1
|
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, Bakhtiari M, Chimenti ML, Baxter TA, Raikar SS, Wang X, Frye SV, Henry CJ, Earp HS, Bhasin M, DeRyckere D, Graham DK. MERTK inhibition selectively activates a DC - T-cell axis to provide anti-leukemia immunity. Leukemia 2024; 38:2685-2698. [PMID: 39322710 DOI: 10.1038/s41375-024-02408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
TAM-family tyrosine kinases (TYRO3, AXL and MERTK) are potential cancer therapeutic targets. In previous studies MERTK inhibition in the immune microenvironment was therapeutically effective in a B-cell acute leukemia (B-ALL) model. Here, we probed anti-leukemia immune mechanisms and evaluated roles for TYRO3 and AXL in the leukemia microenvironment. Host Mertk knock-out or MERTK inhibitor MRX-2843 increased CD8α+ dendritic cells (DCs) with enhanced antigen-presentation capacity in the leukemia microenvironment and inhibited leukemogenesis. High MERTK or low DC gene expression were associated with poor prognosis in pediatric ALL patients, indicating the clinical relevance of these findings. MRX-2843 increased CD8+ T-cell numbers and prevented induction of exhaustion markers, implicating a DC - T-cell axis. Indeed, combined depletion of CD8α+ DCs and CD8+ T-cells was required to abrogate anti-leukemia immunity in Mertk-/- mice. Tyro3-/- mice were also protected against B-ALL, implicating TYRO3 as an immunotherapeutic target. In contrast to Mertk-/- mice, Tyro3-/- did not increase CD8α+ DCs with enhanced antigen-presentation capacity and therapeutic activity was less dependent on DCs, indicating a different immune mechanism. Axl-/- did not impact leukemogenesis. These data demonstrate differential TAM kinase roles in the leukemia microenvironment and provide rationale for development of MERTK and/or TYRO3-targeted immunotherapies.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Kristen M Jacobsen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Juhye Yim
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Gianna M Branella
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Madison L Chimenti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Travon A Baxter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Curtis J Henry
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - H Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Cancer Immunology Program, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Benjamin ESB, Vinod E, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Bagchi A, Maity A, Mohan A, Parasuraman G, Amirtham SM, Abraham A, Velayudhan SR, Balasubramanian P. Immortalised chronic myeloid leukemia (CML) derived mesenchymal stromal cells (MSCs) line retains the immunomodulatory and chemoprotective properties of CML patient-derived MSCs. Cell Signal 2024; 116:111067. [PMID: 38281615 DOI: 10.1016/j.cellsig.2024.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of Tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), leukemic stem cells (LSCs) persist, contributing to relapse and resistance. CML Mesenchymal Stromal Cells (MSCs) help in LSC maintenance and protection from TKIs. However, the limited passage and self-differentiation abilities of primary CML MSCs hinder extensive research. To overcome this, we generated and characterized an immortalised CML patient-derived MSC (iCML MSC) line and assessed its role in LSC maintenance. We also compared the immunophenotype and differentiation potential between primary CML MSCs at diagnosis, post-treatment, and with normal bone marrow MSCs. Notably, CML MSCs exhibited enhanced chondrogenic differentiation potential compared to normal MSCs. The iCML MSC line retained the trilineage differentiation potential and was genetically stable, enabling long-term investigations. Functional studies demonstrated that iCML MSCs protected CML CD34+ cells from imatinib-induced apoptosis, recapitulating the bone marrow microenvironment-mediated resistance observed in patients. iCML MSC-conditioned media enabled CML CD34+ and AML blast cells to proliferate rapidly, with no impact on healthy donor CD34+ cells. Gene expression profiling revealed dysregulated genes associated with calcium metabolism in CML CD34+ cells cocultured with iCML MSCs, providing insights into potential therapeutic targets. Further, cytokine profiling revealed that the primary CML MSC lines abundantly secreted 25 cytokines involved in immune regulation, supporting the hypothesis that CML MSCs create an immune modulatory microenvironment that promotes growth and protects against TKIs. Our study establishes the utility of iCML MSCs as a valuable model to investigate leukemic-stromal interactions and study candidate genes involved in mediating TKI resistance in CML LSCs.
Collapse
Affiliation(s)
- Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Ranipet campus, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Elizabeth Vinod
- Department of Physiology, Christain Medical College, Vellore, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | | | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | - Arnab Maity
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Ajith Mohan
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | | | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Shaji R Velayudhan
- Department of Haematology, Christian Medical College, Ranipet campus, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | |
Collapse
|
3
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
4
|
Meng Z, Tan Y, Duan YL, Li M. Monaspin B, a Novel Cyclohexyl-furan from Cocultivation of Monascus purpureus and Aspergillus oryzae, Exhibits Potent Antileukemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1114-1123. [PMID: 38166364 DOI: 10.1021/acs.jafc.3c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.
Collapse
Affiliation(s)
- Zitong Meng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ya-Li Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Ramos A, Koch CE, Liu-Lupo Y, Hellinger RD, Kyung T, Abbott KL, Fröse J, Goulet D, Gordon KS, Eidell KP, Leclerc P, Whittaker CA, Larson RC, Muscato AJ, Yates KB, Dubrot J, Doench JG, Regev A, Vander Heiden MG, Maus MV, Manguso RT, Birnbaum ME, Hemann MT. Leukemia-intrinsic determinants of CAR-T response revealed by iterative in vivo genome-wide CRISPR screening. Nat Commun 2023; 14:8048. [PMID: 38052854 PMCID: PMC10698189 DOI: 10.1038/s41467-023-43790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.
Collapse
Affiliation(s)
- Azucena Ramos
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu-Lupo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riley D Hellinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Fröse
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Goulet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith P Eidell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Leclerc
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Immunology Program, Harvard Medical School, Boston, MA, USA
| | - Audrey J Muscato
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Kathleen B Yates
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Juan Dubrot
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Solid Tumors Program, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Immunology Program, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA, USA
| | - Robert T Manguso
- Immunology Program, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Pillsbury CE, Dougan J, Rabe JL, Fonseca JA, Zhou C, Evans AN, Abukharma H, Ichoku O, Gonzalez-Flamenco G, Park SI, Aljudi A, DeRyckere D, Castellino SM, Rafiq S, Langermann S, Liu LN, Henry CJ, Porter CC. Siglec-15 Promotes Evasion of Adaptive Immunity in B-cell Acute Lymphoblastic Leukemia. CANCER RESEARCH COMMUNICATIONS 2023; 3:1248-1259. [PMID: 37465593 PMCID: PMC10351425 DOI: 10.1158/2767-9764.crc-23-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Siglec-15 (Sig15) has been implicated as an immune checkpoint expressed in solid tumor-infiltrating macrophages and is being targeted in clinical trials with mAbs to normalize the tumor immune microenvironment and stimulate antitumor immunity. However, the role of Sig15 in hematologic malignancies remains undefined. Sig15 mRNA and protein expression levels in hematologic malignancies were determined from publicly available databases, cell lines, and primary patient samples. Human B-cell acute lymphoblastic leukemia (B-ALL) cell lines were used to identify signaling pathways involved in the regulation of Sig15 expression. Secreted/soluble Sig15 and cytokine levels were measured from the plasma of children with leukemia and healthy controls. Knockdown and knockout of Siglec15 in a murine model of B-ALL was used to evaluate the effect of leukemia-derived Sig15 on the immune response to leukemia. We observed pathologic overexpression of Sig15 in a variety of hematologic malignancies, including primary B-ALL samples. This overexpression was driven by NFκB activation, which also increased the surface localization of Sig15. Secreted/soluble Sig15 was found to circulate at elevated levels in the plasma of children with B-ALL and correlated with an immune-suppressive cytokine milieu. Genetic inhibition of Sig15 in murine B-ALL promoted clearance of the leukemia by the immune system and a marked reversal of the immune-privileged leukemia bone marrow niche, including expanded early effector CD8+ T cells and reduction of immunosuppressive cytokines. Thus, Sig15 is a novel, potent immunosuppressive molecule active in leukemia that may be targeted therapeutically to activate T lymphocytes against leukemia cells. Significance We demonstrate that Sig15 is overexpressed in hematologic malignancies driven by NFκB, is required for immune evasion in a mouse model of leukemia, and, for the first time, that it circulates at high levels in the plasma of children with leukemia.
