1
|
Ouyang R, Huang Y, Chen H, Ma Y, Ye T, Liu X, Wang Y, Zhao Y, Jiang Y, Miao Y, Liu B. Vertical growth of rhenium disulfide on rGO empowers multi-signal amplification for ultrasensitive MiRNA-21 detection. Mikrochim Acta 2025; 192:176. [PMID: 39969654 DOI: 10.1007/s00604-024-06926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
Unique rhenium disulfide/reduced graphene oxide (ReS2/rGO) nanoframeworks were synthesized with a hierarchical layered and porous structure for the ultrasensitive electrochemical detection of microRNA-21 (miRNA-21) by empowering multi-signal amplification strategy of catalytic hairpin self-assembly-hybridization chain reaction (CHA-HCR). The layered and porous nanostructures endowed ReS2/rGO with a larger specific surface area and more active sites through connecting vertical ReS2 with rGO which was preferable for promoting the electron transfer over electrode surface because of a conductive network. This nanoframework facilitated the loading of adequate gold nanoparticles to fix the capture probe via Au-S bond. In the presence of the target miRNA-21, the CHA-HCR double amplification reaction could be triggered to generate a long double strand with methylene blue (MB) embedded inside. The electrochemical sensing platform was thus empowered by the unique ReS2/rGO nanoframeworks to detect miRNA-21 in the range 1 fM ~ 100 pM with the remarkably enhanced sensitivity through detecting the significantly amplified signal from the REDOX reaction of MB inside the long chain. The verification of the miRNA-21 detection in real blood samples further proved the great potential of this new method with the limit of detection reduced down to 0.057 fM and opens a new window for ReS2 in developing sensitive biosensors for early clinical cancer diagnosis.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Ying Huang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haohao Chen
- Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuanhui Ma
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tai Ye
- Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ying Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqin Jiang
- Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
3
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform-specific functions in development and disease. J Biol Chem 2025; 301:108215. [PMID: 39863103 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multifunctional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over 2 decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
5
|
Wang X, Liu W, Zhan C, Zhang Y, Li X, Wang Y, Sheng M, Maqsood M, Shen H, Liang A, Shao W. Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway. iScience 2025; 28:111626. [PMID: 39850359 PMCID: PMC11754826 DOI: 10.1016/j.isci.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC. We found that expression of EZH2-A/EZH2-B in tumor tissues and cell lines was significantly higher than in normal tissues. Conversely, EZH2-C expression was lower in tumor tissues and cell lines than in normal tissues. Further functional analysis indicated that unlike full-length EZH2-A that promotes H3K27 methylation, EZH2-C reduced H3K27me3 levels. EZH2-C inhibited proliferation, migration, invasion of HCC cells. Moreover, EZH2-A and EZH2-C regulate the BMP2 signaling pathway oppositely. Mechanistically, EZH2's alternative splicing was mediated by splicing factor SNRPB. In summary, this study revealed that alternative splicing of EZH2 regulates HCC.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Madiha Maqsood
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hang Shen
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Anhui Medical University, Hefei 230000, China
| | - Anmin Liang
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
6
|
Sun S, Jing X, Tong G, Chen C, Xie S, Wang C, Chen D, Zhao J, Qi Y, Zhang W, Liu C, Zhang G, Zhang J, Sun B, Wang Y, Lv Y. Loss of DDX24 inhibits lung cancer progression by stimulating IKBKG splicing-mediated autophagy. Theranostics 2025; 15:1879-1895. [PMID: 39897555 PMCID: PMC11780526 DOI: 10.7150/thno.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Lung cancer remains a major global health burden with limited therapeutic options. Alternative splicing, a critical post-transcriptional process, contributes to lung cancer progression through autophagy, although the underlying mechanisms remain largely unexplored. This study aims to elucidate the role of DDX24 as a splicing factor that contributes to lung cancer progression via autophagy. Methods: To establish the link between DDX24 and lung cancer progression, we performed colony formation assays, growth curve analyses, and xenograft tumor models in nude mice. Mass spectrometry and RNA sequencing were employed to investigate the involvement of DDX24 in alternative splicing, with a specific focus on the splicing of IKBKG. The mechanisms by which DDX24 regulates autophagy were further explored using co-immunoprecipitation and luciferase reporter assays. Results: The splicing factor DDX24 is significantly elevated in lung cancer tissues. Loss of DDX24 suppresses lung cancer growth by promoting autophagy. We identified DDX24 as a splicing factor that plays critical roles in the regulation of alternative splicing. Mechanistically, DDX24 regulates the alternative splicing of autophagy-related genes, including IKBKG. We demonstrate that DDX24 directly binds to IKBKG pre-mRNA, whereas DDX24 ablation stimulates the generation of the long splicing isoform of IKBKG, thereby promoting autophagy through activating of the NF-kB signaling pathway and the transcription of the BECN1 gene. Functional rescue experiments confirm that the long IKBKG isoform-mediated autophagy confers the anti-tumor effects of DDX24 depletion. In addition, IKBKG-L is positively associated with improved survival in lung cancer patients. Conclusions: This study uncovers a novel regulatory axis involving DDX24, IKBKG splicing, and autophagy in lung cancer. Our findings suggest that targeting DDX24 may represent a promising therapeutic strategy for lung cancer treatment, offering new insights into the molecular underpinnings of this disease.
Collapse
Affiliation(s)
- Siwen Sun
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116023, China
| | - Xiaomeng Jing
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116023, China
| | - Guangquan Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116023, China
| | - Shuaijun Xie
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Chong Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116023, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Bing Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116023, China
| | - Yuesheng Lv
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
7
|
Sun C, Zeng B, Zhou J, Li N, Li M, Zhu C, Xie S, Wang Y, Wang S, Wang X. Analysis of SLC genes alternative splicing identifies the SLC7A6 RI isoform as a therapeutic target for colorectal cancer. Cancer Sci 2025; 116:233-247. [PMID: 39403788 PMCID: PMC11711054 DOI: 10.1111/cas.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 01/11/2025] Open
Abstract
Alternative splicing (AS), a crucial mechanism in post-transcriptional regulation, has been implicated in diverse cancer processes. Several splicing variants of solute carrier (SLC) transporters reportedly play pivotal roles in tumorigenesis and tumor development. However, an in-depth analysis of AS landscapes of SLCs in colon adenocarcinoma (COAD) is lacking. Herein, we analyzed data from The Cancer Genome Atlas and identified 1215 AS events across 243 SLC genes, including 109 differentially expressed AS (DEAS) events involving 62 SLC genes in COAD. Differentially spliced SLCs were enriched in biological processes, including transmembrane transporter activity, transporter activity, ferroptosis, and choline metabolism. In patients with COAD, tumor tissues exhibited higher expression of longer mitochondrial carrier SLC25A16 isoforms than adjacent normal tissues, consistent with bioinformatics analysis. Protein-coding sequences and transmembrane helices of survival-related DEAS were predicted, revealing that shifts in splicing sites altered the number and structure of their transmembrane proteins. We developed a prognostic risk model based on the screened 6-SLC-AS (SLC7A6_RI_37208 (SLC7A6-RI), SLC11A2_AP_21724, SLC2A8_ES_87631, SLC35B1_AA_42317, SLC39A11_AD_43204, and SLC7A8_AP_26712). Knockdown of the intronic region of SLC7A6-RI isoform enhanced colon cancer cell proliferation. In vivo, knockdown of the intronic region of SLC7A6-RI isoform enhanced tumor growth in colon cancer. Mechanistically, si-SLC7A6-RI isoform exerted oncogenic effects by activating the PI3K-Akt-mTOR signaling pathway and promoting cell proliferation, evidenced by increased expression of key regulators Phosphorylated Mammalian Target of Rapamycin (p-mTOR) and a cell proliferation marker Proliferating Cell Nuclear Antigen (PCNA) using western blotting. Our study elucidated SLC-AS in COAD, highlighting its potential as a prognostic and therapeutic target and emphasizing the suppressive influence of SLC7A6-RI in colon cancer progression.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouChina
| | - Boning Zeng
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouChina
| | - Jilong Zhou
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
| | - Nan Li
- School of Pharmaceutical SciencesShenzhen University Health Science CenterShenzhenChina
| | - Mingwei Li
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
| | - Chaowei Zhu
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw MaterialsJinan UniversityGuangzhouChina
| | - Shaoxiang Wang
- School of Pharmaceutical SciencesShenzhen University Health Science CenterShenzhenChina
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's HospitalThe Second Clinical Medical College, Jinan UniversityShenzhenChina
| |
Collapse
|
8
|
Bhardwaj S, Sanjay, Yadav AK. Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells. J Neurooncol 2025; 171:47-63. [PMID: 39585598 DOI: 10.1007/s11060-024-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights. METHODS In this study two non-expressing O6-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229. U87MG cells were grown in Temozolomide from 50μM upto 400μM & LN229 cells grown upto 200μM, till then both these cells acquired Temozolomide resistance. Both of these cells were grown & maintained continously in its highest dose of Temozolomide (TMZ). Splice factor protein SF2/ASF1 was functionally correlated with abundance of hnRNPA1 protein in Temozolomide (TMZ) resistant cells using its specific siRNA transfection approach, in detrmining SF2/ASF1 mediated hnRNPA1 splicing and Temozolomide resistant reversal. RESULTS U87MG TMZ resistance, results an increase in the expression of pre mRNA-splicing factor SF2/ASF1, Heterogeneous Ribonucleoprotein A1 (hnRNPA1) and O6-methylguanine-DNA methyltransferase (MGMT) protein. MGMT expression was not observed in LN229 TMZ resistant cells. Further, mRNA sequencing of hnRNPA1 confirmed the exclusive abundance of its higher isoform in TMZ- resistant cells along with increase in SF2/ASF1 expression. Knocking down of SF2/ASF1 using its specific siRNA reverted the higher isoform of hnRNPA1 isoform Var2 to its lower isoform hnRNPA1 Var1 in U87 TMZ resistant cells, reveals hnRNPA1 alternative higher isoform abundance is SF2/ASF1 splice factor dependent. Additionally, selective knock down of hnRNPA1 higher isoform Var2 in TMZ resistant U87MG & LN229 promotes apoptosis, was further specfically enhanced on Wortmannin (PI3Kinase inhibitor) treatment. CONCLUSION Targeting higher isoform Var2 of hnRNPA1 specifically induces chemosensitization in MGMT expressed Temozolomide resistant U87MG as well as in MGMT non-expressed LN229 TMZ resistant cells.
