1
|
Sorensen Turpin CG, Sloan D, LaForest M, Klebanow LU, Mitchell D, Severson AF, Bembenek JN. Securin Regulates the Spatiotemporal Dynamics of Separase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571338. [PMID: 38168402 PMCID: PMC10760073 DOI: 10.1101/2023.12.12.571338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Separase is a key regulator of the metaphase to anaphase transition with multiple functions. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis in mid-anaphase. The anaphase promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation. How this pathway controls the exocytic function of separase has not been investigated. During meiosis I, securin is degraded over several minutes, while separase rapidly relocalizes from kinetochore structures at the spindle and cortex to sites of action on chromosomes and vesicles at anaphase onset. The loss of cohesin coincides with the relocalization of separase to the chromosome midbivalent at anaphase onset. APC/C depletion prevents separase relocalization, while securin depletion causes precocious separase relocalization. Expression of non-degradable securin inhibits chromosome segregation, exocytosis, and separase localization to vesicles but not to the anaphase spindle. We conclude that APC/C mediated securin degradation controls separase localization. This spatiotemporal regulation will impact the effective local concentration of separase for more precise targeting of substrates in anaphase.
Collapse
Affiliation(s)
- Christopher G. Sorensen Turpin
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dillon Sloan
- Current Address: Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marian LaForest
- Current Address: Columbia University, Herbert Irving Comprehensive Cancer Center, NYC, New York, United States of America
| | | | - Diana Mitchell
- Current Address: Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Aaron F. Severson
- Current Address: Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Joshua N. Bembenek
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
2
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
3
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
4
|
Blattner AC, Chaurasia S, McKee BD, Lehner CF. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres. PLoS Genet 2016; 12:e1005996. [PMID: 27120695 PMCID: PMC4847790 DOI: 10.1371/journal.pgen.1005996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.
Collapse
Affiliation(s)
- Ariane C. Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Soumya Chaurasia
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Bruce D. McKee
- Department of Biochemistry, Cellular and Molecular Biology (BCMB), University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Guo Z, Batiha O, Bourouh M, Fifield E, Swan A. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila. J Cell Sci 2016; 129:531-42. [PMID: 26675236 DOI: 10.1242/jcs.179358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Osamah Batiha
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Mohammed Bourouh
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Eric Fifield
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Andrew Swan
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| |
Collapse
|
6
|
Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Mol Cell 2015; 60:446-59. [PMID: 26527280 DOI: 10.1016/j.molcel.2015.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/08/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations.
Collapse
Affiliation(s)
- Julia Kamenz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA; Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | | | - Armin Kubis
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA; Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany.
| |
Collapse
|
7
|
Matsusaka T, Enquist-Newman M, Morgan DO, Pines J. Co-activator independent differences in how the metaphase and anaphase APC/C recognise the same substrate. Biol Open 2014; 3:904-12. [PMID: 25217616 PMCID: PMC4197439 DOI: 10.1242/bio.20149415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022] Open
Abstract
The Anaphase Promoting Complex or Cyclosome (APC/C) is critical to the control of mitosis. The APC/C is an ubiquitin ligase that targets specific mitotic regulators for proteolysis at distinct times in mitosis, but how this is achieved is not well understood. We have addressed this question by determining whether the same substrate, cyclin B1, is recognised in the same way by the APC/C at different times in mitosis. Unexpectedly, we find that distinct but overlapping motifs in cyclin B1 are recognised by the APC/C in metaphase compared with anaphase, and this does not depend on the exchange of Cdc20 for Cdh1. Thus, changes in APC/C substrate specificity in mitosis can potentially be conferred by altering interaction sites in addition to exchanging Cdc20 for Cdh1.
Collapse
Affiliation(s)
- Takahiro Matsusaka
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maria Enquist-Newman
- Department of Physiology, University of California in San Francisco (UCSF), 600 16th Street, San Francisco, CA 94158, USA
| | - David O Morgan
- Department of Physiology, University of California in San Francisco (UCSF), 600 16th Street, San Francisco, CA 94158, USA
| | - Jonathon Pines
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
8
|
Kuang C, Golden KL, Simon CR, Damrath J, Buttitta L, Gamble CE, Lee CY. A novel fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells. Development 2014; 141:1453-64. [PMID: 24598157 DOI: 10.1242/dev.104786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis.
Collapse
Affiliation(s)
- Chaoyuan Kuang
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Nearly all cell division mutants in Drosophila were recovered in late larval/pupal lethal screens, with less than 10 embryonic lethal mutants identified, because larval development occurs without a requirement for cell division. Only cells in the nervous system and the imaginal cells that generate the adult body divide during larval stages, with larval tissues growing by increasing ploidy rather than cell number. Thus, most mutants perturbing mitosis or the cell cycle do not manifest a phenotype until the adult body differentiates in late larval and pupal stages. To identify cell-cycle components whose maternal pools are depleted in embryogenesis or that have specific functions in embryogenesis, we screened for mutants defective in cell division during embryogenesis. Five new alleles of Cyclin E were recovered, ranging from a missense mutation that is viable to stop codons causing embryonic lethality. These permitted us to investigate the requirements for Cyclin E function in neuroblast cell fate determination, a role previously shown for a null Cyclin E allele. The mutations causing truncation of the protein affect cell fate of the NB6-4 neuroblast, whereas the weak missense mutation has no effect. We identified mutations in the pavarotti (pav) and tumbleweed (tum) genes needed for cytokinesis by a phenotype of large and multinucleate cells in the embryonic epidermis and nervous system. Other mutations affecting the centromere protein CAL1 and the kinetochore protein Spc105R caused mitotic defects in the nervous system.
Collapse
|
10
|
Zou H. The sister bonding of duplicated chromosomes. Semin Cell Dev Biol 2011; 22:566-71. [PMID: 21497666 PMCID: PMC3142318 DOI: 10.1016/j.semcdb.2011.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022]
Abstract
Sister chromatid cohesion and separation are two fundamental chromosome dynamics that are essential to equal chromosome segregation during cell proliferation. In this review, I will discuss the major steps that regulate these dynamics during mitosis, with an emphasis on vertebrate cells. The implications of these machineries outside of sister chromatid cohesion and separation are also discussed.