Collapse
Affiliation(s)
- Claire E. Pillsbury
- Cancer Biology Program, Laney Graduate School, Emory University, Atlanta, Georgia
| | - Jodi Dougan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer L. Rabe
- Molecular Biology Program, University of Colorado Denver, Aurora, Colorado
| | - Jairo A. Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Chengjing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Alyssa N. Evans
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | | | - Sunita I. Park
- Clinical Laboratory, Children's Healthcare of Atlanta, Atlanta, Georgia
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Ahmed Aljudi
- Clinical Laboratory, Children's Healthcare of Atlanta, Atlanta, Georgia
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Sharon M. Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Sarwish Rafiq
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | - Curtis J. Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
7
|
Metabolomic and transcriptomic response to imatinib treatment of gastrointestinal stromal tumour in xenograft-bearing mice. Transl Oncol 2023; 30:101632. [PMID: 36774883 PMCID: PMC9945753 DOI: 10.1016/j.tranon.2023.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Although imatinib is a well-established first-line drug for treating a vast majority of gastrointestinal stromal tumours (GIST), GISTs acquire secondary resistance during therapy. Multi-omics approaches provide an integrated perspective to empower the development of personalised therapies through a better understanding of functional biology underlying the disease and molecular-driven selection of the best-targeted individualised therapy. In this study, we applied integrative metabolomic and transcriptomic analyses to elucidate tumour biochemical processes affected by imatinib treatment. MATERIALS AND METHODS A GIST xenograft mouse model was used in the study, including 10 mice treated with imatinib and 10 non-treated controls. Metabolites in tumour extracts were analysed using gas chromatography coupled with mass spectrometry (GC-MS). RNA sequencing was also performed on the samples subset (n=6). RESULTS Metabolomic analysis revealed 21 differentiating metabolites, whereas next-generation RNA sequencing data analysis resulted in 531 differentially expressed genes. Imatinib significantly changed the profile of metabolites associated mainly with purine and pyrimidine metabolism, butanoate metabolism, as well as alanine, aspartate, and glutamate metabolism. The related changes in transcriptomic profiles included genes involved in kinase activity and immune responses, as well as supported its impact on the purine biosynthesis pathway. CONCLUSIONS Our multi-omics study confirmed previously known pathways involved in imatinib anticancer activity as well as correlated imatinib-relevant downregulation of expression of purine biosynthesis pathway genes with the reduction of respectful metabolites. Furthermore, considering the importance of the purine biosynthesis pathway for cancer proliferation, we identified a potentially novel mechanism for the anti-tumour activity of imatinib. Based on the results, we hypothesise metabolic modulations aiming at the reduction in purine and pyrimidine pool may ensure higher imatinib efficacy or re-sensitise imatinib-resistant tumours.
Collapse
|
8
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
9
|
B-cell acute lymphoblastic leukemia promotes an immune suppressive microenvironment that can be overcome by IL-12. Sci Rep 2022; 12:11870. [PMID: 35831470 PMCID: PMC9279427 DOI: 10.1038/s41598-022-16152-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies have revolutionized the treatment of B-cell acute lymphoblastic leukemia (B-ALL), but the duration of responses is still sub-optimal. We sought to identify mechanisms of immune suppression in B-ALL and strategies to overcome them. Plasma collected from children with B-ALL with measurable residual disease after induction chemotherapy showed differential cytokine expression, particularly IL-7, while single-cell RNA-sequencing revealed the expression of genes associated with immune exhaustion in immune cell subsets. We also found that the supernatant of leukemia cells suppressed T-cell function ex vivo. Modeling B-ALL in mice, we observed an altered tumor immune microenvironment, including compromised activation of T-cells and dendritic cells (DC). However, recombinant IL-12 (rIL-12) treatment of mice with B-ALL restored the levels of several pro-inflammatory cytokines and chemokines in the bone marrow and increased the number of splenic and bone marrow resident T-cells and DCs. RNA-sequencing of T-cells isolated from vehicle and rIL-12 treated mice with B-ALL revealed that the leukemia-induced increase in genes associated with exhaustion, including Lag3, Tigit, and Il10, was abrogated with rIL-12 treatment. In addition, the cytolytic capacity of T-cells co-cultured with B-ALL cells was enhanced when IL-12 and blinatumomab treatments were combined. Overall, these results demonstrate that the leukemia immune suppressive microenvironment can be restored with rIL-12 treatment which has direct therapeutic implications.
Collapse
|
10
|
Dickerson KM, Qu C, Gao Q, Iacobucci I, Gu Z, Yoshihara H, Backhaus EA, Chang Y, Janke LJ, Xu B, Wu G, Papachristou EK, D'Santos CS, Roberts KG, Mullighan CG. ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia. Blood Cancer Discov 2022; 3:240-263. [PMID: 35247902 DOI: 10.1158/2643-3230.bcd-21-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
ZNF384-rearranged fusion oncoproteins (FO) define a subset of lineage ambiguous leukemias, but their mechanistic role in leukemogenesis and lineage ambiguity is poorly understood. Using viral expression in mouse and human hematopoietic stem and progenitor cells (HSPCs) and a Ep300::Znf384 knockin mouse model, we show that ZNF384 FO promote hematopoietic expansion, myeloid lineage skewing, and self-renewal. In mouse HSPCs, concomitant lesions, such as NRASG12D, were required for fully penetrant leukemia, whereas in human HSPCs expression of ZNF384 FO drove B/myeloid leukemia, with sensitivity of a ZNF384-rearranged xenograft to FLT3 inhibition in vivo. Mechanistically, ZNF384 FO occupy a subset of predominantly intragenic/enhancer regions with increased histone 3 lysine acetylation and deregulate expression of hematopoietic stem cell transcription factors. These data define a paradigm for FO-driven lineage ambiguous leukemia, in which expression in HSPCs results in deregulation of lineage-specific genes and hematopoietic skewing, progressing to full leukemia in the context of proliferative stress.
Collapse
Affiliation(s)
| | - Chunxu Qu
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Qingsong Gao
- St. Jude Children's Research Hospital, Memphis, United States
| | - Ilaria Iacobucci
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Zhaohui Gu
- City Of Hope National Medical Center, United States
| | | | - Emily A Backhaus
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yunchao Chang
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Laura J Janke
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Gang Wu
- St. Jude Children's Research Hospital, Memphis, United States
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
11
|
Bent EH, Millán-Barea LR, Zhuang I, Goulet DR, Fröse J, Hemann MT. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun 2021; 12:6218. [PMID: 34711820 PMCID: PMC8553783 DOI: 10.1038/s41467-021-26407-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Cytotoxic chemotherapeutics primarily function through DNA damage-induced tumor cell apoptosis, although the inflammation provoked by these agents can stimulate anti-cancer immune responses. The mechanisms that control these distinct effects and limit immunogenic responses to DNA-damage mediated cell death in vivo are currently unclear. Using a mouse model of BCR-ABL+ B-cell acute lymphoblastic leukemia, we show that chemotherapy-induced anti-cancer immunity is suppressed by the tumor microenvironment through production of the cytokine IL-6. The chemotherapeutic doxorubicin is curative in IL-6-deficient mice through the induction of CD8+ T-cell-mediated anti-cancer responses, while moderately extending lifespan in wild type tumor-bearing mice. We also show that IL-6 suppresses the effectiveness of immune-checkpoint inhibition with anti-PD-L1 blockade. Our results suggest that IL-6 is a key regulator of anti-cancer immune responses induced by genotoxic stress and that its inhibition can switch cancer cell clearance from primarily apoptotic to immunogenic, promoting and maintaining durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Eric H Bent
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Luis R Millán-Barea
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Iris Zhuang
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Daniel R Goulet
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Julia Fröse
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Meenakshi Sundaram DN, Kucharski C, Bahadur KC R, Tarman IO, Uludağ H. Polymeric siRNA delivery targeting integrin-β1 could reduce interactions of leukemic cells with bone marrow microenvironment. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100021. [PMID: 36824309 PMCID: PMC9934419 DOI: 10.1016/j.bbiosy.2021.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Uncontrolled proliferation of the myeloid cells due to BCR-ABL fusion has been successfully treated with tyrosine kinase inhibitors (TKIs), which improved the survival rate of Chronic Myeloid Leukemia (CML) patients. However, due to interactions of CML cells with bone marrow microenvironment, sub-populations of CML cells could become resistant to TKI treatment. Since integrins are major cell surface molecules involved in such interactions, the potential of silencing integrin-β1 on CML cell line K562 cells was explored using short interfering RNA (siRNA) delivered through lipid-modified polyethyleneimine (PEI) polymers. Reduction of integrin-β1 in K562 cells decreased cell adhesion towards human bone marrow stromal cells and to fibronectin, a major extracellular matrix protein for which integrin-β1 is a primary receptor. Interaction of K562 cells with fibronectin decreased the sensitivity of the cells to BCR-ABL siRNA treatment, but a combinational treatment with integrin-β1 and BCR-ABL siRNAs significantly reduced colony forming ability of the cells. Moreover, integrin-β1 silencing enhanced the detachment of K562 cells from hBMSC samples (2 out of 4 samples), which could make them more susceptible to TKIs. Therefore, the polymeric-siRNA delivery targeting integrin-β1 could be beneficial to reduce interactions with bone marrow microenvironment, aiding in the response of CML cells to therapeutic treatment.
Collapse
Affiliation(s)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Remant Bahadur KC
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada,Corresponding author at: Department of Chemical and Materials Engineering, 2-021 RTF, University of Alberta, Edmonton, Alberta, T6G 2G6, Canada.
| |
Collapse
|
13
|
Hamilton JAG, Lee MY, Hunter R, Ank RS, Story JY, Talekar G, Sisroe T, Ballak DB, Fedanov A, Porter CC, Eisenmesser EZ, Dinarello CA, Raikar SS, DeGregori J, Henry CJ. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 2021; 20:e13309. [PMID: 33480151 PMCID: PMC7884049 DOI: 10.1111/acel.13309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.