Collapse
Affiliation(s)
- Sachin Bhardwaj
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Sanjay
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Ajay Kumar Yadav
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.
| |
Collapse
|
9
|
Majidpour M, Sargazi S, Ghasemi M, Sabeti Akbar-Abad M, Sarhadi M, Saravani R. LncRNA MEG3, GAS5, and HOTTIP Polymorphisms Association with Risk of Polycystic Ovary Syndrome: A Case-Control Study and Computational Analyses. Biochem Genet 2024:10.1007/s10528-024-10977-1. [PMID: 39613922 DOI: 10.1007/s10528-024-10977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
As a multifactorial and endocrine disease, polycystic ovary syndrome (PCOS) affects approximately 5-20% of women worldwide. Recently, long noncoding RNAs (lncRNAs) have emerged as potent predictors of a particular phenotype in PCOS. Our preliminary study examines the link between polymorphisms in lncRNAs MEG3, HOTTIP, and GAS5 and the risk of PCOS. The present study included 200 women with PCOS and 200 healthy women. The studied variations were genotyped by applying the PCR-RFLP and the tetra-ARMS-PCR reaction) techniques. The effect of variation in lncRNA on miRNA:lncRNA interactions, lncRNA-RNA interaction network, and the impact of the variations on the splicing site were predicted using different computational databases. The codominant heterozygous (TC vs. TT) model, the dominant (TC + CC vs. TT) model, the overdominant (TT + CC vs. TC) model, the C allele of rs2023843, and the C allele of rs55829688 had a protective role against PCOS. The A allele of rs4081134 and G allele of rs7158663 of the MEG3 conferred an increased risk of PCOS by 1.37 and 1.44 folds, respectively. The interaction analysis revealed that TC/GG/AA/TC and TC/GG/GA/TC strongly decreased the risk of PCOS by 94 and 92%, respectively. Interestingly, MEG3 and HOTTIP variants can create or disrupt binding sites for several splicing factors. In our population, MEG3 rs4081134 and rs7158663, GAS5 rs55829688, and HOTTIP rs2023843 polymorphisms were associated with PCOS risk. Replication studies on larger sample sizes must be conducted to confirm these findings and investigate other potential causative factors involved in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
10
|
Jain K, Kougnassoukou Tchara PE, Mengistalem AB, Holland AP, Bowman CN, Marunde MR, Popova IK, Cooke SW, Krajewski K, Keogh MC, Lambert JP, Strahl BD. Histone H3 N-terminal recognition by the PHD finger of PHRF1 is required for proper DNA damage response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.623956. [PMID: 39605374 PMCID: PMC11601626 DOI: 10.1101/2024.11.20.623956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Plant homeodomain (PHD) fingers are critical effectors of histone post-translational modifications (PTMs), acting as regulators of gene expression and genome integrity, and frequently presenting in human disease. While most PHD fingers recognize unmodified and methylated states of histone H3 lysine 4 (H3K4), the specific functions of many of the over 100 PHD finger-containing proteins in humans remain poorly understood, despite their significant implications in disease processes. In this study, we undertook a comprehensive analysis of one such poorly characterized PHD finger-containing protein, PHRF1. Using biochemical, molecular, and cellular approaches, we show that PHRF1 robustly binds to histone H3, specifically at its N-terminal region. Through RNA-seq and proteomic analyses, we also find that PHRF1 is intricately involved in transcriptional and RNA splicing regulation and plays a significant role in DNA damage response (DDR). Crucially, mutagenesis of proline 221 to leucine (P221L) in the PHD finger of PHRF1 abolishes histone interaction and fails to rescue defective DDR. These findings underscore the importance of PHRF1-H3 interaction in maintaining genome integrity and provide insight into how PHD fingers contribute to chromatin biology.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Amanuel B. Mengistalem
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aidan P. Holland
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher N. Bowman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Spencer W. Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
12
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Yue N, Huang J, Dong M, Li J, Gao S, Wang J, Wang Y, Li D, Luo X, Liu T, Han S, Dong L, Chen M, Wang J, Xu N, Kang L, Xin W. Proteome and Phosphoproteome Profiling Reveal the Toxic Mechanism of Clostridium perfringens Epsilon Toxin in MDCK Cells. Toxins (Basel) 2024; 16:394. [PMID: 39330852 PMCID: PMC11435651 DOI: 10.3390/toxins16090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epsilon toxin (ETX), a potential agent of biological and toxic warfare, causes the death of many ruminants and threatens human health. It is crucial to understand the toxic mechanism of such a highly lethal and rapid course toxin. In this study, we detected the effects of ETX on the proteome and phosphoproteome of MDCK cells after 10 min and 30 min. A total of 44 differentially expressed proteins (DEPs) and 588 differentially phosphorylated proteins (DPPs) were screened in the 10 min group, while 73 DEPs and 489 DPPs were screened in the 30 min group. ETX-induced proteins and phosphorylated proteins were mainly located in the nucleus, cytoplasm, and mitochondria, and their enrichment pathways were related to transcription and translation, virus infection, and intercellular junction. Meanwhile, the protein-protein interaction network screened out several hub proteins, including SRSF1/2/6/7/11, SF3B1/2, NOP14/56, ANLN, GTPBP4, THOC2, and RRP1B. Almost all of these proteins were present in the spliceosome pathway, indicating that the spliceosome pathway is involved in ETX-induced cell death. Next, we used RNAi lentiviruses and inhibitors of several key proteins to verify whether these proteins play a critical role. The results confirmed that SRSF1, SF3B2, and THOC2 were the key proteins involved in the cytotoxic effect of ETX. In addition, we found that the common upstream kinase of these key proteins was SRPK1, and a reduction in the level of SRPK1 could also reduce ETX-induced cell death. This result was consistent with the phosphorylated proteomics analysis. In summary, our study demonstrated that ETX induces phosphorylation of SRSF1, SF3B2, THOC2, and SRPK1 proteins on the spliceosome pathway, which inhibits normal splicing of mRNA and leads to cell death.
