15:709-724.e13. [PMID: 39173585 DOI: 10.1016/j.cels.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Inference of causal transcriptional regulatory networks (TRNs) from transcriptomic data suffers notoriously from false positives. Approaches to control the false discovery rate (FDR), for example, via permutation, bootstrapping, or multivariate Gaussian distributions, suffer from several complications: difficulty in distinguishing direct from indirect regulation, nonlinear effects, and causal structure inference requiring "causal sufficiency," meaning experiments that are free of any unmeasured, confounding variables. Here, we use a recently developed statistical framework, model-X knockoffs, to control the FDR while accounting for indirect effects, nonlinear dose-response, and user-provided covariates. We adjust the procedure to estimate the FDR correctly even when measured against incomplete gold standards. However, benchmarking against chromatin immunoprecipitation (ChIP) and other gold standards reveals higher observed than reported FDR. This indicates that unmeasured confounding is a major driver of FDR in TRN inference. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Eric Kernfeld
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Wyman Park Building, Suite 400 West, Baltimore, MD 21218, USA
| | - Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Wyman Park Building, Suite 400 West, Baltimore, MD 21218, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Wyman Park Building, Suite 400 West, Baltimore, MD 21218, USA; Institute for Cell Engineering, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Wyman Park Building, Suite 400 West, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD, USA; Malone Center for Engineering and Healthcare, Johns Hopkins University, Baltimore, MD, USA; Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Sarıgül İ, Žukova A, Alparslan E, Remm S, Pihlak M, Kaldalu N, Tenson T, Maiväli Ü. Involvement of Escherichia coli YbeX/CorC in ribosomal metabolism. Mol Microbiol 2024; 121:984-1001. [PMID: 38494741 DOI: 10.1111/mmi.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.
Collapse
Affiliation(s)
- İsmail Sarıgül
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Amata Žukova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Emel Alparslan
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sille Remm
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Margus Pihlak
- Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
9
|
Voedts H, Anoyatis-Pelé C, Langella O, Rusconi F, Hugonnet JE, Arthur M. (p)ppGpp modifies RNAP function to confer β-lactam resistance in a peptidoglycan-independent manner. Nat Microbiol 2024; 9:647-656. [PMID: 38443580 DOI: 10.1038/s41564-024-01609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum β-lactam resistance as mediated by the β-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent β-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry. Amino acid substitutions in the β or β' RNA polymerase (RNAP) subunits, alone or in combination with the CRISPR interference-mediated downregulation of three of seven ribosomal RNA operons, were sufficient for resistance, although β-lactams have no known impact on the RNAP or ribosomes. This implies that modifications of RNAP and ribosome functions are critical to prevent downstream effects of the inactivation of peptidoglycan transpeptidases by β-lactams.
Collapse
Affiliation(s)
- Henri Voedts
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Constantin Anoyatis-Pelé
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Olivier Langella
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Filippo Rusconi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
10
|
Micaletto M, Fleurier S, Dion S, Denamur E, Matic I. The protein carboxymethyltransferase-dependent aspartate salvage pathway plays a crucial role in the intricate metabolic network of Escherichia coli. SCIENCE ADVANCES 2024; 10:eadj0767. [PMID: 38335294 PMCID: PMC10857468 DOI: 10.1126/sciadv.adj0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Protein carboxymethyltransferase (Pcm) is a highly evolutionarily conserved enzyme that initiates the conversion of abnormal isoaspartate to aspartate residues. While it is commonly believed that Pcm facilitates the repair of damaged proteins, a number of observations suggest that it may have another role in cell functioning. We investigated whether Pcm provides a means for Escherichia coli to recycle aspartate, which is essential for protein synthesis and other cellular processes. We showed that Pcm is required for the energy production, the maintenance of cellular redox potential and of S-adenosylmethionine synthesis, which are critical for the proper functioning of many metabolic pathways. Pcm contributes to the full growth capacity both under aerobic and anaerobic conditions. Last, we showed that Pcm enhances the robustness of bacteria when exposed to sublethal antibiotic treatments and improves their fitness in the mammalian urinary tract. We propose that Pcm plays a crucial role in E. coli metabolism by ensuring a steady supply of aspartate.