Collapse
Affiliation(s)
- Jamie A. G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Miyoung Y. Lee
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Rae Hunter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Raira S. Ank
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Jamie Y. Story
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
- Molecular and Systems Pharmacology Graduate Program Graduate Division of Biological and Biomedical Sciences Laney Graduate School Emory University School of Medicine Atlanta GA USA
| | - Ganesh Talekar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | | | - Dov B. Ballak
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Andrew Fedanov
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Christopher C. Porter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Charles A. Dinarello
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Sunil S. Raikar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| |
Collapse
|
14
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
15
|
Chen WC, Hu G, Hazlehurst LA. Contribution of the bone marrow stromal cells in mediating drug resistance in hematopoietic tumors. Curr Opin Pharmacol 2020; 54:36-43. [PMID: 32898723 PMCID: PMC7770000 DOI: 10.1016/j.coph.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
The bone marrow microenvironment (BMM) provides input via production of cytokines, chemokines, extracellular matrixes in the context of lower oxygen levels that influences self-renewal, survival, differentiation, progression, and therapeutic resistance of multiple myeloma and leukemic cells. Within the context of the BMM, tumor cells are supported by osteoblasts, bone marrow stromal cells (BMSCs), fibroblasts, myeloid cells, endothelial cells and blood vessels, as well as extracellular matrix (ECM) that contribute to tumor progression. Environmental mediated-drug resistance (EM-DR) contains cell adhesion-mediated drug resistance (CAM-DR) and soluble factor-mediated drug resistance (SM-DR) that contributes to de novo drug resistance. In this review, we focus on the crosstalk between the BMM and tumor cells as well as mechanisms underlying the BMM contributing to drug resistance in hematologic malignancies.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA
| | - Gangqing Hu
- Cancer Center, West Virginia University, Morgantown, WV 26506 USA; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506 USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA.
| |
Collapse
|
16
|
Alladin A, Chaible L, Garcia del Valle L, Sabine R, Loeschinger M, Wachsmuth M, Hériché JK, Tischer C, Jechlinger M. Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. eLife 2020; 9:e54066. [PMID: 32690136 PMCID: PMC7373425 DOI: 10.7554/elife.54066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer clone evolution takes place within tissue ecosystem habitats. But, how exactly tumors arise from a few malignant cells within an intact epithelium is a central, yet unanswered question. This is mainly due to the inaccessibility of this process to longitudinal imaging together with a lack of systems that model the progression of a fraction of transformed cells within a tissue. Here, we developed a new methodology based on primary mouse mammary epithelial acini, where oncogenes can be switched on in single cells within an otherwise normal epithelial cell layer. We combine this stochastic breast tumor induction model with inverted light-sheet imaging to study single-cell behavior for up to four days and analyze cell fates utilizing a newly developed image-data analysis workflow. The power of this integrated approach is illustrated by us finding that small local clusters of transformed cells form tumors while isolated transformed cells do not.
Collapse
Affiliation(s)
- Ashna Alladin
- Cell Biology and Biophysics Unit, EMBLHeidelbergGermany
| | - Lucas Chaible
- Cell Biology and Biophysics Unit, EMBLHeidelbergGermany
| | | | - Reither Sabine
- Advanced Light Microscopy Facility, EMBLHeidelbergGermany
| | | | | | | | | | | |
Collapse
|
17
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
18
|
Shen N, Wu J, Yang C, Yu H, Yang S, Li T, Chen J, Tang Z, Chen X. Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. NANO LETTERS 2019; 19:8021-8031. [PMID: 31558024 DOI: 10.1021/acs.nanolett.9b03214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential in cancer treatment. However, in addition to their direct tumoral vascular collapse effect, VDAs activate host immunological responses, which can remarkably impair their anticancer efficacy. Here, a VDA nanomedicine, poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 (CA4-NPs), is found to induce the intratumor infiltration of immature plasmacytoid dendritic cells (pDCs), thereby curtailing anticancer immunity. To overcome this problem, hypoxia-sensitive imiquimod (hs-IMQ) is developed, which is selectively activated into imiquimod (IMQ) in treated tumors following the catalysis of CA4-NPs-induced nitroreductase (NTR). The combination of hs-IMQ and CA4-NPs causes a 6.3-fold enhancement of active IMQ concentration in tumors, as compared to hs-IMQ treatment alone. The in situ-generated IMQ alters the tumor microenvironment from a state of immunosuppression to immune activation. Hs-IMQ achieves this effect through the conversion of immature pDCs into their active form, leading to the robust infiltration and priming of natural killer cells and cytotoxic T-lymphocytes in treated tumors. Thus, the CA4-NPs and hs-IMQ combination treatment synergistically inhibits tumor growth and metastasis in 4T1 tumor-bearing mice. This work offers new approaches to harness intratumor pDCs to reverse the immune suppression resulting from VDA treatment. These findings additionally provide a mechanistic rationale for the use of VDAs in combination with TLR agonists to trigger in situ immune activation and enhance anticancer efficacy.
Collapse
Affiliation(s)
- Na Shen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Jing Wu
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Shengcai Yang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Tete Li
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
| | - Jingtao Chen
- Institute of Translational Medicine , The First Hospital of Jilin University , Changchun 130022 , PR China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- Jilin Biomedical Polymers Engineering Laboratory , Changchun 130022 , PR China
| |
Collapse
|
19
|
Zhang X, Tu H, Yang Y, Jiang X, Hu X, Luo Q, Li J. Bone marrow-derived mesenchymal stromal cells promote resistance to tyrosine kinase inhibitors in chronic myeloid leukemia via the IL-7/JAK1/STAT5 pathway. J Biol Chem 2019; 294:12167-12179. [PMID: 31235520 DOI: 10.1074/jbc.ra119.008037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/15/2019] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) is caused by the fusion of the BCR activator of RhoGEF and GTPase activating protein (BCR) and ABL proto-oncogene, the nonreceptor tyrosine kinase (ABL) genes. Although the tyrosine kinase inhibitors (TKIs) imatinib (IM) and nilotinib (NI) have remarkable efficacy in managing CML, the malignancies in some patients become TKI-resistant. Here, we isolated bone marrow (BM)-derived mesenchymal stem cells (MSCs) from several CML patients by Ficoll-Hypaque density-gradient centrifugation for coculture with K562 and BV173 cells with or without TKIs. We used real-time quantitative PCR to assess the level of interleukin 7 (IL-7) expression in the MSCs and employed immunoblotting to monitor protein expression in the BCR/ABL, phosphatidylinositol 3-kinase (PI3K)/AKT, and JAK/STAT signaling pathways. We also used a xenograft tumor model to examine the in vivo effect of different MSCs on CML cells. MSCs from patients with IM-resistant CML protected K562 and BV173 cells against IM- or NI-induced cell death, and this protection was due to increased IL-7 secretion from the MSCs. Moreover, IL-7 levels in the BM of patients with IM-resistant CML were significantly higher than in healthy donors or IM-sensitive CML patients. IL-7 elicited IM and NI resistance via BCR/ABL-independent activation of JAK1/STAT5 signaling, but not of JAK3/STAT5 or PI3K/AKT signaling. IL-7 or JAK1 gene knockdown abrogated IL-7-mediated STAT5 phosphorylation and IM resistance in vitro and in vivo Because high IL-7 levels in the BM mediate TKI resistance via BCR/ABL-independent activation of JAK1/STAT5 signaling, combining TKIs with IL-7/JAK1/STAT5 inhibition may have significant utility for managing CML.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China; Laboratory of Infection and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, Jiangxi, China
| | - Huaijun Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China
| | - Yazhi Yang
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, Jiangxi, China
| | - Xiaoyan Jiang
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, Jiangxi, China
| | - Xianliang Hu
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, Jiangxi, China
| | - Qidong Luo
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, Jiangxi, China
| | - Jian Li
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
20
|
Rabe JL, Gardner L, Hunter R, Fonseca JA, Dougan J, Gearheart CM, Leibowitz MS, Lee-Miller C, Baturin D, Fosmire SP, Zelasko SE, Jones CL, Slansky JE, Rupji M, Dwivedi B, Henry CJ, Porter CC. IL12 Abrogates Calcineurin-Dependent Immune Evasion during Leukemia Progression. Cancer Res 2019; 79:3702-3713. [PMID: 31142509 DOI: 10.1158/0008-5472.can-18-3800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/25/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Exploitation of the immune system has emerged as an important therapeutic strategy for acute lymphoblastic leukemia (ALL). However, the mechanisms of immune evasion during leukemia progression remain poorly understood. We sought to understand the role of calcineurin in ALL and observed that depletion of calcineurin B (CnB) in leukemia cells dramatically prolongs survival in immune-competent but not immune-deficient recipients. Immune-competent recipients were protected from challenge with leukemia if they were first immunized with CnB-deficient leukemia, suggesting robust adaptive immunity. In the bone marrow (BM), recipients of CnB-deficient leukemia harbored expanded T-cell populations as compared with controls. Gene expression analyses of leukemia cells extracted from the BM identified Cn-dependent significant changes in the expression of immunoregulatory genes. Increased secretion of IL12 from CnB-deficient leukemia cells was sufficient to induce T-cell activation ex vivo, an effect that was abolished when IL12 was neutralized. Strikingly, recombinant IL12 prolonged survival of mice challenged with highly aggressive B-ALL. Moreover, gene expression analyses from children with ALL showed that patients with higher expression of either IL12A or IL12B exhibited prolonged survival. These data suggest that leukemia cells are dependent upon calcineurin for immune evasion by restricting the regulation of proinflammatory genes, particularly IL12. SIGNIFICANCE: This report implicates calcineurin as an intracellular signaling molecule responsible for immune evasion during leukemia progression and raises the prospect of re-examining IL12 as a therapeutic in leukemia.