Collapse
Affiliation(s)
- Nan Yue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100020, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun 130122, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | | | - Dongxue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xi Luo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Songyang Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Lina Dong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin 132013, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| |
Collapse
|
14
|
Lee YF, Phua CZJ, Yuan J, Zhang B, Lee MY, Kannan S, Chiu YHJ, Koh CWQ, Yap CK, Lim EKH, Chen J, Lim Y, Lee JJH, Skanderup AJ, Wang Z, Zhai W, Tan NS, Verma CS, Tay Y, Tan DSW, Tam WL. PARP4 interacts with hnRNPM to regulate splicing during lung cancer progression. Genome Med 2024; 16:91. [PMID: 39034402 PMCID: PMC11265163 DOI: 10.1186/s13073-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The identification of cancer driver genes from sequencing data has been crucial in deepening our understanding of tumor biology and expanding targeted therapy options. However, apart from the most commonly altered genes, the mechanisms underlying the contribution of other mutations to cancer acquisition remain understudied. Leveraging on our whole-exome sequencing of the largest Asian lung adenocarcinoma (LUAD) cohort (n = 302), we now functionally assess the mechanistic role of a novel driver, PARP4. METHODS In vitro and in vivo tumorigenicity assays were used to study the functional effects of PARP4 loss and mutation in multiple lung cancer cell lines. Interactomics analysis by quantitative mass spectrometry was conducted to identify PARP4's interaction partners. Transcriptomic data from cell lines and patient tumors were used to investigate splicing alterations. RESULTS PARP4 depletion or mutation (I1039T) promotes the tumorigenicity of KRAS- or EGFR-driven lung cancer cells. Disruption of the vault complex, with which PARP4 is commonly associated, did not alter tumorigenicity, indicating that PARP4's tumor suppressive activity is mediated independently. The splicing regulator hnRNPM is a potentially novel PARP4 interaction partner, the loss of which likewise promotes tumor formation. hnRNPM loss results in splicing perturbations, with a propensity for dysregulated intronic splicing that was similarly observed in PARP4 knockdown cells and in LUAD cohort patients with PARP4 copy number loss. CONCLUSIONS PARP4 is a novel modulator of lung adenocarcinoma, where its tumor suppressive activity is mediated not through the vault complex-unlike conventionally thought, but in association with its novel interaction partner hnRNPM, thus suggesting a role for splicing dysregulation in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yi Fei Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Yui Hei Jasper Chiu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Casslynn Wei Qian Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Yuhua Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
15
|
Sanjuan-Sanjuan A, Alors-Perez E, Sanchez-Frías M, Monserrat-Barbudo JA, Falguera Uceda M, Heredero-Jung S, Luque RM. Splicing Machinery Is Impaired in Oral Squamous Cell Carcinomas and Linked to Key Pathophysiological Features. Int J Mol Sci 2024; 25:6929. [PMID: 39000035 PMCID: PMC11240936 DOI: 10.3390/ijms25136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Alternative splicing dysregulation is an emerging cancer hallmark, potentially serving as a source of novel diagnostic, prognostic, or therapeutic tools. Inhibitors of the activity of the splicing machinery can exert antitumoral effects in cancer cells. We aimed to characterize the splicing machinery (SM) components in oral squamous cell carcinoma (OSCC) and to evaluate the direct impact of the inhibition of SM-activity on OSCC-cells. The expression of 59 SM-components was assessed using a prospective case-control study of tumor and healthy samples from 37 OSCC patients, and the relationship with clinical and histopathological features was assessed. The direct effect of pladienolide-B (SM-inhibitor) on the proliferation rate of primary OSCC cell cultures was evaluated. A significant dysregulation in several SM components was found in OSCC vs. adjacent-healthy tissues [i.e., 12 out of 59 (20%)], and their expression was associated with clinical and histopathological features of less aggressiveness and overall survival. Pladienolide-B treatment significantly decreased OSCC-cell proliferation. Our data reveal a significantly altered expression of several SM-components and link it to pathophysiological features, reinforcing a potential clinical and pathophysiological relevance of the SM dysregulation in OSCC. The inhibition of SM-activity might be a therapeutic avenue in OSCC, offering a clinically relevant opportunity to be explored.
Collapse
Affiliation(s)
- Alba Sanjuan-Sanjuan
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, CAMC Hospital, Charleston, WV 25301, USA
| | - Emilia Alors-Perez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Marina Sanchez-Frías
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, IMIBIC/HURS, 14004 Cordoba, Spain
| | - José A Monserrat-Barbudo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Mabel Falguera Uceda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Susana Heredero-Jung
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Oral and Maxillofacial Surgery Department, HURS, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14014 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
16
|
Sue SH, Liu ST, Huang SM. Factors affecting the expression and stability of full-length and truncated SRSF3 proteins in human cancer cells. Sci Rep 2024; 14:14397. [PMID: 38909100 PMCID: PMC11193772 DOI: 10.1038/s41598-024-64640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
Alternative splicing plays a crucial role in increasing the diversity of mRNAs expressed in the genome. Serine/arginine-rich splicing factor 3 (SRSF3) is responsible for regulating the alternative splicing of its own mRNA and ensuring that its expression is balanced to maintain homeostasis. Moreover, the exon skipping of SRSF3 leads to the production of a truncated protein instead of a frameshift mutation that generates a premature termination codon (PTC). However, the precise regulatory mechanism involved in the splicing of SRSF3 remains unclear. In this study, we first established a platform for coexpressing full-length SRSF3 (SRSF3-FL) and SRSF3-PTC and further identified a specific antibody against the SRSF3-FL and truncated SRSF3 (SRSF3-TR) proteins. Next, we found that exogenously overexpressing SRSF3-FL or SRSF3-PTC failed to reverse the effects of digoxin, caffeine, or both in combination on this molecule and its targets. Endoplasmic reticulum-related pathways, transcription factors, and chemicals such as palmitic acid and phosphate were found to be involved in the regulation of SRSF3 expression. The downregulation of SRSF3-FL by palmitic acid and phosphate was mediated via different regulatory mechanisms in HeLa cells. In summary, we provide new insights into the altered expression of the SRSF3-FL and SRSF3-TR proteins for the identification of the functions of SRSF3 in cells.
Collapse
Affiliation(s)
- Sung-How Sue
- Department of Cardiovascular Surgery, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung City, 402, Taiwan, Republic of China
- Institute of Medicine, Chung Shan Medical University, Taichung City, 402, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| |
Collapse
|
17
|
Cheng S, Zhou Z, Liu J, Li J, Wang Y, Xiao J, Luo Y. Landscape analysis of alternative splicing in kidney renal clear cell carcinoma and their clinical significance. Aging (Albany NY) 2024; 16:10016-10032. [PMID: 38862257 PMCID: PMC11210227 DOI: 10.18632/aging.205915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
A growing number of studies reveal that alternative splicing (AS) is associated with tumorigenesis, progression, and metastasis. Systematic analysis of alternative splicing signatures in renal cancer is lacking. In our study, we investigated the AS landscape of kidney renal clear cell carcinoma (KIRC) and identified AS predictive model to improve the prognostic prediction of KIRC. We obtained clinical data and gene expression profiles of KIRC patients from the TCGA database to evaluate AS events. The calculation results for seven types of AS events indicated that 46276 AS events from 10577 genes were identified. Next, we applied Cox regression analysis to identify 5864 prognostic-associated AS events. We used the Metascape database to verify the potential pathways of prognostic-associated AS. Moreover, we constructed KIRC prediction systems with prognostic-associated AS events by the LASSO Cox regression model. AUCs demonstrated that these prediction systems had excellent prognostic accuracy simultaneously. We identified 34 prognostic associated splicing factors (SFs) and constructed homologous regulatory networks. Furthermore, in vitro experiments were performed to validate the favorable effect of SFs FMR1 in KIRC. In conclusion, we overviewed AS events in KIRC and identified AS-based prognostic models to assist the survival prediction of KIRC patients. Our study may provide a novel predictive signature to improve the prognostic prediction of KIRC, which might facilitate KIRC patient counseling and individualized management.