Collapse
Affiliation(s)
- Maureen Micaletto
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Sebastien Fleurier
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Sara Dion
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, 75018 Paris, France
| | - Erick Denamur
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, 75018 Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018 Paris, France
| | - Ivan Matic
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| |
Collapse
|
11
|
Didouh N, Khadidja M, Campos C, Sampaio-Maia B, Boumediene MB, Araujo R. Assessment of biofilm, enzyme production and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria. Int J Food Microbiol 2023; 407:110389. [PMID: 37708608 DOI: 10.1016/j.ijfoodmicro.2023.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Bacterial biofilm is a major concern of dairy industry due to its association with milk contamination and its derived products. Algerian pasteurized milk shelf-life does not exceed one day, which may reflect the high level of contamination of this product and presence of extracellular enzymes such as lipases and proteases. This work aimed to investigate the microbial biodiversity in milk-processing surfaces of a dairy plant in Algeria. Therefore, stainless steel cylinders were placed in piping system of the dairy system before and after pasteurization of the milk, being removed after 7 days, for biofilm maturation and microorganism isolation and identification by mass spectrometry. Fifty-nine Gram-positive isolates were identified, namely Bacillus altitudinis, Bacillus cereus, Bacillus pumilus, Bacillus subtilis, Bacillus weithenstephanensis, Enterococcus casseliflavus, Enterococcus faecium, and Staphylococcus epidermidis. In addition, twenty-four Gram-negative isolates were identified, namely Acinetobacter schindleri Enterobacter cloacae, Enterobacter xiangfangensis, Leclercia adecarboxylata, and Raoultella ornithinolytica. Bacterial isolates showed ability for production of extracellular enzymes, being 49 % capable of both proteolytic and lipolytic activities. Milk isolates were tested for the ability to form biofilms on stainless steel. The cell numbers recovered on plate count agar plates from stainless steel biofilms ranged from 3.52 to 6.92 log10 CFU/cm2, being the maximum number detected for Enterococcus casseliflavus. Bacterial isolates showed intermediate and/or resistant profiles to multiple antibiotics. Resistance to amoxicillin, cefoxitin and/or erythromycin was commonly found among the bacterial isolates.
Collapse
Affiliation(s)
- Nassima Didouh
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Medjahdi Khadidja
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria; Université Hassiba Benbouali Chlef, Algeria
| | - Carla Campos
- Instituto Português de Oncologia (IPO) do Porto Francisco Gentil, Porto, Portugal
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | - Moussa Boudjemaa Boumediene
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Frumkin I, Laub MT. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. Nat Ecol Evol 2023; 7:2067-2079. [PMID: 37945946 PMCID: PMC10697842 DOI: 10.1038/s41559-023-02224-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
Cellular novelty can emerge when non-functional loci become functional genes in a process termed de novo gene birth. But how proteins with random amino acid sequences beneficially integrate into existing cellular pathways remains poorly understood. We screened ~108 genes, generated from random nucleotide sequences and devoid of homology to natural genes, for their ability to rescue growth arrest of Escherichia coli cells producing the ribonuclease toxin MazF. We identified ~2,000 genes that could promote growth, probably by reducing transcription from the promoter driving toxin expression. Additionally, one random protein, named Random antitoxin of MazF (RamF), modulated protein homeostasis by interacting with chaperones, leading to MazF proteolysis and a consequent loss of its toxicity. Finally, we demonstrate that random proteins can improve during evolution by identifying beneficial mutations that turned RamF into a more efficient inhibitor. Our work provides a mechanistic basis for how de novo gene birth can produce functional proteins that effectively benefit cells evolving under stress.
Collapse
Affiliation(s)
- Idan Frumkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Lin Z, Wang G, Zhang K, Jiang S, Li S, Yang H. Metabolomics investigation of global responses of Cronobacter sakazakii against common sanitizing in infant formula processing environments. Food Res Int 2023; 172:113162. [PMID: 37689917 DOI: 10.1016/j.foodres.2023.113162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Cronobacter sakazakii, an opportunistic bacterium, has raised a serious outbreak in powdered infant formula recent years. In this work, four sanitizing strategies used during infant formula processing, including chlorine, quaternary ammonium chloride (QAC), 60 °C heating, and malic acid (MA), were utilized against C. sakazakii among planktonic, air-dried (A), and air-dried & washed (AW) state, followed by an exploration of the metabolic responses induced by these treatments via a dual-platform metabolomics analysis with the ultra-high performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. In the planktonic state, MA was the most effective in inhibiting bacterial growth, followed by chlorine, QAC, and 60 °C heating. Under A state, the efficacy of heating improved considerably, compared to that in the planktonic state, and remained unaltered under AW state. Chlorine and QAC were ineffective to control bacterial growth under A state, but their efficacy rose under AW state. Furthermore, the metabolomic analysis revealed chlorine induces amino acids catabolism, membrane lysis, and depression in carbohydrate and nucleotide metabolism in both planktonic and AW states, while the initiation of antioxidation mechanism was only found under AW state. Although the metabolic change caused by QAC in the planktonic state was similar to chlorine, the accumulation of osmoprotectant and membrane phospholipids within the AW cells reflected the effort to restore intracellular homeostasis upon QAC. Heating was characterized by considerable amino acid anabolism, along with mildly perturbed carbohydrate and nucleotide metabolism for heat shock protein preparation in both states. Lastly, MA promoted amino acid-dependent acid resistance under the planktonic state, and the regulation of antioxidation and osmoprotection under AW state. The metabolomics study elucidated the intracellular perturbation induced by common sanitizing, as well as the bacterial response, which provides insights for novel sanitization development.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Guoshu Wang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Kexin Zhang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Shaoqian Jiang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Songshen Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang 312000, China