Collapse
Affiliation(s)
- Jennifer L Rabe
- Molecular Biology Program, University of Colorado Denver, Aurora, Colorado
| | - Lori Gardner
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Rae Hunter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jodi Dougan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Cathy Lee-Miller
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Dmitry Baturin
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Susan P Fosmire
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Susan E Zelasko
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Courtney L Jones
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Jill E Slansky
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Georgia
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Georgia
| |
Collapse
|
21
|
Gregory MA, Nemkov T, Park HJ, Zaberezhnyy V, Gehrke S, Adane B, Jordan CT, Hansen KC, D'Alessandro A, DeGregori J. Targeting Glutamine Metabolism and Redox State for Leukemia Therapy. Clin Cancer Res 2019; 25:4079-4090. [PMID: 30940653 DOI: 10.1158/1078-0432.ccr-18-3223] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the accumulation of immature myeloid precursor cells. AML is poorly responsive to conventional chemotherapy and a diagnosis of AML is usually fatal. More effective and less toxic forms of therapy are desperately needed. AML cells are known to be highly dependent on the amino acid glutamine for their survival. These studies were directed at determining the effects of glutaminase inhibition on metabolism in AML and identifying general weaknesses that can be exploited therapeutically. EXPERIMENTAL DESIGN AML cancer cell lines, primary AML cells, and mouse models of AML and acute lymphoblastic leukemia (ALL) were utilized. RESULTS We show that blocking glutamine metabolism through the use of a glutaminase inhibitor (CB-839) significantly impairs antioxidant glutathione production in multiple types of AML, resulting in accretion of mitochondrial reactive oxygen species (mitoROS) and apoptotic cell death. Moreover, glutaminase inhibition makes AML cells susceptible to adjuvant drugs that further perturb mitochondrial redox state, such as arsenic trioxide (ATO) and homoharringtonine (HHT). Indeed, the combination of ATO or HHT with CB-839 exacerbates mitoROS and apoptosis, and leads to more complete cell death in AML cell lines, primary AML patient samples, and in vivo using mouse models of AML. In addition, these redox-targeted combination therapies are effective in eradicating ALL cells in vitro and in vivo. CONCLUSIONS Targeting glutamine metabolism in combination with drugs that perturb mitochondrial redox state represents an effective and potentially widely applicable therapeutic strategy for treating multiple types of leukemia.
Collapse
Affiliation(s)
- Mark A Gregory
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hae J Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Biniam Adane
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
22
|
In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv 2019; 2:1229-1242. [PMID: 29853524 DOI: 10.1182/bloodadvances.2017015610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the addition of tyrosine kinase inhibitors (TKIs) to the treatment of patients with BCR-ABL1+ B-cell precursor acute lymphoblastic leukemia (BCR-ABL1+ BCP-ALL), relapse both with and without BCR-ABL1 mutations is a persistent clinical problem. To identify BCR-ABL1-independent genetic mediators of response to the TKI dasatinib, we performed in vivo and in vitro RNA interference (RNAi) screens in a transplantable syngeneic mouse model of BCR-ABL1+ BCP-ALL. By using a novel combination of a longitudinal screen design and independent component analysis of screening data, we identified hairpins that have distinct behavior in different therapeutic contexts as well as in the in vivo vs in vitro settings. In the set of genes whose loss sensitized BCR-ABL1+ BCP-ALL cells to dasatinib, we identified Pafah1b3, which regulates intracellular levels of platelet-activating factor (PAF), as an in vivo-specific mediator of therapeutic response. Pafah1b3 loss significantly sensitized leukemia cells to the multiple TKIs, indicating that inhibition of PAFAH1B3 in combination with TKI treatment may be an effective therapeutic strategy for BCR-ABL1+ BCP-ALL patients. PAF-induced cell death as well as surface levels of PAF receptor (PAFR) in our model are altered upon dasatinib treatment and depend on the local leukemia microenvironment; the response of Pafah1b3 KO vs overexpressing cells to dasatinib is also dependent on microenvironmental context. Antagonism of the PAFR partially reverses the observed sensitization to TKI treatment upon Pafah1b3 loss in vivo, suggesting that signaling via the PAF/PAFR pathway is at least partially responsible for this effect.
Collapse
|
23
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
24
|
Sexually dimorphic tumor suppression by small mitochondrial Arf. Oncotarget 2019; 10:1235-1237. [PMID: 30815226 PMCID: PMC6383814 DOI: 10.18632/oncotarget.26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 12/03/2022] Open
Abstract
Internal translational initiation of the mRNA encoding the Arf tumor suppressor yields an N-terminally truncated small Arf protein (smArf) that lacks amino acid residues required for Mdm2 binding and p53 activation. Here, we report that female, but not male, mice engineered to produce only smArf in lieu of the full-length Arf protein retain residual, sexually dimorphic tumor suppressive activity.
Collapse
|
25
|
Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: a meta-analysis. Ann Med 2019; 51:28-40. [PMID: 30592434 PMCID: PMC7857473 DOI: 10.1080/07853890.2018.1564359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) genes are frequently altered in acute lymphoblastic leukaemia (ALL) patients. The aim of this meta-analysis was to comprehensively assess the prognostic value of CDKN2A/B deletions in ALL patients. METHODS Systematic literature review was conducted in PubMed, Embase and Cochrane databases up to July 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated with fixed-effects or random-effects models. RESULTS A total of thirteen studies including 2857 patients were eligible for this meta-analysis. Combined HRs suggested that CDKN2A/B deletions were poor prognostic factors for both overall survival (OS) (HR = 2.15, 95% CI 1.82-2.54) and event-free survival (EFS)/disease-free survival (DFS)/relapse-free survival (RFS) (HR = 2.16, 95% CI 1.73-2.69). The adverse impact remained significant in both adult and paediatric ALL patients, and also in subgroups by ethnicity, ALL type, detection method of CDKN2A/B deletions, statistical method and endpoint. CONCLUSIONS Our findings suggested that CDKN2A/B deletions were associated with poor prognosis independently in both adult and childhood ALL patients. Inclusion of CDKN2A/B status may further improve the risk stratification of ALL patients. Key Messages Although numerous studies have explored the prognostic significance of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions in acute lymphoblastic leukaemia (ALL) patients, the results remain conflicting. In this meta-analysis, we found that CDKN2A/B deletions were independent poor prognostic markers for both adult and paediatric ALL patients. Our findings justify the inclusion of CDKN2A/B status in the risk stratification of ALL patients.
Collapse
Affiliation(s)
- Wanhua Zhang
- a Department of Haematology , West China Hospital, Sichuan University , Chengdu , P.R. China
| | - Pu Kuang
- a Department of Haematology , West China Hospital, Sichuan University , Chengdu , P.R. China
| | - Ting Liu
- a Department of Haematology , West China Hospital, Sichuan University , Chengdu , P.R. China
| |
Collapse
|
26
|
Lee-Sherick AB, Jacobsen KM, Henry CJ, Huey MG, Parker RE, Page LS, Hill AA, Wang X, Frye SV, Earp HS, Jordan CT, DeRyckere D, Graham DK. MERTK inhibition alters the PD-1 axis and promotes anti-leukemia immunity. JCI Insight 2018; 3:97941. [PMID: 30385715 PMCID: PMC6238750 DOI: 10.1172/jci.insight.97941] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
MERTK is ectopically expressed and promotes survival in acute lymphoblastic leukemia (ALL) cells and is thus a potential therapeutic target. Here we demonstrate both direct therapeutic effects of MERTK inhibition on leukemia cells and induction of anti-leukemia immunity via suppression of the coinhibitory PD-1 axis. A MERTK-selective tyrosine kinase inhibitor, MRX-2843, mediated therapeutic anti-leukemia effects in immunocompromised mice bearing a MERTK-expressing human leukemia xenograft. In addition, inhibition of host MERTK by genetic deletion (Mertk-/- mice) or treatment with MRX-2843 significantly decreased tumor burden and prolonged survival in immune-competent mice inoculated with a MERTK-negative ALL, suggesting immune-mediated therapeutic activity. In this context, MERTK inhibition led to significant decreases in expression of the coinhibitory ligands PD-L1 and PD-L2 on CD11b+ monocytes/macrophages in the leukemia microenvironment. Furthermore, although T cells do not express MERTK, inhibition of MERTK indirectly decreased PD-1 expression on CD4+ and CD8+ T cells and decreased the incidence of splenic FOXP3+ Tregs at sites of leukemic infiltration, leading to increased T cell activation. These data demonstrate direct and immune-mediated therapeutic activities in response to MERTK inhibition in ALL models and provide validation of a translational agent targeting MERTK for modulation of tumor immunity.