Collapse
Affiliation(s)
- Songtao Cheng
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiannan Liu
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Li
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Wang
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Ding W, Xiao Q, Yue Y, Chen S, She X, Pan B, Zhou L, Yin Y, Li Y, Wang S, Xu M. Deciphering alternative splicing events and their therapeutic implications in colorectal Cancer. Cell Signal 2024; 118:111134. [PMID: 38484942 DOI: 10.1016/j.cellsig.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors with complex molecular regulatory mechanisms. Alternative splicing (AS), a fundamental regulatory process of gene expression, plays an important role in the occurrence and development of CRC. This study analyzed AS Percent Spliced In (PSI) values from 49 pairs of CRC and normal samples in the TCGA SpliceSeq database. Using Lasso and SVM, AS features that can differentiate colorectal cancer from normal were screened. Univariate COX regression analysis identified prognosis-related AS events. A risk model was constructed and validated using machine learning, Kaplan-Meier analysis, and Decision Curve Analysis. The regulatory effect of protein arginine methyltransferase 5 (PRMT5) on poly(RC) binding protein 1 (PCBP1) was verified by immunoprecipitation experiments, and the effect of PCBP1 on the AS of Obscurin (OBSCN) was verified by PCR. Five AS events, including HNF4A.59461.AP and HNF4A.59462.AP, were identified, which can distinguish CRC from normal tissue. A machine learning model using 21 key AS events accurately predicted CRC prognosis. High-risk patients had significantly shorter survival times. PRMT5 was found to regulate PCBP1 function and then influence OBSCN AS, which may drive CRC progression. The study concluded that some AS events is significantly different in CRC and normal tissues, and some of these AS events are related to the prognosis of CRC. In addition, PRMT family-driven arginine modifications play an important role in CRC-specific AS events.
Collapse
Affiliation(s)
- Wenbo Ding
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianni Xiao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanzhe Yue
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shuyu Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiangjian She
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linpeng Zhou
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujuan Yin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Youyue Li
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China.; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China..
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China..
| |
Collapse
|
19
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J, Yang Y. Angiopoietin-Related Protein 4-Transcript 3 Increases the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma Cells and Inhibits Apoptosis. DNA Cell Biol 2024; 43:175-184. [PMID: 38466955 DOI: 10.1089/dna.2023.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
To investigate the functional differences of angiopoietin-related protein 4 (ANGPTL4) transcripts in hepatocellular carcinoma (HCC) cells. By transfecting ANGPTL4-Transcript 1 and ANGPTL4-Transcript 3 overexpression vectors into HepG2 and Huh7 cell lines with ANGPTL4 knockdown, the effects of overexpression of two transcripts on cell viability, invasion, migration, and apoptosis were analyzed. The expression of two transcripts was compared in human liver cancer tissue, and their effects on tumor development were validated in vivo experiments in mice. Compared with control, the overexpression of ANGPTL4-Transcript 1 had no significant effect on viability, invasion, healing, and apoptosis of HepG2 and Huh7 cells. However, these two cell lines overexpressing ANGPTL4-Transcript 3 showed remarkably enhanced cell viability, invasive and healing ability, and decreased apoptosis ability. Furthermore, the mRNA level of ANGPTL4-Transcript 3 was significantly increased in human HCC tissues and promoted tumor growth compared with Transcript 1. Different transcripts of gene ANGPTL4 have distinct effects on HCC. The abnormally elevated Transcript 3 with the specific ability of promoting HCC proliferation, infiltration, and migration is expected to become a new biological marker and more precise intervention target for HCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Cui
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoke Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meiqi Wei
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanying Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guo
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Diaba-Nuhoho P. Plant homeodomain-finger protein 5A: A key player in cancer progression. Biomed Pharmacother 2023; 169:115857. [PMID: 37951028 DOI: 10.1016/j.biopha.2023.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
PHF5A is a member of the zinc-finger proteins. To advance knowledge on their role in carcinogenesis, data from experimental studies, animal models and clinical studies in different tumorigenesis have been reviewed. Furthermore, PHF5A as an oncogenic function, is frequently high expressed in tumor cells and a potential prognostic marker for different cancers. PHF5A is implicated in the regulation of cancer cell proliferation, invasion, migration and metastasis. Knockdown of PHF5A prevented the invasion and metastasis of tumor cells. Here, the role of PHF5A in different cancers and their possible mechanism in relation to recent literature is reviewed and discussed. There is an open promising perspective to their therapeutic management for different cancer types.
Collapse
Affiliation(s)
- Patrick Diaba-Nuhoho
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, Germany.
| |
Collapse
|
22
|
Qu Y, He Y, Wang Y, Han Z, Qin L. Targeted down-regulation of SRSF1 exerts anti-cancer activity in OSCC through impairing lysosomal function and autophagy. iScience 2023; 26:108330. [PMID: 38025785 PMCID: PMC10663830 DOI: 10.1016/j.isci.2023.108330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the head and neck. Despite ongoing efforts, there remains a dearth of targeted drugs capable of effectively inhibiting OSCC growth. As the earliest discovered proto-oncogene in the SRSF family, targeted inhibition of serine/arginine-rich splicing factor 1 (SRSF1) plays an important role in tumor suppression. However, the expression, function, and mechanism of SRSF1 in OSCC have not been comprehensively reported. This study retrospectively analyzed clinical samples from OSCC patients and discovered a significant correlation between the SRSF1 expression level and poor prognosis. In vitro experimentation demonstrated that SRSF1 knockdown inhibited OSCC growth, survival, lysosomal biogenesis and autophagy. To confirm the significance of lysosomal function and autophagy in the regulation of OSCC growth by SRSF1, cell rescue models were constructed. The aforementioned findings were subsequently validated in xenograft models. Ultimately, targeted knockdown of SRSF1 was found to significantly suppress OSCC growth by impeding lysosomal biogenesis and autophagy.
Collapse
Affiliation(s)
- Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Ying He
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Yijuan Wang
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361000, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
23
|
Rozza R, Janoš P, Magistrato A. Assessing the Binding Mode of a Splicing Modulator Stimulating Pre-mRNA Binding to the Plastic U2AF2 Splicing Factor. J Chem Inf Model 2023; 63:7508-7517. [PMID: 37967032 DOI: 10.1021/acs.jcim.3c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
RNA recognition motifs (RRMs) play a pivotal role in RNA metabolism and the regulation of gene expression. Owing to their plasticity and fuzziness, targeting RRM/RNA interfaces with small molecules is a daunting challenge for drug discovery campaigns. The U2AF2 splicing factor, which recognizes the polypyrimidine (polyPy) sequence of premature messenger (pre-m)RNA, exhibits a dynamic architecture consisting of two RRMs joined by a disordered linker. An inhibitor, NSC-194308, was shown to enhance the binding of pre-mRNA to U2AF2, selectively triggering cell death in leukemia cell lines containing spliceosome mutations. The NSC-194308 binding mode remains elusive; yet, unraveling its knowledge may offer intriguing insights for effectively targeting U2AF2 and other flexible protein/protein/RNA interfaces with small molecules. To infer plausible NSC-194308 binding poses to U2AF2, here, we applied and benchmarked the performance of static and dynamic docking approaches, elucidating the molecular basis of the NSC-194308-induced pre-mRNA stabilization on U2AF2. We demonstrate that introducing dynamic effects is mandatory to assess the binding mode of the inhibitors when they target plastic and modular architectures, such as those formed by interacting RRMs. The latter are widespread across RNA binding proteins; therefore, this mechanism may be broadly applicable to discover new therapeutics aimed at selectively modulating the RNA function by targeting protein/protein/RNA interfaces.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
24
|
Gao Y, Liu J, Zhang H, Zhang X, Gui R, Zhang K, Li Y, Zhou M, Tong C, Huang SC, Wang X. Transcriptomic profiling of lipopolysaccharide-challenged bovine mammary epithelial cells treated with forsythoside A. Anim Biotechnol 2023; 34:4523-4537. [PMID: 36651589 DOI: 10.1080/10495398.2023.2165936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mastitis is usually caused by a variety of pathogenic bacteria that seriously impact the health and milk-production ability of dairy cows, with consequent, economically detrimental effects on the dairy industry. Forsythoside A (FTA), isolated from the fruit and leaves of Forsythia suspensa (Thunb.) Vahl (Oleaceae), has been reported to have significant antioxidant, anti-inflammatory, and antibacterial effects. However, it is not clear whether FTA exerts a protective effect against lipopolysaccharide (LPS)-induced bovine mastitis and its potential gene signature. In this study, high-throughput sequencing technology was performed to analyze the differences between the mRNA and enrichment pathway of bovine mammary epithelial cells of the control, LPS, and LPS + FTA groups. The results showed that there were 139 differentially expressed genes (DEGs) (p-value < 0.05, |log2FoldChange| > 1, FPKM > 1) in the LPS group compared with the control group, including 121 up-regulated genes and 18 down-regulated genes, which were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity, protein binding, and IL-17 signaling pathway based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, respectively. Compared with the control group and LPS + FTA group, there were 349 DEGs, including 322 up-regulated genes and 27 down-regulated genes. They were mainly enriched in protein localization to organelles, centrosomes, binding, and the IL-17 signaling pathway, based on GO and KEGG analysis. Compared to the LPS group, the LPS + FTA group had 272 DEGs, including 259 up-regulated genes and 13 down-regulated genes, which were mainly enriched in RNA processing, IL-6 receptor binding, and the lysosome pathway, based on GO and KEGG analyses. It can be seen that LPS stimulation induced the expression of inflammation-related genes, IL-17 and IL-6, whereas FTA treatment promoted the expression of the spliceosome-, lysosome-, and oxidative stress-related genes HSP70, HSPA8, and PARP2. The study utilized RNA-sequencing analysis of FTA against LPS-challenged bovine mammary epithelial cells to explore key mRNA findings that may be strongly associated with inflammation and oxidative stress, and provides a theoretical reference for further elucidation of molecular mechanisms of bovine mastitis and therapeutic effects of FTA against bovine mastitis.