Collapse
Affiliation(s)
- Hui Zou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75252-9148, United States.
| |
Collapse
|
11
|
Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011; 22:544-50. [PMID: 21477659 DOI: 10.1016/j.semcdb.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720-3202, United States
| | | |
Collapse
|
12
|
Development and validation of a fluorogenic assay to measure separase enzyme activity. Anal Biochem 2009; 392:133-8. [PMID: 19497291 DOI: 10.1016/j.ab.2009.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
Separase, an endopeptidase, plays a pivotal role in the separation of sister chromatids at anaphase by cleaving its substrate cohesin Rad21. Recent study suggests that separase is an oncogene. Overexpression of separase induces aneuploidy and mammary tumorigenesis in mice. Separase is also overexpressed and mislocalized in a wide range of human cancers, including breast, prostate, and osteosarcoma. Currently, there is no quantitative assay to measure separase enzymatic activity. To quantify separase enzymatic activity, we have designed a fluorogenic assay in which 7-amido-4-methyl coumaric acid (AMC)-conjugated Rad21 mitotic cleavage site peptide (Ac-Asp-Arg-Glu-Ile-Nle-Arg-MCA) is used as the substrate of separase. We used this assay to quantify separase activity during cell cycle progression and in a panel of human tumor cell lines as well as leukemia patient samples.
Collapse
|
13
|
Bessat M, Ersfeld K. Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei. Mol Microbiol 2009; 71:1371-85. [PMID: 19183276 DOI: 10.1111/j.1365-2958.2009.06611.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Minichromosomes in the nuclear genome of Trypanosoma brucei exhibit unusual patterns of mitotic segregation. To address whether differences in their mode of segregation in relation to large chromosomes are reflected at a molecular level, we characterized two different proteins that have highly conserved functions in eukaryotic chromosomes segregation: the SMC3 protein, a component of the chromatid cohesion apparatus, and the protease separase that resolves the cohesin complex at the onset of anaphase and has, in other organisms, additional functions during mitosis. Using in situ hybridization we show that RNA interference-mediated depletion of SMC3 has no visible effect on the segregation of the minichromosomal population but interferes with the faithful mitotic separation of large chromosomes. In contrast, separase depletion causes missegregation of both mini- and large chromosomes. We also show that SMC3 persists as a soluble protein throughout the cell cycle and only associates with chromatin between G1 and metaphase. Separase is present in the cell during the entire cell cycle, but is excluded from the nucleus until the metaphase-anaphase transition, thereby providing a potential control mechanism to prevent the untimely cleavage of the cohesin complex.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Biological Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
14
|
Csizmok V, Felli IC, Tompa P, Banci L, Bertini I. Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J Am Chem Soc 2009; 130:16873-9. [PMID: 19053469 DOI: 10.1021/ja805510b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the molecular action of securin, the inhibitor of separase in mitosis, is of immense theoretical and biomedical importance. The residue-level structural description of an intrinsically disordered protein of this length (202 amino acids, containing 24 prolines), however, represents a particular challenge. Here we combined (1)H-detected and (13)C-detected protonless NMR experiments to achieve full assignment of securin's backbone amide resonances. Chemical shifts, (15)N relaxation rates (R(1), R(2), (1)H-(15)N NOEs), (1)H exchange rates with the solvent (CLEANEX-PM), and (1)H-(15)N residual dipolar couplings were determined along the entire length of the protein. This analysis showed that securin is not entirely disordered, but segregates into a largely disordered N-terminal half and a C-terminal half with transient segmental order, within which the segment D(150)-F(159) has a significant helical tendency and segments E(113)-S(127) and W(174)-L(178) also show a significant deviation from random-coil behavior. These results, in combination with bioinformatic and biochemical data on the securin/separase interaction, shed light on the inhibitory action of securin on separase.
Collapse
Affiliation(s)
- Veronika Csizmok
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Karolina ut 29, H-1113, Hungary
| | | | | | | | | |
Collapse
|
15
|
Panigrahi AK, Pati D. Road to the crossroads of life and death: linking sister chromatid cohesion and separation to aneuploidy, apoptosis and cancer. Crit Rev Oncol Hematol 2009; 72:181-93. [PMID: 19162508 DOI: 10.1016/j.critrevonc.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/02/2008] [Accepted: 12/11/2008] [Indexed: 01/22/2023] Open
Abstract
Genomic instability, aberrant cell proliferation and defects in apoptotic cell death are critical issues in cancer. The two most prominent hallmarks of cancer cells are multiple mutations in key genes encoding proteins that regulate important cell-survival pathways, and marked restructuring or redistribution of the chromosomes (aneuploidy) indicative of genomic instability. Both these aspects have been suggested to cause cancer, though a causal role for chromosomal restructuring in tumorigenesis has not been experimentally fully substantiated. This review is aimed at understanding the mechanisms of cell cycle (proliferation) and programmed cell death (apoptosis) and chromosomal instability governed by cohesin and other aneuploidy promoters, which will provide new insights into the process of carcinogenesis and new avenues for targeted treatment.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 6621 Fannin St., MC3-3320, Houston, TX 77030, USA
| | | |
Collapse
|
16
|
Panguluri SK, Yeakel C, Kakar SS. PTTG: an important target gene for ovarian cancer therapy. J Ovarian Res 2008; 1:6. [PMID: 19014669 PMCID: PMC2584053 DOI: 10.1186/1757-2215-1-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/20/2008] [Indexed: 12/13/2022] Open
Abstract
Pituitary tumor transforming gene (PTTG), also known as securin is an important gene involved in many biological functions including inhibition of sister chromatid separation, DNA repair, organ development, and expression and secretion of angiogenic and metastatic factors. Proliferating cancer cells and most tumors express high levels of PTTG. Overexpression of PTTG in vitro induces cellular transformation and development of tumors in nude mice. The PTTG expression levels have been correlated with tumor progression, invasion, and metastasis. Recent studies show that down regulation of PTTG in tumor cell lines and tumors in vivo results in suppression of tumor growth, suggesting its important role in tumorigenesis. In this review, we focus on PTTG structure, sub-cellular distribution, cellular functions, and role in tumor progression with suggestions on possible exploration of this gene for cancer therapy.