Collapse
Affiliation(s)
| | - Kristen M. Jacobsen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Curtis J. Henry
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Madeline G. Huey
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rebecca E. Parker
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | | | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
- Lineberger Comprehensive Cancer Center, and
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, and
- Departments of Medicine and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado, Aurora, Colorado, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Douglas K. Graham
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Thompson SB, Wigton EJ, Krovi SH, Chung JW, Long RA, Jacobelli J. The Formin mDia1 Regulates Acute Lymphoblastic Leukemia Engraftment, Migration, and Progression in vivo. Front Oncol 2018; 8:389. [PMID: 30294591 PMCID: PMC6158313 DOI: 10.3389/fonc.2018.00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Leukemias typically arise in the bone marrow and then spread to the blood and into other tissues. To disseminate into tissues, leukemia cells migrate into the blood stream and then exit the circulation by migrating across vascular endothelial barriers. Formin proteins regulate cytoskeletal remodeling and cell migration of normal and malignant cells. The Formin mDia1 is highly expressed in transformed lymphocytes and regulates lymphocyte migration. However, the role of mDia1 in regulating leukemia progression in vivo is unknown. Here, we investigated how mDia1 mediates the ability of leukemia cells to migrate and disseminate in vivo. For these studies, we used a mouse model of Bcr-Abl pre-B cell acute lymphoblastic leukemia. Our data showed that mDia1-deficient leukemia cells have reduced chemotaxis and ability to complete transendothelial migration in vitro. In vivo, mDia1 deficiency reduced the ability of leukemia cells to engraft in recipient mice. Furthermore, leukemia dissemination to various tissues and leukemia progression were inhibited by mDia1 depletion. Finally, mDia1 depletion in leukemia cells resulted in prolonged survival of recipient mice in a leukemia transfer model. Overall, our data show that the Formin mDia1 mediates leukemia cell migration, and drives leukemia engraftment and progression in vivo, suggesting that targeting mDia1 could provide a new method for treatment of leukemia.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sai Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
28
|
Genomic CDKN2A/2B deletions in adult Ph + ALL are adverse despite allogeneic stem cell transplantation. Blood 2018; 131:1464-1475. [PMID: 29348129 DOI: 10.1182/blood-2017-07-796862] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
We investigated the role of copy number alterations to refine risk stratification in adult Philadelphia chromosome positive (Ph)+ acute lymphoblastic leukemia (ALL) treated with tyrosine kinase inhibitors (TKIs) and allogeneic stem cell transplantation (aSCT). Ninety-seven Ph+ ALL patients (median age 41 years; range 18-64 years) within the prospective multicenter German Multicenter ALL Study Group studies 06/99 (n = 8) and 07/2003 (n = 89) were analyzed. All patients received TKI and aSCT in first complete remission (CR1). Copy number analysis was performed with single nucleotide polymorphism arrays and validated by multiplex ligation-dependent probe amplification. The frequencies of recurrently deleted genes were: IKZF1, 76%; CDKN2A/2B, 45%; PAX5, 43%; BTG1, 18%; EBF1, 13%; ETV6, 5%; RB, 14%. In univariate analyses, the presence of CDKN2A/2B deletions had a negative impact on all endpoints: overall survival (P = .023), disease-free survival (P = .012), and remission duration (P = .036). The negative predictive value of CDKN2A/2B deletions was retained in multivariable analysis along with other factors such as timing of TKI therapy, intensity of conditioning, achieving remission after induction phase 1 and BTG1 deletions. We therefore conclude that acquired genomic CDKN2A/2B deletions identify a subgroup of Ph+ ALL patients, who have an inferior prognosis despite aSCT in CR1. Their poor outcome was attributable primarily to a high relapse rate after aSCT.
Collapse
|
29
|
Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 2017; 7:11500-11. [PMID: 26862853 PMCID: PMC4905489 DOI: 10.18632/oncotarget.7204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents.
Collapse
|
30
|
Demirel Ö, Balló O, Reddy PNG, Vakhrusheva O, Zhang J, Eichler A, Fernandes R, Badura S, Serve H, Brandts C. SOCS1 function in BCR-ABL mediated myeloproliferative disease is dependent on the cytokine environment. PLoS One 2017; 12:e0180401. [PMID: 28753604 PMCID: PMC5533340 DOI: 10.1371/journal.pone.0180401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/15/2017] [Indexed: 11/23/2022] Open
Abstract
Treatment with tyrosine kinase inhibitors is the standard of care for Philadelphia chromosome positive leukemias. However the eradication of leukemia initiating cells remains a challenge. Circumstantial evidence suggests that the cytokine microenvironment may play a role in BCR-ABL mediated leukemogenesis and in imatinib resistance. Gene expression analyses of BCR-ABL positive ALL long-term cultured cells revealed strong reduction of SOCS mRNA expression after imatinib treatment, thereby demonstrating a strong inhibition of cytokine signaling. In this study we employed SOCS1—a strong inhibitor of cytokine signaling—as a tool to terminate external cytokine signals in BCR-ABL transformed cells in vitro and in vivo. In colony formation assays with primary bone marrow cells, expression of SOCS1 decreased colony numbers under pro-proliferative cytokines, while it conferred growth resistance to anti-proliferative cytokines. Importantly, co-expression of SOCS1 with BCR-ABL led to the development of a MPD phenotype with a prolonged disease latency compared to BCR-ABL alone in a murine bone marrow transplantation model. Interestingly, SOCS1 co-expression protected 20% of mice from MPD development. In summary, we conclude that under pro-proliferative cytokine stimulation at the onset of myeloproliferative diseases SOCS1 acts as a tumor suppressor, while under anti-proliferative conditions it exerts oncogenic function. Therefore SOCS1 can promote opposing functions depending on the cytokine environment.
Collapse
Affiliation(s)
- Özlem Demirel
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivier Balló
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Pavankumar N. G. Reddy
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- Hematology/Oncology, Children’s Hospital Boston, Harvard Medical School, Boston, United States of America
| | - Olesya Vakhrusheva
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Jing Zhang
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Eichler
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Ramona Fernandes
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Susanne Badura
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Small mitochondrial Arf (smArf) protein corrects p53-independent developmental defects of Arf tumor suppressor-deficient mice. Proc Natl Acad Sci U S A 2017; 114:7420-7425. [PMID: 28652370 DOI: 10.1073/pnas.1707292114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mouse p19Arf (human p14ARF) tumor suppressor protein, encoded in part from an alternative reading frame of the Ink4a (Cdkn2a) gene, inhibits the Mdm2 E3 ubiquitin ligase to activate p53. Arf is not expressed in most normal tissues of young mice but is induced by high thresholds of aberrant hyperproliferative signals, thereby activating p53 in incipient tumor cells that have experienced oncogene activation. The single Arf mRNA encodes two distinct polypeptides, including full-length p19Arf and N-terminally truncated and unstable p15smArf ("small mitochondrial Arf") initiated from an internal in-frame AUG codon specifying methionine-45. Interactions of p19Arf with Mdm2, or separately with nucleophosmin (NPM, B23) that localizes and stabilizes p19Arf within the nucleolus, require p19Arf N-terminal amino acids that are not present within p15smArf We have generated mice that produce either smARF alone or M45A-mutated (smArf-deficient) full-length p19Arf proteins. BCR-ABL-expressing pro/pre-B cells producing smArf alone are as oncogenic as their Arf-null counterparts in generating acute lymphoblastic leukemia when infused into unconditioned syngeneic mice. In contrast, smArf-deficient cells from mice of the ArfM45A strain are as resistant as wild-type Arf+/+ cells to comparable oncogenic challenge and do not produce tumors. Apart from being prone to tumor development, Arf-null mice are blind, and their male germ cells exhibit defects in meiotic maturation and sperm production. Although ArfM45A mice manifest the latter defects, smArf alone remarkably rescues both of these p53-independent developmental phenotypes.
Collapse
|
32
|
Asgharzadeh MR, Barar J, Pourseif MM, Eskandani M, Jafari Niya M, Mashayekhi MR, Omidi Y. Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy. BIOIMPACTS : BI 2017; 7:115-133. [PMID: 28752076 PMCID: PMC5524986 DOI: 10.15171/bi.2017.15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Introduction: Cancer is an intricate disorder/dysfunction of cells that can be defined as a genetic heterogeneity in human disease. Therefore, it is characterized by several adaptive complex hallmarks. Among them, the pH dysregulation appears as a symbol of aberrant functions within the tumor microenvironment (TME). In comparison with normal tissues, in the solid tumors, we face with an irregular acidification and alkalinization of the extracellular and intracellular fluids. Methods: In this study, we comprehensively discussed the most recent reports on the hallmarks of solid tumors to provide deep insights upon the molecular machineries involved in the pH dysregulation of solid tumors and their impacts on the initiation and progression of cancer. Results: The dysregulation of pH in solid tumors is fundamentally related to the Warburg effect and hypoxia, leading to expression of a number of molecular machineries, including: NHE1, H+ pump V-ATPase, CA-9, CA-12, MCT-1, GLUT-1. Activation of proton exchangers and transporters (PETs) gives rise to formation of TME. This condition favors the cancer cells to evade from the anoikis and apoptosis, granting them aggressive and metastasis phenotype, as well as resistance to chemotherapy and radiation therapy. This review aimed to discuss the key molecular changes of tumor cells in terms of bio-energetics and cancer metabolism in relation with pH dysregulation. During this phenomenon, the intra- and extracellular metabolites are altered and/or disrupted. Such molecular alterations provide molecular hallmarks for direct targeting of the PETs by potent relevant inhibitors in combination with conventional cancer therapies as ultimate therapy against solid tumors. Conclusion: Taken all, along with other treatment strategies, targeting the key molecular machineries related to intra- and extracellular metabolisms within the TME is proposed as a novel strategy to inhibit or block PETs that are involved in the pH dysregulation of solid tumors.