| |
Collapse
|
14
|
Liang J, Cameron G, Faucher SP. Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 2023; 89:e0066623. [PMID: 37668382 PMCID: PMC10537758 DOI: 10.1128/aem.00666-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
15
|
Miwa T, Taguchi H. Escherichia coli small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ 32. Proc Natl Acad Sci U S A 2023; 120:e2304841120. [PMID: 37523569 PMCID: PMC10410725 DOI: 10.1073/pnas.2304841120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Small heat shock proteins (sHsps) act as ATP-independent chaperones that prevent irreversible aggregate formation by sequestering denatured proteins. IbpA, an Escherichia coli sHsp, functions not only as a chaperone but also as a suppressor of its own expression through posttranscriptional regulation, contributing to negative feedback regulation. IbpA also regulates the expression of its paralog, IbpB, in a similar manner, but the extent to which IbpA regulates other protein expressions is unclear. We have identified that IbpA down-regulates the expression of many Hsps by repressing the translation of the heat shock transcription factor σ32. The IbpA regulation not only controls the σ32 level but also contributes to the shutoff of the heat shock response. These results revealed an unexplored role of IbpA to regulate heat shock response at a translational level, which adds an alternative layer for tightly controlled and rapid expression of σ32 on demand.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
| |
Collapse
|
16
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
17
|
CRISPR-Cas adaptation in Escherichia coli. Biosci Rep 2023; 43:232582. [PMID: 36809461 PMCID: PMC10011333 DOI: 10.1042/bsr20221198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.
Collapse
|
18
|
McGuire BE, Nano FE. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains. BMC Genomics 2023; 24:154. [PMID: 36973666 PMCID: PMC10044804 DOI: 10.1186/s12864-023-09266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND High temperatures cause a suite of problems for cells, including protein unfolding and aggregation; increased membrane fluidity; and changes in DNA supercoiling, RNA stability, transcription and translation. Consequently, enhanced thermotolerance can evolve through an unknown number of genetic mechanisms even in the simple model bacterium Escherichia coli. To date, each E. coli study exploring this question resulted in a different set of mutations. To understand the changes that can arise when an organism evolves to grow at higher temperatures, we sequenced and analyzed two previously described E. coli strains, BM28 and BM28 ΔlysU, that have been laboratory adapted to the highest E. coli growth temperature reported to date. RESULTS We found three large deletions in the BM28 and BM28 ΔlysU strains of 123, 15 and 8.5 kb in length and an expansion of IS10 elements. We found that BM28 and BM28 ΔlysU have considerably different genomes, suggesting that the BM28 culture that gave rise to BM28 and BM28 ΔlysU was a mixed population of genetically different cells. Consistent with published findings of high GroESL expression in BM28, we found that BM28 inexplicitly carries the groESL bearing plasmid pOF39 that was maintained simply by high-temperature selection pressure. We identified over 200 smaller insertions, deletions, single nucleotide polymorphisms and other mutations, including changes in master regulators such as the RNA polymerase and the transcriptional termination factor Rho. Importantly, this genome analysis demonstrates that the commonly cited findings that LysU plays a crucial role in thermotolerance and that GroESL hyper-expression is brought about by chromosomal mutations are based on a previous misinterpretation of the genotype of BM28. CONCLUSIONS This whole-genome sequencing study describes genetically distinct mechanisms of thermotolerance evolution from those found in other heat-evolved E. coli strains. Studying adaptive laboratory evolution to heat in simple model organisms is important in the context of climate change. It is important to better understand genetic mechanisms of enhancing thermotolerance in bacteria and other organisms, both in terms of optimizing laboratory evolution methods for various organisms and in terms of potential genetic engineering of organisms most at risk or most important to our societies and ecosystems.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada.
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
19
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. The genetic response of Salmonella Typhimurium during trans-cinnamaldehyde assisted heat treatment and its correlation with bacterial resistance in different low moisture food components. Food Microbiol 2023; 113:104271. [PMID: 37098431 DOI: 10.1016/j.fm.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
20
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Connor A, Wigham C, Bai Y, Rai M, Nassif S, Koffas M, Zha RH. Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023; 16:e00219. [PMID: 36825067 PMCID: PMC9941211 DOI: 10.1016/j.mec.2023.e00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4-33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yang Bai
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Manish Rai
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sebastian Nassif
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
22
|
Wang H, Shi Y, Liang J, Zhao G, Ding X. Disruption of hrcA, the repression gene of groESL and rpoH, enhances heterologous biosynthesis of the nonribosomal peptide/polyketide compound epothilone in Schlegelella brevitalea. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
23
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
24
|
Onodera H, Niwa T, Taguchi H, Chadani Y. Prophage excision switches the primary ribosome rescue pathway and rescue-associated gene regulations in Escherichia coli. Mol Microbiol 2023; 119:44-58. [PMID: 36471624 PMCID: PMC10107115 DOI: 10.1111/mmi.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3' end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This "rescue-switching" rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.