Collapse
Affiliation(s)
- Siva Kumar Panguluri
- Department of Physiology and Biophysics, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
17
|
Choi E, Dial JM, Jeong DE, Hall MC. Unique D box and KEN box sequences limit ubiquitination of Acm1 and promote pseudosubstrate inhibition of the anaphase-promoting complex. J Biol Chem 2008; 283:23701-10. [PMID: 18596038 PMCID: PMC3259782 DOI: 10.1074/jbc.m803695200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/01/2008] [Indexed: 12/15/2022] Open
Abstract
The anaphase-promoting complex (APC) regulates cell division in eukaryotes by targeting specific proteins for destruction. APC substrates generally contain one or more short degron sequences that help mediate their recognition and poly-ubiquitination by the APC. The most common and well characterized degrons are the destruction box (D box) and the KEN box. The budding yeast Acm1 protein, an inhibitor of Cdh1-activated APC (APC(Cdh1)) also contains several conserved D and KEN boxes, and here we report that two of these located in the central region of Acm1 constitute a pseudosubstrate sequence required for APC(Cdh1) inhibition. Acm1 interacted with and inhibited substrate binding to the WD40 repeat domain of Cdh1. Combined mutation of the central D and KEN boxes strongly reduced both binding to the Cdh1 WD40 domain and APC(Cdh1) inhibition. Despite this, the double mutant, but not wild-type Acm1, was poly-ubiquitinated by APC(Cdh1) in vitro. Thus, unlike substrates in which D and KEN boxes promote ubiquitination, these same elements in the central region of Acm1 prevent ubiquitination. We propose that this unique property of the Acm1 degron sequences results from an unusually high affinity interaction with the substrate receptor site on the WD40 domain of Cdh1 that may serve both to promote APC inhibition and protect Acm1 from destruction.
Collapse
Affiliation(s)
- Eunyoung Choi
- Biochemistry Department and
Purdue Cancer Center, Purdue University, West
Lafayette, Indiana 47907 and the Department of
Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North
Carolina 27599
| | - J. Michael Dial
- Biochemistry Department and
Purdue Cancer Center, Purdue University, West
Lafayette, Indiana 47907 and the Department of
Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North
Carolina 27599
| | - Dah-Eun Jeong
- Biochemistry Department and
Purdue Cancer Center, Purdue University, West
Lafayette, Indiana 47907 and the Department of
Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North
Carolina 27599
| | - Mark C. Hall
- Biochemistry Department and
Purdue Cancer Center, Purdue University, West
Lafayette, Indiana 47907 and the Department of
Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North
Carolina 27599
| |
Collapse
|
18
|
Pesin JA, Orr-Weaver TL. Developmental role and regulation of cortex, a meiosis-specific anaphase-promoting complex/cyclosome activator. PLoS Genet 2008; 3:e202. [PMID: 18020708 PMCID: PMC2077894 DOI: 10.1371/journal.pgen.0030202] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
During oogenesis in metazoans, the meiotic divisions must be coordinated with development of the oocyte to ensure successful fertilization and subsequent embryogenesis. The ways in which the mitotic machinery is specialized for meiosis are not fully understood. cortex, which encodes a putative female meiosis-specific anaphase-promoting complex/cyclosome (APC/C) activator, is required for proper meiosis in Drosophila. We demonstrate that CORT physically associates with core subunits of the APC/C in ovaries. APC/C(CORT) targets Cyclin A for degradation prior to the metaphase I arrest, while Cyclins B and B3 are not targeted until after egg activation. We investigate the regulation of CORT and find that CORT protein is specifically expressed during the meiotic divisions in the oocyte. Polyadenylation of cort mRNA is correlated with appearance of CORT protein at oocyte maturation, while deadenylation of cort mRNA occurs in the early embryo. CORT protein is targeted for degradation by the APC/C following egg activation, and this degradation is dependent on an intact D-box in the C terminus of CORT. Our studies reveal the mechanism for developmental regulation of an APC/C activator and suggest it is one strategy for control of the female meiotic cell cycle in a multicellular organism.
Collapse
Affiliation(s)
- Jillian A Pesin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - Terry L Orr-Weaver
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Khetani RS, Bickel SE. Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 2007; 120:3123-37. [PMID: 17698920 DOI: 10.1242/jcs.009977] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte centromeres. Although SMC1 and SMC3 localization along chromosome cores appears normal during early pachytene in ord mutant oocytes, the cores disassemble as meiosis progresses. These data suggest that cohesin loading and/or accumulation at centromeres versus arms is under differential control during Drosophila meiosis. Our experiments also reveal that the alpha-kleisin C(2)M is required for the assembly of chromosome cores during pachytene but is not involved in recruitment of cohesin SMCs to the centromeres. We present a model for how chromosome cores are assembled during Drosophila meiosis and the role of ORD in meiotic cohesion, chromosome core maintenance and homologous recombination.
Collapse
Affiliation(s)
- Radhika S Khetani
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
20
|
Abstract
Pituitary tumor-transforming gene-1 (PTTG1) is overexpressed in a variety of endocrine-related tumors, especially pituitary, thyroid, breast, ovarian, and uterine tumors, as well as nonendocrine-related cancers involving the central nervous, pulmonary, and gastrointestinal systems. Forced PTTG1 expression induces cell transformation in vitro and tumor formation in nude mice. In some tumors, high PTTG1 levels correlate with invasiveness, and PTTG1 has been identified as a key signature gene associated with tumor metastasis. Increasing evidence supports a multifunctional role of PTTG1 in cell physiology and tumorigenesis. Physiological PTTG1 properties include securin activity, DNA damage/repair regulation and involvement in organ development and metabolism. Tumorigenic mechanisms for PTTG1 action involve cell transformation and aneuploidy, apoptosis, and tumorigenic microenvironment feedback. This paper reviews recent advances in our understanding of PTTG1 structure and regulation and addresses known mechanisms of PTTG1 action. Recent knowledge gained from PTTG1-null mouse models and transgenic animals and their potential application to subcellular therapeutic targeting PTTG1 are discussed.
Collapse
Affiliation(s)
- George Vlotides
- Department of Medicine, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California 90048, USA
| | | | | |
Collapse
|
21
|
Koizumi K, Higashida H, Yoo S, Islam MS, Ivanov AI, Guo V, Pozzi P, Yu SH, Rovescalli AC, Tang D, Nirenberg M. RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci U S A 2007; 104:5626-31. [PMID: 17376868 PMCID: PMC1838491 DOI: 10.1073/pnas.0611687104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA interference (RNAi) has been shown to be a powerful method to study the function of genes in vivo by silencing endogenous mRNA with double-stranded (ds) RNA. Previously, we performed in vivo RNAi screening and identified 43 Drosophila genes, including 18 novel genes required for the development of the embryonic nervous system. In the present study, 22 additional genes affecting embryonic nervous system development were found. Novel RNAi-induced phenotypes affecting nervous system development were found for 16 of the 22 genes. Seven of the genes have unknown functions. Other genes found encode transcription factors, a chromatin-remodeling protein, membrane receptors, signaling molecules, and proteins involved in cell adhesion, RNA binding, and ion transport. Human orthologs were identified for proteins encoded by 16 of the genes. The total number of dsRNAs that we have tested for an RNAi-induced phenotype affecting the embryonic nervous system, including our previous study, is 7,312, which corresponds to approximately 50% of the genes in the Drosophila genome.