Collapse
Affiliation(s)
- Mohammad Reza Asgharzadeh
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M. Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Jafari Niya
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Thiant S, Moutuou MM, Laflamme P, Sidi Boumedine R, Leboeuf DM, Busque L, Roy J, Guimond M. Imatinib mesylate inhibits STAT5 phosphorylation in response to IL-7 and promotes T cell lymphopenia in chronic myelogenous leukemia patients. Blood Cancer J 2017; 7:e551. [PMID: 28387753 PMCID: PMC5436073 DOI: 10.1038/bcj.2017.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Imatinib mesylate (IM) therapy has been shown to induce lower T cell counts in chronic myelogenous leukemia (CML) patients and an interference of IM with T cell receptor (TCR) signaling has been invoked to explain this observation. However, IL-7 and TCR signaling are both essential for lymphocyte survival. This study was undertaken to determine whether IM interferes with IL-7 or TCR signaling to explain lower T cell counts in patients. At diagnosis, CML patients have typically lower CD4+ counts in their blood, yet CD8+ counts are normal or even increased in some. Following the initiation of IM treatment, CD4+ counts were further diminished and CD8+ T lymphocytes were dramatically decreased. In vitro studies confirmed IM interference with TCR signaling through the inhibition of ERK phosphorylation and we showed a similar effect on IL-7 signaling and STAT5 phosphorylation (STAT5-p). Importantly however, using an in vivo mouse model, we demonstrated that IM impaired T cell survival through the inhibition of IL-7 and STAT5-p but not TCR signaling which remained unaffected during IM therapy. Thus, off-target inhibitory effects of IM on IL-7 and STAT5-p explain how T cell lymphopenia occurs in patients treated with IM.
Collapse
Affiliation(s)
- S Thiant
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - M M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - P Laflamme
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - R Sidi Boumedine
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - D M Leboeuf
- Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - L Busque
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - J Roy
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - M Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
34
|
He BL, Xu N, Li YL, Pan CY, Cao R, Liao LB, Yin CX, Lan YQ, Lu ZY, Huang JX, Zhou HS, Liu QF, Liu XL. [Clinical analysis of adult Philadelphia chromosome-positive acute lymphoblastic leukemia with p16 gene deletion]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:204-209. [PMID: 28395443 PMCID: PMC7348375 DOI: 10.3760/cma.j.issn.0253-2727.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 12/01/2022]
Abstract
Objective: To investigate the clinical implications of p16 gene deletion in adult Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL) . Methods: Retrospective analysis of clinical, immunophenotypic, cytogenetics, molecular characteristics and prognosis of 80 newly diagnosed Ph(+) ALL patients with p16 deletion. Results: Of 80 adult Ph(+) ALL, the prevalence of p16 gene deletion was 31.3%. p16 gene deletion carriers frequently accompanied with high WBC counts (WBC≥30×10(9)/L) and CD20 expression. The incidence of complex chromosome abnormality in p16 gene deletion group was higher than that in non-deletion group, with alternations in chromosome 7, 8, 19 and der (22) more frequently observed. There was no difference occurred between patients with or without p16 gene deletion in complete remission (CR) rate following induction chemotherapy combined with tyrosine kinase inhibitors (TKIs) . However, after three cycles of chemotherapy, the MMR and CMR rate in the p16 gene deletion group was lower than patients with wild-type p16 gene (P=0.034, P=0.036) . The p16 gene deletion patients showed no significant differences in MMR, CMR and relapse rate between Imatinib or Dasatinib plus chemotherapy (P>0.05) . Deletion of p16 gene was significantly associated with poor outcomes including worse overall survival (OS) (37.1% vs 54.1%, P=0.037) , lower disease free-survival (DFS) (12.4% vs 45.9%, P=0.026) , and increased cumulative incidence of relapse (P=0.033) . Among the 25 patients with p16 deletion, 14 underwent allo-HSCT and the median survival was 21 months, better than that of patients received chemotherapy alone (12 months) (P=0.030) . Conclusion: This study indicated that deletion of p16 was associated with poor prognosis in adult Ph(+) ALL, and the utility of second-generation TKI (Dasatinib) does not necessarily have an edge on efficacy over Imatinib, but allo-HSCT has the potential of elongating life expectancy. It is an important significance to define the status of p16 in Ph(+) ALL for predicting prognosis and guiding therapy decision-making.
Collapse
Affiliation(s)
- B L He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol Cancer 2017; 16:28. [PMID: 28148265 PMCID: PMC5286787 DOI: 10.1186/s12943-017-0595-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Background The initiation and progression of malignant tumors is driven by distinct subsets of tumor-initiating or cancer stem-like cells (CSCs) which develop therapy/apoptosis resistance and self-renewal capacity. In order to be able to eradicate these CSCs with novel classes of anti-cancer therapeutics, a better understanding of their biology and clinically-relevant traits is mandatory. Main body Several requirements and functions of a CSC niche physiology are combined with current concepts for CSC generation such as development in a hierarchical tumor model, by stochastic processes, or via a retrodifferentiation program. Moreover, progressive adaptation of endothelial cells and recruited immune and stromal cells to the tumor site substantially contribute to generate a tumor growth-permissive environment resembling a CSC niche. Particular emphasis is put on the pivotal role of multipotent mesenchymal stroma/stem cells (MSCs) in supporting CSC development by various kinds of interaction and cell fusion to form hybrid tumor cells. Conclusion A better knowledge of CSC niche physiology may increase the chances that cancer stemness-depleting interventions ultimately result in arrest of tumor growth and metastasis.
Collapse
|
36
|
Olivos DJ, Mayo LD. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness. Int J Mol Sci 2016; 17:ijms17121982. [PMID: 27898034 PMCID: PMC5187782 DOI: 10.3390/ijms17121982] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023] Open
Abstract
Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53's functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53's effects on stemness could lead to novel therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- David J Olivos
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
37
|
Wilson JL, Dalin S, Gosline S, Hemann M, Fraenkel E, Lauffenburger DA. Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia. Integr Biol (Camb) 2016; 8:761-74. [PMID: 27315426 PMCID: PMC5224708 DOI: 10.1039/c6ib00040a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Data integration stands to improve interpretation of RNAi screens which, as a result of off-target effects, typically yield numerous gene hits of which only a few validate. These off-target effects can result from seed matches to unintended gene targets (reagent-based) or cellular pathways, which can compensate for gene perturbations (biology-based). We focus on the biology-based effects and use network modeling tools to discover pathways de novo around RNAi hits. By looking at hits in a functional context, we can uncover novel biology not identified from any individual 'omics measurement. We leverage multiple 'omic measurements using the Simultaneous Analysis of Multiple Networks (SAMNet) computational framework to model a genome scale shRNA screen investigating Acute Lymphoblastic Leukemia (ALL) progression in vivo. Our network model is enriched for cellular processes associated with hematopoietic differentiation and homeostasis even though none of the individual 'omic sets showed this enrichment. The model identifies genes associated with the TGF-beta pathway and predicts a role in ALL progression for many genes without this functional annotation. We further experimentally validate the hidden genes - Wwp1, a ubiquitin ligase, and Hgs, a multi-vesicular body associated protein - for their role in ALL progression. Our ALL pathway model includes genes with roles in multiple types of leukemia and roles in hematological development. We identify a tumor suppressor role for Wwp1 in ALL progression. This work demonstrates that network integration approaches can compensate for off-target effects, and that these methods can uncover novel biology retroactively on existing screening data. We anticipate that this framework will be valuable to multiple functional genomic technologies - siRNA, shRNA, and CRISPR - generally, and will improve the utility of functional genomic studies.