Collapse
Affiliation(s)
- Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rong Gui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yunlu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Menghan Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Shieh JM, Chang TW, Wang JH, Liang SP, Kao PL, Chen LY, Yen CJ, Chen YJ, Chang WC, Chen BK. RNA-binding protein-regulated fibronectin is essential for EGFR-activated metastasis of head and neck squamous cell carcinoma. FASEB J 2023; 37:e23206. [PMID: 37718485 DOI: 10.1096/fj.202300527r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
There is a higher expression level of epidermal growth factor receptor (EGFR) in up to 90% of advanced head and neck squamous cell carcinoma (HNSCC) tissue than in normal surrounding tissues. However, the role of RNA-binding proteins (RBPs) in EGFR-associated metastasis of HNSCC remains unclear. In this study, we reveal that RBPs, specifically nucleolin (NCL) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), correlated with the mesenchymal phenotype of HNSCC. The depletion of RBPs significantly attenuated EGF-induced HNSCC metastasis. Intriguingly, the EGF-induced EMT markers, such as fibronectin, were regulated by RBPs through the ERK and NF-κB pathway, followed by the enhancement of mRNA stability of fibronectin through the 5' untranslated region (5'-UTR) of the gene. The upregulation of fibronectin triggered the integrin signaling activation to enhance tumor cells' attachment to endothelial cells and increase endothelial permeability. In addition, the concurrence of EGFR and RBPs or EGFR and fibronectin was associated with overall survival and disease-free survival of HNSCC. The in vivo study showed that depletion of NCL, hnRNPA2B1, and fibronectin significantly inhibited EGF-promoted extravasation of tumor cells into lung tissues. The depletion of fibronectin or treatment with integrin inhibitors dramatically attenuated EGF-induced HNSCC metastatic nodules in the lung. Our data suggest that the RBPs/fibronectin axis is essential for EGF-induced tumor-endothelial cell interactions to enhance HNSCC cell metastasis.
Collapse
Affiliation(s)
- Jiunn-Min Shieh
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - Ting-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jing-He Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Song-Ping Liang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Lu Kao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Liang-Yi Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yun-Ju Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ben-Kuen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
26
|
Chen X, Liu X, Li QH, Lu BF, Xie BM, Ji YM, Zhao Y. A patient-derived organoid-based study identified an ASO targeting SNORD14E for endometrial cancer through reducing aberrant FOXM1 Expression and β-catenin nuclear accumulation. J Exp Clin Cancer Res 2023; 42:230. [PMID: 37667311 PMCID: PMC10478245 DOI: 10.1186/s13046-023-02801-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Most of the endometrial cancer (EC) patients are diagnosis in early stage with a good prognosis while the patients with locally advanced recurrent or metastatic result in a poor prognosis. Adjuvant therapy could benefit the prognosis of patients with high-risk factors. Unfortunately, the molecular classification of great prognostic value has not yet reached an agreement and need to be further refined. The present study aims to identify new targets that have prognostic value in EC based on the method of EC patient-derived organ-like organs (PDOs), and further investigate their efficacy and mechanism. METHODS The Cancer Genome Atlas (TCGA) database was used to determine SNORD14E expression. The effects of SNORD14E were investigated using CCK8, Transwell, wound-healing assays, and a xenograft model experiment; apoptosis was measured by flow cytometry. Antisense oligonucleotide (ASO) targeting SNORD14E was designed and patient-derived organoids (PDO) models in EC patients was established. A xenograft mouse and PDO model were employed to evaluate the effects of ASO targeting SNORD14E. RNA-seq, Nm-seq, and RNA immunoprecipitation (RIP) experiments were employed to confirm the alternative splicing (AS) and modification induced by SNORD14E. A minigene reporter gene assay was conducted to confirm AS and splicing factors on a variable exon. Actinomycin-d (Act-D) and Reverse Transcription at Low deoxy-ribonucleoside triphosphate concentrations followed by PCR (RTL-P) were utilized to confirm the effects of 2'-O methylation modification on FOXM1. RESULTS We found that SNORD14E was overexpressed in EC tissues and patients with high expressed SNORD14E were distributed in the TCGA biomolecular classification subgroups without difference. Further, SNORD14E could reduce disease-free survival (DFS) and recurrence free survival (RFS) of EC patients. SNORD14E promoted proliferation, migration, and invasion and inhibited the apoptosis of EC cells in vitro. ASOs targeting SNORD14E inhibited cell proliferation, migration, invasion while promoted cell apoptosis. ASOs targeting SNORD14E inhibited tumor growth in the xenograft mouse model. TCGA-UCEC database showed that the proportion of patients with high expression of SNORD14E in middle-high risk and high-risk patients recommended by EMSO-ESGO-ESTRO guidelines for adjuvant therapy is more than 50%. Next, we enrolled 8 cases of high-risk and high-risk EC patients according to EMSO-ESGO-ESTRO guidelines and successfully constructed EC-PDOs. ASOs targeting SNORD14E inhibited the EC-PDO growth. Mechanistically, SNORD14E could recognize the mRNA of FOXM1 and recruit SRSF1 to promote the shearing of the variable exon VIIa of FOXM1, resulting in the overexpression of the FOXM1 malignant subtypes FOXM1b and FOXM1c. In addition, SNORD14E modified FOXM1 mRNA with 2`-O-methylation, which prolonged the half-life of FOXM1 mRNA. The nucleus accumulation of β-catenin caused by aberrant FOXM1 expression led to EC progression. CONCLUSIONS ASO targeting SNORD14E can be an effective treatment for EC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bing-Feng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bu-Min Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yu-Meng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China.