Collapse
Affiliation(s)
- Keita Koizumi
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Siuk Yoo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mohamad Saharul Islam
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Andrej I. Ivanov
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vicky Guo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paola Pozzi
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shu-Hua Yu
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alessandra C. Rovescalli
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Derek Tang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marshall Nirenberg
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Gil-Bernabé AM, Romero F, Limón-Mortés MC, Tortolero M. Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol Cell Biol 2006; 26:4017-27. [PMID: 16705156 PMCID: PMC1489102 DOI: 10.1128/mcb.01904-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed.
Collapse
Affiliation(s)
- Ana M Gil-Bernabé
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain
| | | | | | | |
Collapse
|
23
|
Nagao K, Yanagida M. Securin can have a separase cleavage site by substitution mutations in the domain required for stabilization and inhibition of separase. Genes Cells 2006; 11:247-60. [PMID: 16483313 DOI: 10.1111/j.1365-2443.2006.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Securin-separase complex is required for sister chromatid separation. Securin degrades in an APC/cyclosome dependent manner. Separase is activated on the destruction of securin and cleaves cohesin. Fission yeast securin/Cut2 required for proper separase localization has the motifs for destruction and separase-binding at the N- and C-termini, respectively. We report here the third essential domain, which becomes toxic when the 76-amino acid fragment (81-156) in the middle is overproduced. The fragment inhibits separase, while separase is recruited normally and securin is destroyed. It may interfere with separase activation after destruction of securin. If the 127DIE129 stretch is substituted for AIA, the fragment toxicity and the full-length function are abolished. Interestingly, Cut2 is cleaved in a separase dependent manner if the cleavage consensus is introduced following the DIE sequence. This finding is consistent with the proposed model that the DIE region may mimic the cleavage site of separase and inhibit the activation of separase. Evidence for physical interaction between the fragment and separase is provided. A temperature sensitive mutation cut1-K73 isolated by its specific resistance to the fragment toxicity resides in the superhelical region of separase, suggesting that the catalytic site and the helical region in separase may cooperate for activation.
Collapse
Affiliation(s)
- Koji Nagao
- Initial Research Project, Okinawa Institute of Science and Technology, Suzaki 12-22, Uruma, Okinawa, 904-2234, Japan
| | | |
Collapse
|
24
|
Jackson LP, Reed SI, Haase SB. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol Cell Biol 2006; 26:2456-66. [PMID: 16508019 PMCID: PMC1430301 DOI: 10.1128/mcb.26.6.2456-2466.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/13/2004] [Accepted: 12/23/2005] [Indexed: 01/29/2023] Open
Abstract
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.
Collapse
Affiliation(s)
- Leisa P Jackson
- DCMB Group, Department of Biology, Box 91000, LSRC Bldg., Research Dr., Durham, NC 27708, USA
| | | | | |
Collapse
|
25
|
Heeger S, Leismann O, Schittenhelm R, Schraidt O, Heidmann S, Lehner CF. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev 2005; 19:2041-53. [PMID: 16140985 PMCID: PMC1199574 DOI: 10.1101/gad.347805] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Faithful transmission of genetic information during mitotic divisions depends on bipolar attachment of sister kinetochores to the mitotic spindle and on complete resolution of sister-chromatid cohesion immediately before the metaphase-to-anaphase transition. Separase is thought to be responsible for sister-chromatid separation, but its regulation is not completely understood. Therefore, we have screened for genetic loci that modify the aberrant phenotypes caused by overexpression of the regulatory separase complex subunits Pimples/securin and Three rows in Drosophila. An interacting gene was found to encode a constitutive centromere protein. Characterization of its centromere localization domain revealed the presence of a diverged CENPC motif. While direct evidence for an involvement of this Drosophila Cenp-C homolog in separase activation at centromeres could not be obtained, in vivo imaging clearly demonstrated that it is required for normal attachment of kinetochores to the spindle.
Collapse
Affiliation(s)
- Sebastian Heeger
- Department of Genetics, BZMB, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Ji JY, Crest J, Schubiger G. Genetic interactions between Cdk1-CyclinB and the Separase complex in Drosophila. Development 2005; 132:1875-84. [PMID: 15772129 DOI: 10.1242/dev.01780] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk1-CycB plays a key role in regulating many aspects of cell-cycle events, such as cytoskeletal dynamics and chromosome behavior during mitosis. To investigate how Cdk1-CycB controls the coordination of these events, we performed a dosage-sensitive genetic screen, which is based on the observations that increased maternal CycB (four extra gene copies) leads to higher Cdk1-CycB activity in early Drosophila embryos, delays anaphase onset, and generates a sensitized non-lethal phenotype at the blastoderm stage (defined as six cycB phenotype). Here, we report that mutations in the gene three rows (thr) enhance, while mutations in pimples (pim, encoding Drosophila Securin) or separase (Sse) suppress, the sensitized phenotype. In Drosophila, both Pim and Thr are known to regulate Sse activity, and activated Sse cleaves a Cohesin subunit to initiate anaphase. Compared with the six cycB embryos, reducing Thr in embryos with more CycB further delays the initiation of anaphase, whereas reducing either Pim or Sse has the opposite effect. Furthermore, nuclei move slower during cortical migration in embryos with higher Cdk1-CycB activity, whereas reducing either Pim or Sse suppresses this phenotype by causing a novel nuclear migration pattern. Therefore, our genetic screen has identified all three components of the complex that regulates sister chromatid separation, and our observations indicate that interactions between Cdk1-CycB and the Pim-Thr-Sse complex are dosage sensitive.