Collapse
Affiliation(s)
- Haruka Onodera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
25
|
Epigenetic and Epitranscriptomic Gene Regulation in Plasmodium falciparum and How We Can Use It against Malaria. Genes (Basel) 2022; 13:genes13101734. [PMID: 36292619 PMCID: PMC9601349 DOI: 10.3390/genes13101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.
Collapse
|
26
|
Schink SJ, Gough Z, Biselli E, Huiman MG, Chang YF, Basan M, Gerland U. MetA is a "thermal fuse" that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Rep 2022; 40:111290. [PMID: 36044860 PMCID: PMC10477958 DOI: 10.1016/j.celrep.2022.111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptive stress resistance in microbes is mostly attributed to the expression of stress response genes, including heat-shock proteins. Here, we report a response of E. coli to heat stress caused by degradation of an enzyme in the methionine biosynthesis pathway (MetA). While MetA degradation can inhibit growth, which by itself is detrimental for fitness, we show that it directly benefits survival at temperatures exceeding 50°C, increasing survival chances by more than 1,000-fold. Using both experiments and mathematical modeling, we show quantitatively how protein expression, degradation rates, and environmental stressors cause long-term growth inhibition in otherwise habitable conditions. Because growth inhibition can be abolished with simple mutations, namely point mutations of MetA and protease knockouts, we interpret the breakdown of methionine synthesis as a system that has evolved to halt growth at high temperatures, analogous to "thermal fuses" in engineering that shut off electricity to prevent overheating.
Collapse
Affiliation(s)
- Severin J Schink
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| | - Zara Gough
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Elena Biselli
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Mariel Garcia Huiman
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Yu-Fang Chang
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Markus Basan
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
27
|
Staphylococcal saoABC Operon Codes for a DNA-Binding Protein SaoC Implicated in the Response to Nutrient Deficit. Int J Mol Sci 2022; 23:ijms23126443. [PMID: 35742885 PMCID: PMC9223772 DOI: 10.3390/ijms23126443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Whilst a large number of regulatory mechanisms for gene expression have been characterised to date, transcription regulation in bacteria still remains an open subject. In clinically relevant and opportunistic pathogens, such as Staphylococcus aureus, transcription regulation is of great importance for host-pathogen interactions. In our study we investigated an operon, exclusive to staphylococci, that we name saoABC. We showed that SaoC binds to a conserved sequence motif present upstream of the saoC gene, which likely provides a negative feedback loop. We have also demonstrated that S. aureus ΔsaoB and ΔsaoC mutants display altered growth dynamics in non-optimal media; ΔsaoC exhibits decreased intracellular survival in human dermal fibroblasts, whereas ΔsaoB produces an elevated number of persisters, which is also elicited by inducible production of SaoC in ΔsaoBΔsaoC double mutant. Moreover, we have observed changes in the expression of saoABC operon genes during either depletion of the preferential carbon or the amino acid source as well as during acidification. Comparative RNA-Seq of the wild type and ΔsaoC mutant demonstrated that SaoC influences transcription of genes involved in amino acid transport and metabolism, and notably of those coding for virulence factors. Our results suggest compellingly that saoABC operon codes for a DNA-binding protein SaoC, a novel staphylococcal transcription factor, and its antagonist SaoB. We linked SaoC to the response to nutrient deficiency, a stress that has a great impact on host-pathogen interactions. That impact manifests in SaoC influence on persister formation and survival during internalisation to host cells, as well as on the expression of genes of virulence factors that may potentially result in profound alternations in the pathogenic phenotype. Investigation of such novel regulatory mechanisms is crucial for our understanding of the dynamics of interactions between pathogenic bacteria and host cells, particularly in the case of clinically relevant, opportunistic pathogens such as Staphylococcus aureus.