| |
Collapse
|
27
|
Cui Q, Wang W, Namani A, Wang H, Hammad A, Huang P, Gao Y, Elshaer M, Wu Y, Wang XJ, Tang X. NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer. Oncogene 2023; 42:2751-2763. [PMID: 37573407 DOI: 10.1038/s41388-023-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2-SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Wei Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Hongyan Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Pu Huang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yang Gao
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yihe Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
28
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
30
|
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M. Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 2023; 14:4233. [PMID: 37454201 PMCID: PMC10349855 DOI: 10.1038/s41467-023-39961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Collapse
Affiliation(s)
- Komal Soni
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sophie Bonnal
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Arie Geerlof
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ralf Stehle
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
31
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
32
|
Li Y, Chen B, Jiang X, Li Y, Wang X, Huang S, Wu X, Xiao Y, Shi D, Huang X, He L, Chen X, Ouyang Y, Li J, Song L, Lin C. A Wnt-induced lncRNA-DGCR5 splicing switch drives tumor-promoting inflammation in esophageal squamous cell carcinoma. Cell Rep 2023; 42:112542. [PMID: 37210725 DOI: 10.1016/j.celrep.2023.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) that correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, active nuclear β-catenin acts as a co-factor of FUS to facilitate the spliceosome assembly and the generation of DGCR5-S. DGCR5-S inhibits TTP's anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSOs) disrupt the splicing switch of DGCR5 and potently suppress ESCC tumor growth. These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yudong Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuxia Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
33
|
Popli P, Chadchan SB, Dias M, Deng X, Gunderson SJ, Jimenez P, Yalamanchili H, Kommagani R. SF3B1-dependent alternative splicing is critical for maintaining endometrial homeostasis and the establishment of pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541590. [PMID: 37292891 PMCID: PMC10245700 DOI: 10.1101/2023.05.20.541590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The remarkable potential of human endometrium to undergo spontaneous remodeling is shaped by controlled spatiotemporal gene expression patterns. Although hormone-driven transcription shown to govern these patterns, the post-transcriptional processing of these mRNA transcripts, including the mRNA splicing in the endometrium is not studied yet. Here, we report that the splicing factor, SF3B1 is central in driving alternative splicing (AS) events that are vital for physiological responses of the endometrium. We show that loss of SF3B1 splicing activity impairs stromal cell decidualization as well as embryo implantation. Transcriptomic analysis revealed that SF3B1 depletion decidualizing stromal cells led to differential mRNA splicing. Specifically, a significant upregulation in mutually exclusive AS events (MXEs) with SF3B1 loss resulted in the generation of aberrant transcripts. Further, we found that some of these candidate genes phenocopy SF3B1 function in decidualization. Importantly, we identify progesterone as a potential upstream regulator of SF3B1-mediated functions in endometrium possibly via maintaining its persistently high levels, in coordination with deubiquitinating enzymes. Collectively, our data suggest that SF3B1-driven alternative splicing plays a critical role in mediating the endometrial-specific transcriptional paradigms. Thus, the identification of novel mRNA variants associated with successful pregnancy establishment may help to develop new strategies to diagnose or prevent early pregnancy loss.
Collapse
|
34
|
Liu H, Zhu Y, Ng KTP, Lo CM, Man K. The Landscape of Aberrant Alternative Splicing Events in Steatotic Liver Graft Post Transplantation via Transcriptome-Wide Analysis. Int J Mol Sci 2023; 24:ijms24098216. [PMID: 37175922 PMCID: PMC10179559 DOI: 10.3390/ijms24098216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The application of steatotic liver graft has been increased significantly due to the severe donor shortage and prevalence of non-alcoholic fatty liver disease. However, steatotic donor livers are vulnerable to acute phase inflammatory injury, which may result in cancer recurrence. Alternative splicing events (ASEs) are critical for diverse transcriptional variants in hepatocellular carcinoma (HCC). Here, we aimed to depict the landscape of ASEs, as well as to identify the differential ASEs in steatotic liver graft and their association with tumor recurrence after transplantation. The overall portrait of intragraft transcripts and ASEs were elucidated through RNA sequencing with the liver graft biopsies from patients and rat transplant models. Various differential ASEs were identified in steatotic liver grafts. CYP2E1, ADH1A, CYP2C8, ADH1C, and HGD, as corresponding genes to the common pathways involved differential ASEs in human and rats, were significantly associated with HCC patients' survival. The differential ASEs related RNA-binding proteins (RBPs) were enriched in metabolic pathways. The altered immune cell distribution, particularly macrophages and neutrophils, were perturbated by differential ASEs. The cancer hallmarks were enriched in steatotic liver grafts and closely associated with differential ASEs. Our work identified the differential ASE network with metabolic RBPs, immune cell distribution, and cancer hallmarks in steatotic liver grafts. We verified the link between steatotic liver graft injury and tumor recurrence at post-transcriptional level, offered new evidence to explore metabolism and immune responses, and provided the potential prognostic and therapeutic markers for tumor recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung-Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Rozza R, Janoš P, Magistrato A. Monovalent Ionic Atmosphere Modulates the Selection of Suboptimal RNA Sequences by Splicing Factors' RNA Recognition Motifs. J Chem Inf Model 2023; 63:3086-3093. [PMID: 37129986 DOI: 10.1021/acs.jcim.3c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The U2AF2 splicing factor is involved in the RNA recognition of the pre-mRNA poly-pyrimidine signaling sequence. This protein contains two RRM domains connected by a flexible linker, which ensure the preferential selection of a poly-uridine sequence over a poly-cytosine one. In this work, all-atom simulations provide insights into the U2AF2 recognition mechanism and on the features underlying its selectivity. Our outcomes show that U2AF2's RNA recognition is driven by cooperative events modulated by RNA-protein and RNA-ion interactions. Stunningly, monovalent ions contribute to mediating the binding of the weakly binding polyC strand, thus contributing to the selection of suboptimal poly-pyrimidine tracts. This finding broadens our understanding of the diverse traits tuning splicing factors' selectivity and adaptability to precisely handle and process diverse pre-mRNA sequences.
Collapse
Affiliation(s)
| | - Pavel Janoš
- CNR-IOM at SISSA via Bonomea 265, 34136 Trieste, Italy
| | | |
Collapse
|
36
|
Xue J, Ma T, Zhang X. TRA2: The dominant power of alternative splicing in tumors. Heliyon 2023; 9:e15516. [PMID: 37151663 PMCID: PMC10161706 DOI: 10.1016/j.heliyon.2023.e15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The dysregulation of alternative splicing (AS) is frequently found in cancer and considered as key markers for cancer progression and therapy. Transformer 2 (TRA2), a nuclear RNA binding protein, consists of transformer 2 alpha homolog (TRA2A) and transformer 2 beta homolog (TRA2B), and plays a role in the regulation of pre-mRNA splicing. Growing evidence has been provided that TRA2A and TRA2B are dysregulated in several types of tumors, and participate in the regulation of proliferation, migration, invasion, and chemotherapy resistance in cancer cells through alteration of AS of cancer-related genes. In this review, we highlight the role of TRA2 in tumorigenesis and metastasis, and discuss potential molecular mechanisms how TRA2 influences tumorigenesis and metastasis via controlling AS of pre-mRNA. We propose that TRA2Ais a novel biomarker and therapeutic target for cancer progression and therapy.
Collapse
Affiliation(s)
- Jiancheng Xue
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- Corresponding author.
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
- Corresponding author. Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
37
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
38
|
Xu D, Yu J, Yang Y, Du Y, Lu H, Zhang S, Feng Q, Yu Y, Hao L, Shao J, Chen L. RBX1 regulates PKM alternative splicing to facilitate anaplastic thyroid carcinoma metastasis and aerobic glycolysis by destroying the SMAR1/HDAC6 complex. Cell Biosci 2023; 13:36. [PMID: 36810109 PMCID: PMC9945352 DOI: 10.1186/s13578-023-00987-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is one of the most aggressive malignancies, frequently accompanied by metastasis and aerobic glycolysis. Cancer cells adjust their metabolism by modulating the PKM alternative splicing and facilitating PKM2 isoform expression. Therefore, identifying factors and mechanisms that control PKM alternative splicing is significant for overcoming the current challenges in ATC treatment. RESULTS In this study, the expression of RBX1 was largely enhanced in the ATC tissues. Our clinical tests suggested that high RBX1 expression was significantly related to poor survival. The functional analysis indicated that RBX1 facilitated the metastasis of ATC cells by enhancing the Warburg effect, and PKM2 played a key role in RBX1-mediated aerobic glycolysis. Furthermore, we confirmed that RBX1 regulates PKM alternative splicing and promotes the PKM2-mediated Warburg effect in ATC cells. Moreover, ATC cell migration and aerobic glycolysis induced by RBX1-mediated PKM alternative splicing are dependent on the destruction of the SMAR1/HDAC6 complex. RBX1, as an E3 ubiquitin ligase, degrades SMAR1 in ATC through the ubiquitin-proteasome pathway. CONCLUSION Overall, our study identified the mechanism underlying the regulation of PKM alternative splicing in ATC cells for the first time and provides evidence about the effect of RBX1 on cellular adaptation to metabolic stress.