Collapse
Affiliation(s)
- Jun-Yuan Ji
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|
27
|
Pandey R, Heidmann S, Lehner CF. Epithelial re-organization and dynamics of progression through mitosis in Drosophila separase complex mutants. J Cell Sci 2005; 118:733-42. [PMID: 15671062 DOI: 10.1242/jcs.01663] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Separase cleaves a subunit of the cohesin complex and thereby promotes sister chromatid separation during mitotic and meiotic divisions. Drosophila separase associates with regulatory subunits encoded by the pimples and three rows genes. Three rows and Pimples, the Drosophila securin, are required for sister chromatid separation during mitosis. Budding yeast separase provides other functions in addition to cohesin subunit cleavage, which are required for spindle organization and temporal regulation during exit from mitosis. Therefore, using time-lapse imaging in live embryos, we have carefully analyzed progression through mitosis in pimples and three rows mutants. We demonstrate that despite the total failure of sister chromatid separation, exit from mitosis, including a complete cytokinesis, proceeds with only a minor temporal delay in the epidermal cells of these mutants. Interestingly, however, pronounced defects in the epithelial organization develop in the following interphase, indicating that the separase complex is not only important for genetic stability but also and perhaps indirectly for epithelial integrity.
Collapse
Affiliation(s)
- Rahul Pandey
- BZMB, Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
28
|
Jäger H, Rauch M, Heidmann S. The Drosophila melanogaster condensin subunit Cap-G interacts with the centromere-specific histone H3 variant CID. Chromosoma 2004; 113:350-61. [PMID: 15592865 DOI: 10.1007/s00412-004-0322-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 10/08/2004] [Accepted: 10/13/2004] [Indexed: 01/18/2023]
Abstract
The centromere-specific histone H3 variant CENP-A plays a crucial role in kinetochore specification and assembly. We chose a genetic approach to identify interactors of the Drosophila CENP-A homolog CID. Overexpression of cid in the proliferating eye imaginal disk results in a rough eye phenotype, which is dependent on the ability of the overexpressed protein to localize to the kinetochore. A screen for modifiers of the rough eye phenotype identified mutations in the Drosophila condensin subunit gene Cap-G as interactors. Yeast two-hybrid experiments also reveal an interaction between CID and Cap-G. While chromosome condensation in Cap-G mutant embryos appears largely unaffected, massive defects in sister chromatid segregation occur during mitosis. Taken together, our results suggest a link between the chromatin condensation machinery and kinetochore structure.
Collapse
Affiliation(s)
- Hubert Jäger
- Lehrstuhl für Genetik, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
29
|
Heidmann D, Horn S, Heidmann S, Schleiffer A, Nasmyth K, Lehner CF. The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions. Chromosoma 2004; 113:177-87. [PMID: 15375666 DOI: 10.1007/s00412-004-0305-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/02/2004] [Accepted: 07/05/2004] [Indexed: 11/30/2022]
Abstract
Stepwise and regionally controlled resolution of sister chromatid cohesion is thought to be crucial for faithful chromosome segregation during meiotic divisions. In yeast, the meiosis-specific alpha-kleisin subunit of the cohesin complex, Rec8, is protected from cleavage by separase but only during meiosis I and specifically within the pericentromeric region. While the Drosophila genome does not contain an obvious Rec8 orthologue, as other animal and plant genomes, it includes c(2)M, which encodes a distant alpha-kleisin family member involved in female meiosis. C(2)M associates in vivo with the Smc3 cohesin subunit, as previously shown for yeast Rec8. In contrast to Rec8, however, C(2)M accumulates predominantly after the pre-meiotic S-phase. Moreover, after association with the synaptonemal complex, it disappears again and cannot be detected on meiotic chromosomes by metaphase I. C(2)M cleavage fragments are not observed during completion of the meiotic divisions, and mutations within putative separase cleavage sites do not interfere with meiotic chromosome segregation. Therefore, C(2)M appears to function within the synaptonemal complex during prophase I but possibly not thereafter. This suggests that C(2)M may not confer sister chromatid cohesion needed for meiosis I and II chromosome segregation.
Collapse
Affiliation(s)
- Doris Heidmann
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Lee JY, Dej KJ, Lopez JM, Orr-Weaver TL. Control of centromere localization of the MEI-S332 cohesion protection protein. Curr Biol 2004; 14:1277-83. [PMID: 15268859 DOI: 10.1016/j.cub.2004.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/28/2004] [Accepted: 06/01/2004] [Indexed: 11/23/2022]
Abstract
In mitosis and meiosis, cohesion is maintained at the centromere until sister-chromatid separation. Drosophila MEI-S332 is essential for centromeric cohesion in meiosis and contributes to, though is not absolutely required for, cohesion in mitosis. It localizes specifically to centromeres in prometaphase and delocalizes at the metaphase-anaphase transition. In mei-S332 mutants, centromeric sister-chromatid cohesion is lost at anaphase I, giving meiosis II missegregation. MEI-S332 is the founding member of a family of proteins important for chromosome segregation. One likely activity of these proteins is to protect the cohesin subunit Rec8 from cleavage at the metaphase I-anaphase I transition. Although the family members do not show high sequence identity, there are two short stretches of homology, and mutations in conserved residues affect protein function. Here we analyze the cis- and trans-acting factors required for MEI-S332 localization. We find a striking correlation between domains necessary for MEI-S332 centromere localization and conserved regions within the protein family. Drosophila MEI-S332 expressed in human cells localizes to mitotic centromeres, further highlighting this functional conservation. MEI-S332 can localize independently of cohesin, assembling even onto unreplicated chromatids. However, the separase pathway that regulates cohesin dissociation is needed for MEI-S332 delocalization at anaphase.
Collapse
Affiliation(s)
- Janice Y Lee
- Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
31
|
Abstract
An intriguing aspect of cell cycle regulation is how cell growth and division are coordinated with developmental signals to produce properly patterned organisms of the appropriate size. Using the foundation laid by a detailed understanding of the regulators that intrinsically control progression through the cell cycle, links between developmental signals and the cell cycle are being elucidated. Considerable progress has been made using Drosophila melanogaster, both in identifying new cell cycle regulators that respond to developmental cues and in defining the impact of extrinsic signals on homologs of mammalian oncogenes and tumor suppressors. In this review, we discuss each cell cycle phase, highlighting differences between archetypal and variant cell cycles employed for specific developmental strategies. We emphasize the interplay between developmental signals and cell cycle transitions. Developmental control of checkpoints, cell cycle exit, and cell growth are also addressed.