Collapse
|
28
|
John J, Jabbar J, Badjatia N, Rossi MJ, Lai WKM, Pugh BF. Genome-wide promoter assembly in E. coli measured at single-base resolution. Genome Res 2022; 32:878-892. [PMID: 35483960 PMCID: PMC9104697 DOI: 10.1101/gr.276544.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 11/04/2022]
Abstract
When detected at single-base-pair resolution, the genome-wide location, occupancy level, and structural organization of DNA-binding proteins provide mechanistic insights into genome regulation. Here we use ChIP-exo to provide a near-base-pair resolution view of the epigenomic organization of the Escherichia coli transcription machinery and nucleoid structural proteins at the time when cells are growing exponentially and upon rapid reprogramming (acute heat shock). We examined the site specificity of three sigma factors (RpoD/σ70, RpoH/σ32, and RpoN/σ54), RNA polymerase (RNAP or RpoA, -B, -C), and two nucleoid proteins (Fis and IHF). We suggest that DNA shape at the flanks of cognate motifs helps drive site specificity. We find that although RNAP and sigma factors occupy active cognate promoters, RpoH and RpoN can occupy quiescent promoters without the presence of RNAP. Thus, promoter-bound sigma factors can be triggered to recruit RNAP by a mechanism that is distinct from an obligatory cycle of free sigma binding RNAP followed by promoter binding. These findings add new dimensions to how sigma factors achieve promoter specificity through DNA sequence and shape, and further define mechanistic steps in regulated genome-wide assembly of RNAP at promoters in E. coli.
Collapse
Affiliation(s)
- Jordan John
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Javaid Jabbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Department of Computational Biology, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
29
|
Losa J, Leupold S, Alonso‐Martinez D, Vainikka P, Thallmair S, Tych KM, Marrink SJ, Heinemann M. Perspective: a stirring role for metabolism in cells. Mol Syst Biol 2022; 18:e10822. [PMID: 35362256 PMCID: PMC8972047 DOI: 10.15252/msb.202110822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Based on recent findings indicating that metabolism might be governed by a limit on the rate at which cells can dissipate Gibbs energy, in this Perspective, we propose a new mechanism of how metabolic activity could globally regulate biomolecular processes in a cell. Specifically, we postulate that Gibbs energy released in metabolic reactions is used to perform work, allowing enzymes to self-propel or to break free from supramolecular structures. This catalysis-induced enzyme movement will result in increased intracellular motion, which in turn can compromise biomolecular functions. Once the increased intracellular motion has a detrimental effect on regulatory mechanisms, this will establish a feedback mechanism on metabolic activity, and result in the observed thermodynamic limit. While this proposed explanation for the identified upper rate limit on cellular Gibbs energy dissipation rate awaits experimental validation, it offers an intriguing perspective of how metabolic activity can globally affect biomolecular functions and will hopefully spark new research.
Collapse
Affiliation(s)
- José Losa
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Simeon Leupold
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Diego Alonso‐Martinez
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Petteri Vainikka
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sebastian Thallmair
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
| | - Katarzyna M Tych
- Chemical BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Siewert J Marrink
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Matthias Heinemann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
30
|
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms 2022; 10:microorganisms10040699. [PMID: 35456749 PMCID: PMC9032294 DOI: 10.3390/microorganisms10040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.
Collapse
|
31
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
32
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
33
|
Tintó-Font E, Cortés A. Malaria parasites do respond to heat. Trends Parasitol 2022; 38:435-449. [PMID: 35301987 DOI: 10.1016/j.pt.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain; ICREA, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
34
|
Abstract
Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.
Collapse
|
35
|
Ma C, Wang C, Luo D, Yan L, Yang W, Li N, Gao N. Structural insights into the membrane microdomain organization by SPFH family proteins. Cell Res 2022; 32:176-189. [PMID: 34975153 PMCID: PMC8807802 DOI: 10.1038/s41422-021-00598-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
The lateral segregation of membrane constituents into functional microdomains, conceptually known as lipid raft, is a universal organization principle for cellular membranes in both prokaryotes and eukaryotes. The widespread Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) family proteins are enriched in functional membrane microdomains at various subcellular locations, and therefore were hypothesized to play a scaffolding role in microdomain formation. In addition, many SPFH proteins are also implicated in highly specific processes occurring on the membrane. However, none of these functions is understood at the molecular level. Here we report the structure of a supramolecular complex that is isolated from bacterial membrane microdomains and contains two SPFH proteins (HflK and HflC) and a membrane-anchored AAA+ protease FtsH. HflK and HflC form a circular 24-mer assembly, featuring a laterally segregated membrane microdomain (20 nm in diameter) bordered by transmembrane domains of HflK/C and a completely sealed periplasmic vault. Four FtsH hexamers are embedded inside this microdomain through interactions with the inner surface of the vault. These observations provide a mechanistic explanation for the role of HflK/C and their mitochondrial homologs prohibitins in regulating membrane-bound AAA+ proteases, and suggest a general model for the organization and functionalization of membrane microdomains by SPFH proteins.