Collapse
Affiliation(s)
- Debin Xu
- grid.412455.30000 0004 1756 5980Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008 China
| | - Jichun Yu
- grid.412455.30000 0004 1756 5980Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008 China
| | - Yuting Yang
- grid.412604.50000 0004 1758 4073Department of Intensive Care Unit, First Affiliated Hospital of Nanchang University, No. 17, Yongwai Main Street, Nanchang, 330006 China
| | - Yunyan Du
- grid.260463.50000 0001 2182 8825School of Pharmacy, Nanchang University, No. 471, Bayi Road, Nanchang, 330006 China
| | - Hongcheng Lu
- grid.412455.30000 0004 1756 5980Department of General Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008 China
| | - Shouhua Zhang
- grid.260463.50000 0001 2182 8825Department of General Surgery, Affiliated Children’s Hospital of Nanchang University, No. 122, Yangming Road, Nanchang, 330006 China
| | - Qian Feng
- grid.412455.30000 0004 1756 5980Department of General Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008 China
| | - Yi Yu
- Department of Urology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008, China.
| | - Liang Hao
- Department of Orthopaedics, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008, China.
| | - Jun Shao
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008, China.
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330008, China. .,Cancer Center, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
39
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Liu W, Li D, Lu T, Zhang H, Chen Z, Ruan Q, Zheng Z, Chen L, Guo J. Comprehensive analysis of RNA-binding protein SRSF2-dependent alternative splicing signature in malignant proliferation of colorectal carcinoma. J Biol Chem 2023; 299:102876. [PMID: 36623729 PMCID: PMC9926302 DOI: 10.1016/j.jbc.2023.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant expression of serine/arginine-rich splicing factor 2 (SRSF2) can lead to tumorigenesis, but its molecular mechanism in colorectal cancer is currently unknown. Herein, we found SRSF2 to be highly expressed in human colorectal cancer (CRC) samples compared with normal tissues. Both in vitro and in vivo, SRSF2 significantly accelerated the proliferation of colon cancer cells. Using RNA-seq, we screened and identified 33 alternative splicing events regulated by SRSF2. Knockdown of SLMAP-L or CETN3-S splice isoform could suppress the growth of colon cancer cells, predicting their role in malignant proliferation of colon cancer cells. Mechanistically, the in vivo crosslinking immunoprecipitation assay demonstrated the direct binding of the RNA recognition motif of SRSF2 protein to SLMAP and CETN3 pre-mRNAs. SRSF2 activated the inclusion of SLMAP alternative exon 24 by binding to constitutive exon 25, while SRSF2 facilitated the exclusion of CETN3 alternative exon 5 by binding to neighboring exon 6. Knockdown of SRSF2, its splicing targets SLMAP-L, or CETN3-S caused colon cancer cells to arrest in G1 phase of the cell cycle. Rescue of SLMAP-L or CETN3-S splice isoform in SRSF2 knockdown colon cancer cells could effectively reverse the inhibition of cell proliferation by SRSF2 knockdown through mediating cell cycle progression. Importantly, the percentage of SLMAP exon 24 inclusion increased and CETN3 exon 5 inclusion decreased in CRC samples compared to paired normal samples. Collectively, our findings identify that SRSF2 dysregulates colorectal carcinoma proliferation at the molecular level of splicing regulation and reveal potential splicing targets in CRC patients.
Collapse
Affiliation(s)
- Weizhen Liu
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongfang Li
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ting Lu
- National Center for Colorectal Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haosheng Zhang
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengxin Chen
- National Center for Colorectal Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinli Ruan
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zihui Zheng
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Linlin Chen
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Jun Guo
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Zhang Z, Peng L, Yang W, Li B, Hua Y, Luo S. PHF5A facilitates the development and progression of gastric cancer through SKP2-mediated stabilization of FOS. J Transl Med 2023; 21:5. [PMID: 36609277 PMCID: PMC9817416 DOI: 10.1186/s12967-022-03821-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer death worldwide. Plant homeodomain (PHD)-finger domain protein PHF5A has been demonstrated to play a promoting role in a variety of cancers. This study aimed to clarify the role of PHF5A in the progression of GC and its potential mechanism of action. METHODS Immunohistochemical staining experiments were performed based on tissues from clinical GC patients to reveal PHF5A expression. A series of functional experiments in vitro and in vivo were used to clarify the role of PHF5A in GC. RESULTS Clinically, PHF5A was abundantly expressed in GC and existed clinical value indicating poor prognosis. In addition, GC cells with knockdown of PHF5A expression showed slowed proliferation, enhanced sensitivity to apoptosis and inhibition of migration. Mechanically, knockdown of PHF5A led to decreased protein stability of FOS, which was mediated ubiquitination of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). Moreover, downregulation of FOS attenuated the promotion of PHF5A overexpression on GC cells. Consistently, Pladienolide B (PHF5A inhibitor) treatment reversed the induction of PHF5A overexpression on the malignant phenotypes and tumor formation of GC cells. CONCLUSION Knockdown of PHF5A inhibited the progression of GC through SKP2-mediated ubiquitination of FOS, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Zhandong Zhang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Liangqun Peng
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Wei Yang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Baodong Li
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Yawei Hua
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Suxia Luo
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| |
Collapse
|
42
|
Luo J, Chen C, Liu Z, Wang X. The mutation in splicing factor genes correlates with unfavorable prognosis, genomic instability, anti-tumor immunosuppression and increased immunotherapy response in pan-cancer. Front Cell Dev Biol 2023; 10:1045130. [PMID: 36684432 PMCID: PMC9852835 DOI: 10.3389/fcell.2022.1045130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Splicing abnormality resulting from somatic mutations in key splicing factor genes (SFG) has been detected in various cancers. Hence, an in-depth study of splicing factor genes mutations' impact on pan-cancer is meaningful. This study investigated associations of splicing factor genes mutations with clinical features, tumor progression phenotypes, genomic integrity, anti-tumor immune responses, and immunotherapy response in 12 common cancer types from the TCGA database. Compared to SFG-wildtype cancers, SFG-mutated cancers displayed worse survival prognosis, higher tumor mutation burden and aneuploidy levels, higher expression of immunosuppressive signatures, and higher levels of tumor stemness, proliferation potential, and intratumor heterogeneity (ITH). However, splicing factor genes-mutated cancers showed higher response rates to immune checkpoint inhibitors than splicing factor genes-wildtype cancers in six cancer cohorts. Single-cell data analysis confirmed that splicing factor genes mutations were associated with increased tumor stemness, proliferation capacity, PD-L1 expression, intratumor heterogeneity, and aneuploidy levels. Our data suggest that the mutation in key splicing factor genes correlates with unfavorable clinical outcomes and disease progression, genomic instability, anti-tumor immunosuppression, and increased immunotherapy response in pan-cancer. Thus, the splicing factor genes mutation is an adverse prognostic factor and a positive marker for immunotherapy response in cancer.
Collapse
Affiliation(s)
- Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Canping Chen
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China,*Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| |
Collapse
|
43
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
44
|
Aktas Samur A, Fulciniti M, Avet-Loiseau H, Lopez MA, Derebail S, Corre J, Minvielle S, Magrangeas F, Moreau P, Anderson KC, Parmigiani G, Samur MK, Munshi NC. In-depth analysis of alternative splicing landscape in multiple myeloma and potential role of dysregulated splicing factors. Blood Cancer J 2022; 12:171. [PMID: 36535935 PMCID: PMC9763261 DOI: 10.1038/s41408-022-00759-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Splicing changes are common in cancer and are associated with dysregulated splicing factors. Here, we analyzed RNA-seq data from 323 newly diagnosed multiple myeloma (MM) patients and described the alternative splicing (AS) landscape. We observed a large number of splicing pattern changes in MM cells compared to normal plasma cells (NPC). The most common events were alterations of mutually exclusive exons and exon skipping. Most of these events were observed in the absence of overall changes in gene expression and often impacted the coding potential of the alternatively spliced genes. To understand the molecular mechanisms driving frequent aberrant AS, we investigated 115 splicing factors (SFs) and associated them with the AS events in MM. We observed that ~40% of SFs were dysregulated in MM cells compared to NPC and found a significant enrichment of SRSF1, SRSF9, and PCB1 binding motifs around AS events. Importantly, SRSF1 overexpression was linked with shorter survival in two independent MM datasets and was correlated with the number of AS events, impacting tumor cell proliferation. Together with the observation that MM cells are vulnerable to splicing inhibition, our results may lay the foundation for developing new therapeutic strategies for MM. We have developed a web portal that allows custom alternative splicing event queries by using gene symbols and visualizes AS events in MM and subgroups. Our portals can be accessed at http://rconnect.dfci.harvard.edu/mmsplicing/ and https://rconnect.dfci.harvard.edu/mmleafcutter/ .