Collapse
Affiliation(s)
- Laura A Lee
- Whitehead Institute and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
32
|
Deak P, Donaldson M, Glover DM. Mutations in mákos, a Drosophila gene encoding the Cdc27 subunit of the anaphase promoting complex, enhance centrosomal defects in polo and are suppressed by mutations in twins/aar, which encodes a regulatory subunit of PP2A. J Cell Sci 2003; 116:4147-58. [PMID: 12953067 DOI: 10.1242/jcs.00722] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene mákos (mks) encodes the Drosophila counterpart of the Cdc27 subunit of the anaphase promoting complex (APC/C). Neuroblasts from third-larval-instar mks mutants arrest mitosis in a metaphase-like state but show some separation of sister chromatids. In contrast to metaphase-checkpoint-arrested cells, such mutant neuroblasts contain elevated levels not only of cyclin B but also of cyclin A. Mutations in mks enhance the reduced ability of hypomorphic polo mutant alleles to recruit and/or maintain the centrosomal antigens gamma-tubulin and CP190 at the spindle poles. Absence of the MPM2 epitope from the spindle poles in such double mutants suggests Polo kinase is not fully activated at this location. Thus, it appears that spindle pole functions of Polo kinase require the degradation of early mitotic targets of the APC/C, such as cyclin A, or other specific proteins. The metaphase-like arrest of mks mutants cannot be overcome by mutations in the spindle integrity checkpoint gene bub1, confirming this surveillance pathway has to operate through the APC/C. However, mutations in the twins/aar gene, which encodes the 55kDa regulatory subunit of PP2A, do suppress the mks metaphase arrest and so permit an alternative means of initiating anaphase. Thus the APC/C might normally be required to inactivate wild-type twins/aar gene product.
Collapse
Affiliation(s)
- Peter Deak
- Cancer Research UK, Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
33
|
Capron A, Serralbo O, Fülöp K, Frugier F, Parmentier Y, Dong A, Lecureuil A, Guerche P, Kondorosi E, Scheres B, Genschik P. The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. THE PLANT CELL 2003; 15:2370-82. [PMID: 14508008 PMCID: PMC197302 DOI: 10.1105/tpc.013847] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 07/26/2003] [Indexed: 05/18/2023]
Abstract
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase arrest, as observed in other systems. The APC2 gene is expressed in various plant organs and does not seem to be cell cycle regulated. Finally, we report intriguing differences in APC2 protein subcellular localization compared with that in other systems. Our observations support a conserved function of the APC/C in plants but a different mode of regulation.
Collapse
Affiliation(s)
- Arnaud Capron
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg Cédex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Leismann O, Lehner CF. Drosophila securin destruction involves a D-box and a KEN-box and promotes anaphase in parallel with Cyclin A degradation. J Cell Sci 2003; 116:2453-60. [PMID: 12724352 DOI: 10.1242/jcs.00411] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sister chromatid separation during exit from mitosis requires separase. Securin inhibits separase during the cell cycle until metaphase when it is degraded by the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, sister chromatid separation proceeds even in the presence of stabilized securin with mutations in its D-box, a motif known to mediate recruitment to the APC/C. Alternative pathways might therefore regulate separase and sister chromatid separation apart from proteolysis of the Drosophila securin PIM. Consistent with this proposal and with results from yeast and vertebrates, we show here that the effects of stabilized securin with mutations in the D-box are enhanced in vivo by reduced Polo kinase function or by mitotically stabilized Cyclin A. However, we also show that PIM contains a KEN-box, which is required for mitotic degradation in addition to the D-box, and that sister chromatid separation is completely inhibited by PIM with mutations in both degradation signals.
Collapse
|
35
|
Affiliation(s)
- Chris J McCabe
- Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | | |
Collapse
|
36
|
Chestukhin A, Pfeffer C, Milligan S, DeCaprio JA, Pellman D. Processing, localization, and requirement of human separase for normal anaphase progression. Proc Natl Acad Sci U S A 2003; 100:4574-9. [PMID: 12672959 PMCID: PMC153597 DOI: 10.1073/pnas.0730733100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Indexed: 11/18/2022] Open
Abstract
In all eukaryotes, anaphase is triggered by the activation of a protease called separase. Once activated, separase cleaves a subunit of cohesin, a complex that links replicated chromatids before anaphase. Separase and cohesin are conserved from yeasts to humans. Although the machinery for dissolving sister cohesion is conserved, the regulation of this process appears to be more complex in higher eukaryotes than in yeast. Here we report the cloning of full-length human separase cDNA and the characterization of the encoded protein. Human separase was observed at the poles of the mitotic spindle until anaphase, at which time its association with the mitotic spindle was abruptly lost. The dynamic pattern of localization of human separase during cell cycle progression differs from that of fungal separases. Human separase also appears to undergo an autocatalytic processing on anaphase entry. The processed forms of human separase were isolated and the identity of the cleavage sites was determined by N-terminal sequencing and site-directed mutagenesis. The processed catalytic domain was found to be stably associated with the processed N-terminal fragment. Finally, by depletion of endogenous separase with antisense oligonucleotides, we report direct evidence that separase is required for high-fidelity chromosome separation in human cells.
Collapse
Affiliation(s)
- Anton Chestukhin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Weingartner M, Pelayo HR, Binarova P, Zwerger K, Melikant B, de la Torre C, Heberle-Bors E, Bögre L. A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. J Cell Sci 2003; 116:487-98. [PMID: 12508110 DOI: 10.1242/jcs.00250] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitotic progression is timely regulated by the accumulation and degradation of A- and B-type cyclins. In plants, there are three classes of A-, and two classes of B-type cyclins, but their specific roles are not known. We have generated transgenic tobacco plants in which the ectopic expression of a plant cyclin B2 gene is under the control of a tetracycline-inducible promoter. We show that the induction of cyclin B2 expression in cultured cells during G2 phase accelerates the entry into mitosis and allows cells to override the replication checkpoint induced by hydroxyurea in the simultaneous presence of caffeine or okadaic acid, drugs that are known to alleviate checkpoint control. These results indicate that in plants, a B2-type cyclin is a rate-limiting regulator for the entry into mitosis and a cyclin B2-CDK complex might be a target for checkpoint control pathways. The cyclin B2 localization and the timing of its degradation during mitosis corroborate these conclusions: cyclin B2 protein is confined to the nucleus and during mitosis it is only present during a short time window until mid prophase, but it is effectively degraded from this timepoint onwards. Although cyclin B2 is not present in cells arrested by the spindle checkpoint in metaphase, cyclin B1 is accumulating in these cells. Ectopic expression of cyclin B2 in developing plants interferes with differentiation events and specifically blocks root regeneration, indicating the importance of control mechanisms at the G2- to M-phase transition during plant developmental processes.