Collapse
Affiliation(s)
- Chengying Ma
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengkun Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dingyi Luo
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Lu Yan
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Wenxian Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ningning Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
36
|
Chen CK. Inference of genetic regulatory networks with regulatory hubs using vector autoregressions and automatic relevance determination with model selections. Stat Appl Genet Mol Biol 2021; 20:121-143. [PMID: 34963205 DOI: 10.1515/sagmb-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The inference of genetic regulatory networks (GRNs) reveals how genes interact with each other. A few genes can regulate many genes as targets to control cell functions. We present new methods based on the order-1 vector autoregression (VAR1) for inferring GRNs from gene expression time series. The methods use the automatic relevance determination (ARD) to incorporate the regulatory hub structure into the estimation of VAR1 in a Bayesian framework. Several sparse approximation schemes are applied to the estimated regression weights or VAR1 model to generate the sparse weighted adjacency matrices representing the inferred GRNs. We apply the proposed and several widespread reference methods to infer GRNs with up to 100 genes using simulated, DREAM4 in silico and experimental E. coli gene expression time series. We show that the proposed methods are efficient on simulated hub GRNs and scale-free GRNs using short time series simulated by VAR1s and outperform reference methods on small-scale DREAM4 in silico GRNs and E. coli GRNs. They can utilize the known major regulatory hubs to improve the performance on larger DREAM4 in silico GRNs and E. coli GRNs. The impact of nonlinear time series data on the performance of proposed methods is discussed.
Collapse
Affiliation(s)
- Chi-Kan Chen
- Department of Applied Mathematics, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, Taiwan, ROC
| |
Collapse
|
37
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
38
|
Hill PWS, Moldoveanu AL, Sargen M, Ronneau S, Glegola-Madejska I, Beetham C, Fisher RA, Helaine S. The vulnerable versatility of Salmonella antibiotic persisters during infection. Cell Host Microbe 2021; 29:1757-1773.e10. [PMID: 34731646 DOI: 10.1016/j.chom.2021.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Tolerance and persistence are superficially similar phenomena by which bacteria survive bactericidal antibiotics. It is assumed that the same physiology underlies survival of individual tolerant and persistent bacteria. However, by comparing tolerance and persistence during Salmonella Typhimurium infection, we reveal that these two phenomena are underpinned by different bacterial physiologies. Multidrug-tolerant mutant Salmonella enter a near-dormant state protected from immune-mediated genotoxic damages. However, the numerous tolerant cells, optimized for survival, lack the capabilities necessary to initiate infection relapse following antibiotic withdrawal. In contrast, persisters retain an active state. This leaves them vulnerable to accumulation of macrophage-induced dsDNA breaks but concurrently confers the versatility to initiate infection relapse if protected by RecA-mediated DNA repair. Accordingly, recurrent, invasive, non-typhoidal Salmonella clinical isolates display hallmarks of persistence rather than tolerance during antibiotic treatment. Our study highlights the complex trade-off that antibiotic-recalcitrant Salmonella balance to act as a reservoir for infection relapse.
Collapse
Affiliation(s)
- Peter W S Hill
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| | - Ana Laura Moldoveanu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Molly Sargen
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Séverin Ronneau
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Izabela Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Catrin Beetham
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Robert A Fisher
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Lambros M, Pechuan-Jorge X, Biro D, Ye K, Bergman A. Emerging Adaptive Strategies Under Temperature Fluctuations in a Laboratory Evolution Experiment of Escherichia Coli. Front Microbiol 2021; 12:724982. [PMID: 34745030 PMCID: PMC8569431 DOI: 10.3389/fmicb.2021.724982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Generalists and specialists are types of strategies individuals can employ that can evolve in fluctuating environments depending on the extremity and periodicity of the fluctuation. To evaluate whether the evolution of specialists or generalists occurs under environmental fluctuation regimes with different levels of periodicity, 24 populations of Escherichia coli underwent laboratory evolution with temperatures alternating between 15 and 43°C in three fluctuation regimes: two periodic regimes dependent on culture's cell density and one random (non-periodic) regime with no such dependency, serving as a control. To investigate contingencies on the genetic background, we seeded our experiment with two different strains. After the experiment, growth rate measurements at the two temperatures showed that the evolution of specialists was favored in the random regime, while generalists were favored in the periodic regimes. Whole genome sequencing demonstrated that several gene mutations were selected in parallel in the evolving populations with some dependency on the starting genetic background. Given the genes mutated, we hypothesized that the driving force behind the observed adaptations is the restoration of the internal physiology of the starting strains' unstressed states at 37°C, which may be a means of improving fitness in the new environments. Phenotypic array measurements supported our hypothesis by demonstrating a tendency of the phenotypic response of the evolved strains to move closer to the starting strains' response at the optimum of 37°C, especially for strains classified as generalists.