Collapse
Affiliation(s)
- Jennifer L. Wilson
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , 16-343 , Cambridge MA 02139 , USA . ; ; Tel: +1-617-252-1629
| | - Simona Dalin
- Department of Biology , Massachusetts Institute of Technology , Cambridge MA 02139 , USA
| | - Sara Gosline
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , 16-343 , Cambridge MA 02139 , USA . ; ; Tel: +1-617-252-1629
| | - Michael Hemann
- Department of Biology , Massachusetts Institute of Technology , Cambridge MA 02139 , USA
| | - Ernest Fraenkel
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , 16-343 , Cambridge MA 02139 , USA . ; ; Tel: +1-617-252-1629
- Department of Biology , Massachusetts Institute of Technology , Cambridge MA 02139 , USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , 16-343 , Cambridge MA 02139 , USA . ; ; Tel: +1-617-252-1629
| |
Collapse
|
38
|
Manlove LS, Schenkel JM, Manlove KR, Pauken KE, Williams RT, Vezys V, Farrar MA. Heterologous Vaccination and Checkpoint Blockade Synergize To Induce Antileukemia Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:4793-804. [PMID: 27183622 DOI: 10.4049/jimmunol.1600130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/25/2016] [Indexed: 11/19/2022]
Abstract
Checkpoint blockade-based immunotherapies are effective in cancers with high numbers of nonsynonymous mutations. In contrast, current paradigms suggest that such approaches will be ineffective in cancers with few nonsynonymous mutations. To examine this issue, we made use of a murine model of BCR-ABL(+) B-lineage acute lymphoblastic leukemia. Using a principal component analysis, we found that robust MHC class II expression, coupled with appropriate costimulation, correlated with lower leukemic burden. We next assessed whether checkpoint blockade or therapeutic vaccination could improve survival in mice with pre-established leukemia. Consistent with the low mutation load in our leukemia model, we found that checkpoint blockade alone had only modest effects on survival. In contrast, robust heterologous vaccination with a peptide derived from the BCR-ABL fusion (BAp), a key driver mutation, generated a small population of mice that survived long-term. Checkpoint blockade strongly synergized with heterologous vaccination to enhance overall survival in mice with leukemia. Enhanced survival did not correlate with numbers of BAp:I-A(b)-specific T cells, but rather with increased expression of IL-10, IL-17, and granzyme B and decreased expression of programmed death 1 on these cells. Our findings demonstrate that vaccination to key driver mutations cooperates with checkpoint blockade and allows for immune control of cancers with low nonsynonymous mutation loads.
Collapse
Affiliation(s)
- Luke S Manlove
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Jason M Schenkel
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kezia R Manlove
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802
| | - Kristen E Pauken
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Microbiology, Institute of Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Vaiva Vezys
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
39
|
Xu N, Li YL, Li X, Zhou X, Cao R, Li H, Li L, Lu ZY, Huang JX, Fan ZP, Huang F, Zhou HS, Zhang S, Liu Z, Zhu HQ, Liu QF, Liu XL. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol 2016; 9:40. [PMID: 27090891 PMCID: PMC4836197 DOI: 10.1186/s13045-016-0270-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frequency relapses are common in Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) following tyrosine kinase inhibitors (TKIs). CDKN2A/B is believed to contribute to this chemotherapy resistance. METHODS To further investigate the association between CDKN2 status and TKI resistance, the prevalence of CDKN2 deletions and its correlation with a variety of clinical features was assessed in 135 Ph-positive ALL patients using interphase fluorescence in situ hybridization (I-FISH). RESULTS Results showed that no difference occurred between patients with CDKN2 deletion (44/135) and wild-type patients in sex, age, and complete remission (CR) rate following induction chemotherapy combined with tyrosine kinase inhibitors (TKIs). However, CDKN2 deletion carriers demonstrated higher white blood cell (WBC) count, enhanced rates of hepatosplenomegaly (P = 0.006), and upregulation of CD20 expression (P = 0.001). Moreover, deletions of CDKN2 resulted in lower rates of complete molecular response (undetectable BCR/ABL), increased cumulative incidence of relapse, short overall survival (OS), and disease-free survival (DFS) time (P < 0.05) even though these patients received chemotherapy plus TKIs followed by allogenic hematopoietic stem cell transplantation (Allo-HSCT). In the case of 44 patients who presented with CDKN2 deletion, 18 patients were treated with dasatinib treatment, and another 26 patients were treated with imatinib therapy, and our study found that there were no differences associated with OS (P = 0.508) and DFS (P = 0.555) between the two groups. CONCLUSIONS CDKN2 deletion is frequently acquired during Ph-positive ALL progression and serves as a poor prognostic marker of long-term outcome in Ph-positive ALL patients with CDKN2 deletion even after the second-generation tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-ling Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rui Cao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zi-yuan Lu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ji-xian Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-ping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hong-sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Zhang
- Guangzhou Air Force Headquarters Hospital, No. 475, Huanshi East Road, Yuexiu District, Guangzhou, 510071, China
| | - Zhi Liu
- Department of Hematology, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | - Hong-qian Zhu
- Department of Hematology, Hospital of Guizhou Province, Guizhou, 550002, China
| | - Qi-fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-li Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
40
|
Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, Lauffenburger DA, Hemann MT. Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution. Cell 2016; 165:234-246. [PMID: 26924578 DOI: 10.1016/j.cell.2016.01.045] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities.
Collapse
Affiliation(s)
- Boyang Zhao
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph C Sedlak
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Raja Srinivas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pau Creixell
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin R Pritchard
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bruce Tidor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Wigton EJ, Thompson SB, Long RA, Jacobelli J. Myosin-IIA regulates leukemia engraftment and brain infiltration in a mouse model of acute lymphoblastic leukemia. J Leukoc Biol 2016; 100:143-53. [PMID: 26792819 DOI: 10.1189/jlb.1a0815-342r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Leukemia dissemination (the spread of leukemia cells from the bone marrow) and relapse are associated with poor prognosis. Often, relapse occurs in peripheral organs, such as the CNS, which acts as a sanctuary site for leukemia cells to escape anti-cancer treatments. Similar to normal leukocyte migration, leukemia dissemination entails migration of cells from the blood circulation into tissues by extravasation. To extravasate, leukemia cells cross through vascular endothelial walls via a process called transendothelial migration, which requires cytoskeletal remodeling. However, the specific molecular players in leukemia extravasation are not fully known. We examined the role of myosin-IIA a cytoskeletal class II myosin motor protein, in leukemia progression and dissemination into the CNS by use of a mouse model of Bcr-Abl-driven B cell acute lymphoblastic leukemia. Small hairpin RNA-mediated depletion of myosin-IIA did not affect apoptosis or the growth rate of B cell acute lymphoblastic leukemia cells. However, in an in vivo leukemia transfer model, myosin-IIA depletion slowed leukemia progression and prolonged survival, in part, by reducing the ability of B cell acute lymphoblastic leukemia cells to engraft efficiently. Finally, myosin-IIA inhibition, either by small hairpin RNA depletion or chemical inhibition by blebbistatin, drastically reduced CNS infiltration of leukemia cells. The effects on leukemia cell entry into tissues were mostly a result of the requirement for myosin-IIA to enable leukemia cells to complete the transendothelial migration process during extravasation. Overall, our data implicate myosin-IIA as a key mediator of leukemia cell migration, making it a promising target to inhibit leukemia dissemination in vivo and potentially reduce leukemia relapses.
Collapse
Affiliation(s)
- Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and
| | - Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colorado, USA
| |
Collapse
|
42
|
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2016; 16:225-38. [PMID: 25748930 DOI: 10.1016/j.stem.2015.02.015] [Citation(s) in RCA: 1107] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets.
Collapse
Affiliation(s)
- Vicki Plaks
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Niwen Kong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
43
|
KANDİLCİ A. Cancer stem cells: lessons learned from the leukemic stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1509-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
44
|
Shingleton JR, Hemann MT. The Chromatin Regulator CHD8 Is a Context-Dependent Mediator of Cell Survival in Murine Hematopoietic Malignancies. PLoS One 2015; 10:e0143275. [PMID: 26588464 PMCID: PMC4654476 DOI: 10.1371/journal.pone.0143275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Aberrant chromatin regulation is a frequent driver of leukemogenesis. Mutations in chromatin regulators often result in more stem-like cells that seed a bulk leukemic population. Inhibitors targeting these proteins represent an emerging class of therapeutics, and identifying further chromatin regulators that promote disease progression may result in additional drug targets. We identified the chromatin-modifying protein CHD8 as necessary for cell survival in a mouse model of BCR-Abl+ B-cell acute lymphoblastic leukemia. This disease has a poor prognosis despite treatment with kinase inhibitors targeting BCR-Abl. Although implicated as a risk factor in autism spectrum disorder and a tumor suppressor in prostate and lung cancer, the mechanism of CHD8's activity is still unclear and has never been studied in the context of hematopoietic malignancies. Here we demonstrate that depletion of CHD8 in B-ALL cells leads to cell death. While multiple B cell malignancies were dependent on CHD8 expression for survival, T cell malignancies displayed milder phenotypes upon CHD8 knockdown. In addition, ectopic expression of the Notch1 intracellular domain in a T cell malignancy partially alleviated the detrimental effect of CHD8 depletion. Our results demonstrate that CHD8 has a context-dependent role in cell survival, and its inhibition may be an effective treatment for B lymphoid malignancies.