Collapse
Affiliation(s)
- Magdalena Weingartner
- Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kitagawa R, Law E, Tang L, Rose AM. The Cdc20 homolog, FZY-1, and its interacting protein, IFY-1, are required for proper chromosome segregation in Caenorhabditis elegans. Curr Biol 2002; 12:2118-23. [PMID: 12498686 DOI: 10.1016/s0960-9822(02)01392-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.
Collapse
Affiliation(s)
- Risa Kitagawa
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
39
|
Abstract
Rad21 is one of the major cohesin subunits that holds sister chromatids together until anaphase, when proteolytic cleavage by separase, a caspase-like enzyme, allows chromosomal separation. We show that cleavage of human Rad21 (hRad21) also occurs during apoptosis induced by diverse stimuli. Induction of apoptosis in multiple human cell lines results in the early (4 h after insult) generation of 64- and 60-kDa carboxy-terminal hRad21 cleavage products. We biochemically mapped an apoptotic cleavage site at residue Asp-279 (D(279)) of hRad21. This apoptotic cleavage site is distinct from previously described mitotic cleavage sites. hRad21 is a nuclear protein; however, the cleaved 64-kDa carboxy-terminal product is translocated to the cytoplasm early in apoptosis before chromatin condensation and nuclear fragmentation. Overexpression of the 64-kDa cleavage product results in apoptosis in Molt4, MCF-7, and 293T cells, as determined by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) and Annexin V staining, assaying of caspase-3 activity, and examination of nuclear morphology. Given the role of hRad21 in chromosome cohesion, the cleaved C-terminal product and its translocation to the cytoplasm may act as a nuclear signal for apoptosis. In summary, we show that cleavage of a cohesion protein and translocation of the C-terminal cleavage product to the cytoplasm are early events in the apoptotic pathway and cause amplification of the cell death signal in a positive-feedback manner.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
40
|
Balicky EM, Endres MW, Lai C, Bickel SE. Meiotic cohesion requires accumulation of ORD on chromosomes before condensation. Mol Biol Cell 2002; 13:3890-900. [PMID: 12429833 PMCID: PMC133601 DOI: 10.1091/mbc.e02-06-0332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2001] [Revised: 07/30/2002] [Accepted: 08/08/2002] [Indexed: 11/11/2022] Open
Abstract
Cohesion between sister chromatids is a prerequisite for accurate chromosome segregation during mitosis and meiosis. To allow chromosome condensation during prophase, the connections that hold sister chromatids together must be maintained but still permit extensive chromatin compaction. In Drosophila, null mutations in the orientation disruptor (ord) gene lead to meiotic nondisjunction in males and females because cohesion is absent by the time that sister kinetochores make stable microtubule attachments. We provide evidence that ORD is concentrated within the extrachromosomal domains of the nuclei of Drosophila primary spermatocytes during early G2, but accumulates on the meiotic chromosomes by mid to late G2. Moreover, using fluorescence in situ hybridization to monitor cohesion directly, we show that cohesion defects first become detectable in ord(null) spermatocytes shortly after the time when wild-type ORD associates with the chromosomes. After condensation, ORD remains bound at the centromeres of wild-type spermatocytes and persists there until centromeric cohesion is released during anaphase II. Our results suggest that association of ORD with meiotic chromosomes during mid to late G2 is required to maintain sister-chromatid cohesion during prophase condensation and that retention of ORD at the centromeres after condensation ensures the maintenance of centromeric cohesion until anaphase II.
Collapse
Affiliation(s)
- Eric M Balicky
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576, USA
| | | | | | | |
Collapse
|
41
|
Herzig A, Lehner CF, Heidmann S. Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes Dev 2002; 16:2443-54. [PMID: 12231632 PMCID: PMC187444 DOI: 10.1101/gad.242202] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sister-chromatid separation in mitosis requires proteolytic cleavage of a cohesin subunit. Separase, the corresponding protease, is activated at the metaphase-to-anaphase transition. Activation involves proteolysis of an inhibitory subunit, securin, following ubiquitination mediated by the anaphase-promoting complex/cyclosome. In Drosophila, the securin PIM associates not only with separase (SSE), but also with an additional protein, THR. Here we show that THR is cleaved after the metaphase-to-anaphase transition. THR cleavage only occurs in functional SSE complexes and in a region that matches the separase cleavage-site consensus. Mutations in this region abolish mitotic THR cleavage. These results indicate that THR is cleaved by SSE. Expression of noncleavable THR variants results in cold-sensitive maternal-effect lethality. This lethality can be suppressed by a reduction of catalytically active SSE levels, indicating that THR cleavage inactivates SSE complexes. THR cleavage is particularly important during the process of cellularization, which follows completion of the last syncytial mitosis of early embryogenesis, suggesting that Drosophila separase has other targets in addition to cohesin subunits.
Collapse
Affiliation(s)
- Alf Herzig
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
42
|
Zur A, Brandeis M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. EMBO J 2002; 21:4500-10. [PMID: 12198152 PMCID: PMC126191 DOI: 10.1093/emboj/cdf452] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G(1). We studied how d-boxes determine APC/C(fzy)/APC/C(fzr) specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/C(fzy) and APC/C(fzr); fzy has a KEN box and is degraded by APC/C(fzr) only. We characterized the degradation of substrates with swapped d-boxes. Cyclin B1 with KEN was degraded by APC/C(fzr) only. Fzy with RXXL could be degraded by APC/C(fzy) and APC/C(fzr). Interestingly, APC/C(fzy)- but not APC/C(fzr)-specific degradation is highly dependent on the location of RXXL. We studied degradation of tagged substrates in real time and observed that APC/C(fzr) is activated in early G(1). These observations demonstrate how d-box specificities of APC/C(fzy) and APC/C(fzr), and the successive activation of APC/C by fzy and fzr, establish the temporal degradation pattern. Our observations can explain further why some endogenous RXXL substrates are degraded by APC/C(fzy), while others are restricted to APC/C(fzr).