Collapse
Affiliation(s)
- Maryl Lambros
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ximo Pechuan-Jorge
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daniel Biro
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kenny Ye
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
40
|
Restoring Global Gene Regulation through Experimental Evolution Uncovers a NAP (Nucleoid-Associated Protein)-Like Behavior of Crp/Cap. mBio 2021; 12:e0202821. [PMID: 34700380 PMCID: PMC8546631 DOI: 10.1128/mbio.02028-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do hierarchical gene regulation networks evolve in bacteria? Nucleoid-associated proteins (NAPs) influence the overall structure of bacterial genomes, sigma factors and global transcription factors (TFs) control thousands of genes, and many operons are regulated by highly specific TFs that in turn are controlled allosterically by cellular metabolites. These regulatory hierarchies have been shaped by millions of years of evolution to optimize fitness in response to changing environmental conditions, but it is unclear how NAPs and TFs relate and have evolved together. Cyclic AMP (cAMP) receptor protein (Crp) is the paradigmatic global TF in Escherichia coli, and here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP.
Collapse
|
41
|
Lauritsen I, Frendorf PO, Capucci S, Heyde SAH, Blomquist SD, Wendel S, Fischer EC, Sekowska A, Danchin A, Nørholm MHH. Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors. Nat Commun 2021; 12:5880. [PMID: 34620864 PMCID: PMC8497467 DOI: 10.1038/s41467-021-26098-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
The evolution of microorganisms often involves changes of unclear relevance, such as transient phenotypes and sequential development of multiple adaptive mutations in hotspot genes. Previously, we showed that ageing colonies of an E. coli mutant unable to produce cAMP when grown on maltose, accumulated mutations in the crp gene (encoding a global transcription factor) and in genes involved in pyrimidine metabolism such as cmk; combined mutations in both crp and cmk enabled fermentation of maltose (which usually requires cAMP-mediated Crp activation for catabolic pathway expression). Here, we study the sequential generation of hotspot mutations in those genes, and uncover a regulatory role of pyrimidine nucleosides in carbon catabolism. Cytidine binds to the cytidine regulator CytR, modifies the expression of sigma factor 32 (RpoH), and thereby impacts global gene expression. In addition, cytidine binds and activates a Crp mutant directly, thus modulating catabolic pathway expression, and could be the catabolite modulating factor whose existence was suggested by Jacques Monod and colleagues in 1976. Therefore, transcription factor Crp appears to work in concert with CytR and RpoH, serving a dual role in sensing both carbon availability and metabolic flux towards DNA and RNA. Our findings show how certain alterations in metabolite concentrations (associated with colony ageing and/or due to mutations in metabolic or regulatory genes) can drive the evolution in non-growing cells. Microbial evolution often involves transient phenotypes and sequential development of multiple mutations of unclear relevance. Here, the authors show that the evolution of non-growing E. coli cells can be driven by alterations in pyrimidine nucleoside levels associated with colony ageing and/or due to mutations in metabolic or regulatory genes.
Collapse
Affiliation(s)
- Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pernille Ott Frendorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Silvia Capucci
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sophia A H Heyde
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sarah D Blomquist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofie Wendel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil C Fischer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
42
|
Shao L, Liu Y, Tian X, Zou B, Zhao Y, Li X, Dai R. Global proteomic responses of sublethally injured Staphylococcus aureus induced by ohmic heating. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Leucine-Responsive Regulatory Protein in Acetic Acid Bacteria Is Stable and Functions at a Wide Range of Intracellular pH Levels. J Bacteriol 2021; 203:e0016221. [PMID: 34228496 DOI: 10.1128/jb.00162-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 μM), decreasing to a minimum of 3.4 μM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 μM), and the highest affinity was at pH 5.0 (Kd, 1.0 μM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.