Collapse
Affiliation(s)
- Jennifer R. Shingleton
- Koch Institute for Integrated Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| | - Michael T. Hemann
- Koch Institute for Integrated Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
45
|
Churchman ML, Low J, Qu C, Paietta EM, Kasper LH, Chang Y, Payne-Turner D, Althoff MJ, Song G, Chen SC, Ma J, Rusch M, McGoldrick D, Edmonson M, Gupta P, Wang YD, Caufield W, Freeman B, Li L, Panetta JC, Baker S, Yang YL, Roberts KG, McCastlain K, Iacobucci I, Peters JL, Centonze VE, Notta F, Dobson SM, Zandi S, Dick JE, Janke L, Peng J, Kodali K, Pagala V, Min J, Mayasundari A, Williams RT, Willman CL, Rowe J, Luger S, Dickins RA, Guy RK, Chen T, Mullighan CG. Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell 2015; 28:343-56. [PMID: 26321221 PMCID: PMC4573904 DOI: 10.1016/j.ccell.2015.07.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 01/21/2023]
Abstract
Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggressive lymphoid leukemia. Ikzf1 alterations result in acquisition of stem cell-like features, including self-renewal and increased bone marrow stromal adhesion. Retinoid receptor agonists reversed this phenotype, partly by inducing expression of IKZF1, resulting in abrogation of adhesion and self-renewal, cell cycle arrest, and attenuation of proliferation without direct cytotoxicity. Retinoids potentiated the activity of dasatinib in mouse and human BCR-ABL1 ALL, providing an additional therapeutic option in IKZF1-mutated ALL.
Collapse
Affiliation(s)
- Michelle L Churchman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth M Paietta
- Department of Medicine, Montefiore Medical Center, North Division, Bronx, NY 10466, USA
| | - Lawryn H Kasper
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark J Althoff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shann-Ching Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dan McGoldrick
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William Caufield
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Burgess Freeman
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharyn Baker
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yung-Li Yang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kelly McCastlain
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer L Peters
- Department of Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Victoria E Centonze
- Department of Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephanie M Dobson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sasan Zandi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kiran Kodali
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Cheryl L Willman
- Department of Pathology, University of New Mexico Cancer Center, Albuquerque, NM 87131, USA
| | - Jacob Rowe
- Hematology, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
| | - Selina Luger
- Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross A Dickins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
46
|
Hauer J, Borkhardt A, Sánchez-García I, Cobaleda C. Genetically engineered mouse models of human B-cell precursor leukemias. Cell Cycle 2015; 13:2836-46. [PMID: 25486471 PMCID: PMC4613455 DOI: 10.4161/15384101.2014.949137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemias (pB-ALLs) are the most frequent type of malignancies of the childhood, and also affect an important proportion of adult patients. In spite of their apparent homogeneity, pB-ALL comprises a group of diseases very different both clinically and pathologically, and with very diverse outcomes as a consequence of their biology, and underlying molecular alterations. Their understanding (as a prerequisite for their cure) will require a sustained multidisciplinary effort from professionals coming from many different fields. Among all the available tools for pB-ALL research, the use of animal models stands, as of today, as the most powerful approach, not only for the understanding of the origin and evolution of the disease, but also for the development of new therapies. In this review we go over the most relevant (historically, technically or biologically) genetically engineered mouse models (GEMMs) of human pB-ALLs that have been generated over the last 20 years. Our final aim is to outline the most relevant guidelines that should be followed to generate an “ideal” animal model that could become a standard for the study of human pB-ALL leukemia, and which could be shared among research groups and drug development companies in order to unify criteria for studies like drug testing, analysis of the influence of environmental risk factors, or studying the role of both low-penetrance mutations and cancer susceptibility alterations.
Collapse
Affiliation(s)
- Julia Hauer
- a Department of Pediatric Oncology ; Hematology and Clinical Immunology ; Heinrich-Heine University Dusseldorf ; Medical Faculty ; Dusseldorf , Germany
| | | | | | | |
Collapse
|
47
|
Meacham CE, Lawton LN, Soto-Feliciano YM, Pritchard JR, Joughin BA, Ehrenberger T, Fenouille N, Zuber J, Williams RT, Young RA, Hemann MT. A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth. Genes Dev 2015; 29:483-8. [PMID: 25737277 PMCID: PMC4358400 DOI: 10.1101/gad.254151.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Meacham et al. performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo and revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. They identified “context-specific” regulators of leukemia development, including the gene encoding the zinc finger protein Phf6. While inactivating mutations in Phf6 are commonly observed in human myeloid and T-cell malignancies, they found that Phf6 suppression in B-cell malignancies impairs tumor progression. We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many “context-specific” regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a “lineage-specific” cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies.
Collapse
Affiliation(s)
- Corbin E Meacham
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lee N Lawton
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Yadira M Soto-Feliciano
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Justin R Pritchard
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tobias Ehrenberger
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nina Fenouille
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Johannes Zuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Richard T Williams
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
48
|
Abstract
The tumor microenvironment (TME) is being increasingly recognized as a key factor in multiple stages of disease progression, particularly local resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. An appropriate understanding of the TME promotes evaluation and selection of candidate agents to control malignancies at both the primary sites as well as the metastatic settings. This review presents a timely outline of research advances in TME biology and highlights the prospect of targeting the TME as a critical strategy to overcome acquired resistance, prevent metastasis, and improve therapeutic efficacy. As benign cells in TME niches actively modulate response of cancer cells to a broad range of standard chemotherapies and targeted agents, cancer-oriented therapeutics should be combined with TME-targeting treatments to achieve optimal clinical outcomes. Overall, a body of updated information is delivered to summarize recently emerging and rapidly progressing aspects of TME studies, and to provide a significant guideline for prospective development of personalized medicine, with the long term aim of providing a cure for cancer patients.
Collapse
|
49
|
Tyrosine kinase inhibitors induce mesenchymal stem cell-mediated resistance in BCR-ABL+ acute lymphoblastic leukemia. Blood 2015; 125:2968-73. [PMID: 25712988 DOI: 10.1182/blood-2014-05-576421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/11/2015] [Indexed: 01/03/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used as a frontline therapy for BCR-ABL(+) acute lymphoblastic leukemia (ALL). However, resistance to TKI therapy arises rapidly, and its underlying molecular mechanisms are poorly understood. In this study, we identified a novel cascade of events initiated by TKIs and traversing through mesenchymal stem cells (MSCs) to leukemic cells, leading to resistance. MSCs exposed to TKIs acquired a new functional status with the expression of genes encoding for chemo-attractants, adhesion molecules, and prosurvival growth factors, and this priming enabled leukemic cells to form clusters underneath the MSCs. This cluster formation was associated with the protection of ALL cells from therapy as leukemic cells switched from BCR-ABL signaling to IL-7R/Janus kinase signaling to survive in the MSC milieu. Our findings illustrate a novel perspective in the evolution of TKI resistance and provide insights for advancing the treatment of BCR-ABL(+) ALL.
Collapse
|
50
|
Alvarez-Calderon F, Gregory MA, Pham-Danis C, DeRyckere D, Stevens BM, Zaberezhnyy V, Hill AA, Gemta L, Kumar A, Kumar V, Wempe MF, Pollyea DA, Jordan CT, Serkova NJ, Graham DK, DeGregori J. Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations. Clin Cancer Res 2014; 21:1360-72. [PMID: 25547679 DOI: 10.1158/1078-0432.ccr-14-2146] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Although tyrosine kinase inhibitors (TKI) can be effective therapies for leukemia, they fail to fully eliminate leukemic cells and achieve durable remissions for many patients with advanced BCR-ABL(+) leukemias or acute myelogenous leukemia (AML). Through a large-scale synthetic lethal RNAi screen, we identified pyruvate dehydrogenase, the limiting enzyme for pyruvate entry into the mitochondrial tricarboxylic acid cycle, as critical for the survival of chronic myelogenous leukemia (CML) cells upon BCR-ABL inhibition. Here, we examined the role of mitochondrial metabolism in the survival of Ph(+) leukemia and AML upon TK inhibition. EXPERIMENTAL DESIGN Ph(+) cancer cell lines, AML cell lines, leukemia xenografts, cord blood, and patient samples were examined. RESULTS We showed that the mitochondrial ATP-synthase inhibitor oligomycin-A greatly sensitized leukemia cells to TKI in vitro. Surprisingly, oligomycin-A sensitized leukemia cells to BCR-ABL inhibition at concentrations of 100- to 1,000-fold below those required for inhibition of respiration. Oligomycin-A treatment rapidly led to mitochondrial membrane depolarization and reduced ATP levels, and promoted superoxide production and leukemia cell apoptosis when combined with TKI. Importantly, oligomycin-A enhanced elimination of BCR-ABL(+) leukemia cells by TKI in a mouse model and in primary blast crisis CML samples. Moreover, oligomycin-A also greatly potentiated the elimination of FLT3-dependent AML cells when combined with an FLT3 TKI, both in vitro and in vivo. CONCLUSIONS TKI therapy in leukemia cells creates a novel metabolic state that is highly sensitive to particular mitochondrial perturbations. Targeting mitochondrial metabolism as an adjuvant therapy could therefore improve therapeutic responses to TKI for patients with BCR-ABL(+) and FLT3(ITD) leukemias.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Dihydrolipoyllysine-Residue Acetyltransferase/genetics
- Disease Models, Animal
- Female
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- Ketone Oxidoreductases/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors
- Oligomycins/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA Interference
- RNA, Small Interfering
- Superoxides/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Francesca Alvarez-Calderon
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark A Gregory
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Catherine Pham-Danis
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deborah DeRyckere
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brett M Stevens
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vadym Zaberezhnyy
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda A Hill
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lelisa Gemta
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amit Kumar
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vijay Kumar
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael F Wempe
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel A Pollyea
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Craig T Jordan
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Natalie J Serkova
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Douglas K Graham
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|