Collapse
Affiliation(s)
| | - Michael Brandeis
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Corresponding author e-mail:
| |
Collapse
|
43
|
Kashevsky H, Wallace JA, Reed BH, Lai C, Hayashi-Hagihara A, Orr-Weaver TL. The anaphase promoting complex/cyclosome is required during development for modified cell cycles. Proc Natl Acad Sci U S A 2002; 99:11217-22. [PMID: 12169670 PMCID: PMC123236 DOI: 10.1073/pnas.172391099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animals and plants use modified cell cycles to achieve particular developmental strategies. In one common example, most animals and plants have tissues in which the cells become polyploid or polytene by means of an S-G cycle, but the mechanism by which mitosis is inhibited in the endo cycle is not understood. The Drosophila morula (mr) gene regulates variant cell cycles, because in addition to disrupting the archetypal cycle (G1-S-G2-M), mr mutations affect the rapid embryonic (S-M) divisions as well as the endo cycle (S-G) that produces polyploid cells. In dividing cells mr mutations cause a metaphase arrest, and endo cycling nurse cells inappropriately reenter mitosis in mr mutants. We show mr encodes the APC2 subunit of the anaphase promoting complex/cyclosome. This finding demonstrates that anaphase promoting complex/cyclosome is required not only in proliferating cells but also to block mitosis in some endo cycles. The mr mutants further indicate that transient mitotic functions in endo cycles change chromosome morphology from polytene to polyploid.
Collapse
Affiliation(s)
- Helena Kashevsky
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
44
|
Waizenegger I, Giménez-Abián JF, Wernic D, Peters JM. Regulation of human separase by securin binding and autocleavage. Curr Biol 2002; 12:1368-78. [PMID: 12194817 DOI: 10.1016/s0960-9822(02)01073-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated. RESULTS Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro. CONCLUSIONS Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.
Collapse
Affiliation(s)
- Irene Waizenegger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030, Vienna, Austria
| | | | | | | |
Collapse
|
45
|
Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol 2002; 157:1125-37. [PMID: 12070128 PMCID: PMC2173548 DOI: 10.1083/jcb.200111001] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.
Collapse
Affiliation(s)
- Anja Hagting
- Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Agarwal R, Cohen-Fix O. Phosphorylation of the mitotic regulator Pds1/securin by Cdc28 is required for efficient nuclear localization of Esp1/separase. Genes Dev 2002; 16:1371-82. [PMID: 12050115 PMCID: PMC186323 DOI: 10.1101/gad.971402] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sister chromatid separation at the metaphase-to-anaphase transition is induced by the proteolytic cleavage of one of the cohesin complex subunits. This process is mediated by a conserved protease called separase. Separase is associated with its inhibitor, securin, until the time of anaphase initiation, when securin is degraded in an anaphase-promoting complex/cyclosome (APC/C)-dependent manner. In budding yeast securin/Pds1 not only inhibits separase/Esp1, but also promotes its nuclear localization. The molecular mechanism and regulation of this nuclear targeting are presently unknown. Here we show that Pds1 is a substrate of the cyclin-dependent kinase Cdc28. Phosphorylation of Pds1 by Cdc28 is important for efficient binding of Pds1 to Esp1 and for promoting the nuclear localization of Esp1. Our results uncover a previously unknown mechanism for regulating the Pds1-Esp1 interaction and shed light on a novel role for Cdc28 in promoting the metaphase-to-anaphase transition in budding yeast.
Collapse
Affiliation(s)
- Ritu Agarwal
- The Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Bentley AM, Williams BC, Goldberg ML, Andres AJ. Phenotypic characterization ofDrosophila idamutants: defining the role of APC5 in cell cycle progression. J Cell Sci 2002; 115:949-61. [PMID: 11870214 DOI: 10.1242/jcs.115.5.949] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and characterized the ida gene that is required for proliferation of imaginal disc cells during Drosophila development. IDA is homologous to APC5, a subunit of the anaphase-promoting complex(APC/cyclosome). ida mRNA is detected in most cell types throughout development, but it accumulates to its highest levels during early embryogenesis. A maternal component of IDA is required for the production of eggs and viable embryos. Homozygous ida mutants display mitotic defects: they die during prepupal development, lack all mature imaginal disc structures, and have abnormally small optic lobes. Cytological observations show that ida mutant brains have a high mitotic index and many imaginal cells contain an aneuploid number of aberrant overcondensed chromosomes. However, cells are not stalled in metaphase, as mitotic stages in which chromosomes are orientated at the equatorial plate are never observed. Interestingly, some APC/C-target substrates such as cyclin B are not degraded in ida mutants, whereas others controlling sister-chromatid separation appear to be turned over. Taken together, these results suggest a model in which IDA/APC5 controls regulatory subfunctions of the anaphase-promoting complex.
Collapse
Affiliation(s)
- A M Bentley
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611-3093, USA
| | | | | | | |
Collapse
|
48
|
Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 2002; 35:673-745. [PMID: 11700297 DOI: 10.1146/annurev.genet.35.102401.091334] [Citation(s) in RCA: 570] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The separation of sister chromatids at the metaphase to anaphase transition is one of the most dramatic of all cellular events and is a crucial aspect of all sexual and asexual reproduction. The molecular basis for this process has until recently remained obscure. New research has identified proteins that hold sisters together while they are aligned on the metaphase plate. It has also shed insight into the mechanisms that dissolve sister chromatid cohesion during both mitosis and meiosis. These findings promise to provide insights into defects in chromosome segregation that occur in cancer cells and into the pathological pathways by which aneuploidy arises during meiosis.
Collapse
Affiliation(s)
- K Nasmyth
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, A-1030 Austria.
| |
Collapse
|
49
|
Abstract
The replicated copies of each chromosome, the sister chromatids, are attached prior to their segregation in mitosis and meiosis. This association or cohesion is critical for each sister chromatid to bind to microtubules from opposite spindle poles and thus segregate away from each other at anaphase of mitosis or meiosis II. The cohesin protein complex is essential for cohesion in both mitosis and meiosis, and cleavage of one of the subunits is sufficient for loss of cohesion at anaphase. The localization of the cohesin complex and other cohesion proteins permits evaluation of the positions of sister-chromatid associations within the chromosome structure, as well as the relationship between cohesion and condensation. Recently, two key riddles in the mechanism of meiotic chromosome segregation have yielded to molecular answers. First, analysis of the cohesin complex in meiosis provides molecular support for the long-standing hypothesis that sister-chromatid cohesion links homologs in meiosis I by stabilizing chiasmata. Second, the isolation of the monopolin protein that controls kinetochore behavior in meiosis I defines a functional basis by which sister kinetochores are directed toward the same pole in meiosis I.
Collapse
Affiliation(s)
- J Y Lee
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
50
|
|