Collapse
|
44
|
Deletion of Yersinia pestis ail causes temperature sensitive pleiotropic effects including cell lysis that are suppressed by carbon source, cations, or loss of phospholipase A activity. J Bacteriol 2021; 203:e0036121. [PMID: 34398663 PMCID: PMC8508112 DOI: 10.1128/jb.00361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of phospholipid (PL) and lipopoly- or lipooligo-saccharide (LPS or LOS) asymmetry in the outer membrane (OM) of Gram-negative bacteria is essential but poorly understood. The Yersinia pestis OM Ail protein was required to maintain lipid homeostasis and cell integrity at elevated temperature (37° C). Loss of this protein had pleiotropic effects. A Y. pestis Δail mutant and KIM6+ wild- type were systematically compared for (i) growth requirements at 37° C, (ii) cell structure, (iii) antibiotic and detergent sensitivity, (iv) proteins released into supernates, (v) induction of the heat shock response, and (vi) physiological and genetic suppressors that restored the wild- type phenotype. The Δail mutant grew normally at 28° C but lysed at 37° C when it entered stationary phase as shown by cell count, SDS-PAGE of cell supernatants, and electron microscopy. Immuno-fluorescent microscopy showed that the Δail mutant did not assemble Caf1 capsule. Expression of heat shock promoters rpoE or rpoH fused to a lux operon reporter were not induced when the Δail mutant was shifted from the 28° C to 37° C (p<0.001 and p<0.01 respectively). Mutant lysis was suppressed by addition of 11 mM glucose, 22 or 44 mM glycerol, 2.5 mM Ca2+, or 2.5 mM Mg2+ to the growth medium, or by a mutation in the phospholipase A gene (pldA::miniTn5, ΔpldA, or PldAS164A). A model, accounting for the temperature-sensitive lysis of the Δail mutant and the Ail-dependent stabilization of the OM tetraacylated LOS at 37°C is presented. IMPORTANCE The Gram-negative pathogen, Yersinia pestis, transitions between a flea vector (ambient temperature) and a mammalian host (37° C). In response to 37° C, Y. pestis modifies its outer membrane (OM) by reducing the fatty acid content in lipid A, changing the outer leaflet from being predominantly hexaacylated to being predominantly tetraacylated. It also increases the Ail concentration, so it becomes the most prominent OM protein. Both measures are needed for Y. pestis to evade the host innate immune response. Deletion of ail destabilizes the OM at 37° C causing the cells to lyse. These results show that a protein is essential for maintaining lipid asymmetry and lipid homeostasis in the bacterial OM.
Collapse
|
45
|
Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. mBio 2021; 12:e0089521. [PMID: 34311575 PMCID: PMC8406287 DOI: 10.1128/mbio.00895-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.
Collapse
|
46
|
Restrepo-Pineda S, Pérez NO, Valdez-Cruz NA, Trujillo-Roldán MA. Thermoinducible expression system for producing recombinant proteins in Escherichia coli: advances and insights. FEMS Microbiol Rev 2021; 45:6223457. [PMID: 33844837 DOI: 10.1093/femsre/fuab023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and by RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production is discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation, and its possible aggregation to form inclusion bodies.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, 52400 Tenancingo, Estado de México, México
| | - Norma A Valdez-Cruz
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
47
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
48
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
49
|
Oguienko A, Petushkov I, Pupov D, Esyunina D, Kulbachinskiy A. Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase. RNA Biol 2021; 18:2028-2037. [PMID: 33573428 DOI: 10.1080/15476286.2021.1889254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.
Collapse
Affiliation(s)
| | - Ivan Petushkov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | | |
Collapse
|
50
|
Degradation of the Escherichia coli Essential Proteins DapB and Dxr Results in Oxidative Stress, which Contributes to Lethality through Incomplete Base Excision Repair. mBio 2021; 13:e0375621. [PMID: 35130721 PMCID: PMC8822343 DOI: 10.1128/mbio.03756-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various lethal stresses, including bactericidal antibiotics, can trigger the production of reactive oxygen species (ROS) that contribute to killing. Incomplete base excision repair (BER) of oxidized nucleotides, especially 8-oxo-dG, has been identified as a major component of ROS-induced lethality. However, the relative contributions of this pathway to death vary widely between stresses, due in part to poorly understood complex differences in the physiological changes caused by these stresses. To identify new lethal stresses that kill cells through this pathway, we screened an essential protein degradation library and found that depletion of either DapB or Dxr leads to cell death through incomplete BER; the contribution of this pathway to overall cell death is greater for DapB than for Dxr. Depletion of either protein generates oxidative stress, which increases incorporation of 8-oxo-dG into the genome. This oxidative stress is causally related to cell death, as plating on an antioxidant provided a protective effect. Moreover, incomplete BER was central to this cell death, as mutants lacking the key BER DNA glycosylases MutM and MutY were less susceptible, while overexpression of the nucleotide sanitizer MutT, which degrades 8-oxo-dGTP to prevent its incorporation, was protective. RNA sequencing of cells depleted of these proteins revealed widely different transcriptional responses to these stresses. Our discovery that oxidative stress-induced incomplete BER is highly dependent on the exact physiological changes that the cell experiences helps explain the past confusion that arose concerning the role of ROS in antibiotic lethality. IMPORTANCE Bacterial cell death is a poorly understood process. The generation of reactive oxygen species (ROS) is an apparently common response to challenges by a wide variety of lethal stresses, including bactericidal antibiotics. Incomplete BER of nucleotides damaged by these ROS, especially 8-oxo-dG, is a significant contributing factor to this lethality, but the levels of its contribution vary widely between different lethal stresses. A better understanding of the conditions that cause cells to die because of incomplete BER may lead to improved strategies for targeting this mode of death as an adjunct to antimicrobial therapy.
Collapse
|