Collapse
Affiliation(s)
- Anil Aktas Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Herve Avet-Loiseau
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Michael A Lopez
- Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Sanika Derebail
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jill Corre
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Stephane Minvielle
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Florence Magrangeas
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Philippe Moreau
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Mehmet K Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- VA Boston Healthcare System, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Tian B, Bian Y, Bian DJ, Gao Y, Zhang X, Zhou SW, Zhang YH, Pang YN, Li ZS, Wang LW. Knowledge mapping of alternative splicing of cancer from 2012 to 2021: A bibliometric analysis. Front Oncol 2022; 12:1068805. [PMID: 36591484 PMCID: PMC9795218 DOI: 10.3389/fonc.2022.1068805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background As a processing method of RNA precursors, alternative splicing (AS) is critical to normal cellular activities. Aberrant AS events are associated with cancer development and can be promising targets to treat cancer. However, no detailed and unbiased study describes the current state of AS of cancer research. We aim to measure and recognize the current state and trends of AS cancer research in this study. Methods The Web of Science Core Collection was used to acquire the articles. Utilizing three bibliometric tools (CiteSpace, VOSviewer, R-bibliometrix), we were able to measure and recognize the influence and collaboration data of individual articles, journals, and co-citations. Analysis of co-occurrence and burst information helped us identify the trending research areas related to AS of cancer. Results From 2012 to 2021, the total number of papers on AS of cancer published in 766 academic journals was 3,507, authored by 20,406 researchers in 405 institutions from 80 countries/regions. Research involving AS of cancer genes was primarily conducted in the United States and China; simultaneously, the Chinese Academy of Sciences, Fudan University, and National Cancer Institute were the institutions with strong research capabilities. Scorilas Andreas is the scholar with the most publications, while the most co-citations were generated by Wang, Eric T. Plos One published the most papers on AS of cancer, while J Biol Chem was the most co-cited academic journal in this field. The results of keyword co-occurrence analysis can be divided into three types: molecular (P53, CD44, androgen receptor, srsf3, esrp1), pathological process (apoptosis, EMT, metastasis, angiogenesis, proliferation), and disease (breast cancer, colorectal cancer, prostate cancer, hepatocellular carcinoma, gastric cancer). Conclusion Research on AS of cancer has been increasing in intensity over the past decade. Current AS of cancer studies focused on the hallmarks of AS in cancer and AS signatures including diagnostic and therapeutic targets. Among them, the current trends are splicing factors regulating epithelial-mesenchymal transition and other hallmarks, aberrant splicing events in tumors, and further mechanisms. These might give researchers interested in this field a forward-looking perspective and inform further research.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - De-Jian Bian
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Si-Wei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan-Hui Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Nan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Luo-Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| |
Collapse
|
46
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Chen Y, Jiang N, Chen M, Sui B, Liu X. Identification of tumor antigens and immune subtypes in head and neck squamous cell carcinoma for mRNA vaccine development. Front Cell Dev Biol 2022; 10:1064754. [PMID: 36467412 PMCID: PMC9714632 DOI: 10.3389/fcell.2022.1064754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 08/08/2023] Open
Abstract
The mRNA vaccines have been considered effective for combating cancer. However, the core components of the mRNA vaccines against head and neck squamous cell carcinoma (HNSCC) and the effects remain unclear. Our study aims to identify effective antigens in HNSCC to develop mRNA vaccines for corresponding potential patients. Here, we analyzed alternative splicing and mutation of genes in TCGA-HNSCC samples and identified seven potential tumor antigens, including SREBF1, LUC7L3, LAMA5, PCGF3, HNRNPH1, KLC4, and OFD1, which were associated with nonsense-mediated mRNA decay factor expression, overall survival prognosis and the infiltration of antigen-presenting cells. Furthermore, to select suitable patients for vaccination, immune subtypes related to HNSCC were identified by consensus clustering analysis, and visualization of the HNSCC immune landscape was performed by graph-learning-based dimensionality reduction. To address the heterogeneity of the population that is suitable for vaccination, plot cell trajectory and WGCNA were also utilized. HNSCC patients were classified into three prognostically relevant immune subtypes (Cluster 1, Cluster 2, and Cluster 3) possessing different molecular and cellular characteristics, immune modulators, and mutation statuses. Cluster 1 had an immune-activated phenotype and was associated with better survival, while Cluster 2 and Cluster 3 were immunologically cold and linked to increased tumor mutation burden. Therefore, HNSCC patients with immune subtypes Cluster 2 and Cluster 3 are potentially suitable for mRNA vaccination. Moreover, the prognostic module hub genes screened seven genes, including IGKC, IGHV3-15, IGLV1-40, IGLV1-51, IGLC3, IGLC2, and CD79A, which could be potential biomarkers to predict prognosis and identify suitable patients for mRNA vaccines. Our findings provide a theoretical basis for further research and the development of anti-HNSCC mRNA vaccines and the selection of suitable patients for vaccination.
Collapse
Affiliation(s)
- Yan Chen
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ning Jiang
- Department of Oral and Craniomaxillofacial Science, Shanghai Key Laboratory of Stomatology, College of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meihua Chen
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Key Laboratory of Stomatology, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Key Laboratory of Stomatology, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| |
Collapse
|
48
|
Taze C, Drakouli S, Samiotaki M, Panayotou G, Simos G, Georgatsou E, Mylonis I. Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling. Redox Biol 2022; 58:102545. [PMID: 36427398 PMCID: PMC9692040 DOI: 10.1016/j.redox.2022.102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this event depends on reorganization of the splicing machinery, triggered after short-term hypoxia by ROS production and intranuclear redistribution of the nucleoskeletal proteins SAFB1/2. Exposure to low oxygen causes fast dissociation of SAFB1/2 from the nuclear matrix, which is reversible, inhibited by antioxidant treatment, and also observed under normoxia when the mitochondrial electron transport chain is blocked. This is accompanied by altered interactions between SAFB1/2 and the splicing machinery, translocation of kinase SRPK1 to the cytoplasm, and dephosphorylation of RS-splicing factors. Depletion of SAFB1/2 under normoxia phenocopies the hypoxic and ROS-mediated switch in VEGF mRNA splicing. These data suggest that ROS-dependent remodeling of the nuclear architecture can promote production of splicing variants that facilitate adaptation to hypoxia.
Collapse
Affiliation(s)
- Chrysa Taze
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Sotiria Drakouli
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - George Panayotou
- Institute for Bioinnovation, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Eleni Georgatsou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece,Corresponding author.
| |
Collapse
|
49
|
Zhou J, Chen W, He Q, Chen D, Li C, Jiang C, Ding Z, Qian Q. SERBP1 affects the apoptotic level by regulating the expression and alternative splicing of cellular and metabolic process genes in HeLa cells. PeerJ 2022; 10:e14084. [PMID: 36213507 PMCID: PMC9536300 DOI: 10.7717/peerj.14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background RNA-binding proteins (RBPs) have important roles in orchestrating posttranscriptional regulation and modulating many tumorigenesis events. SERBP1 has been recognized as an important regulator in multiple cancers, while it remains unclear whether SERBP1-regulated gene expression at the transcriptome-wide level is significantly correlated with tumorigenesis. Methods We overexpressed SERBP1 in HeLa cells and explored whether SERBP1 overexpression (SERBP1-OE) affects the proliferation and apoptosis of HeLa cells. We analyzed the transcriptome-wide gene expression changes and alternative splicing changes mediated by SERBP1-OE using the transcriptome sequencing method (RNA-seq). RT-qPCR was conducted to assay SERBP1-regulated alternative splicing. Results SERBP1-OE induced the apoptosis of HeLa cells. The downregulated genes were strongly enriched in the cell proliferation and apoptosis pathways according to the GO analysis, including FOS, FOSB, PAK6 and RAB26. The genes undergoing at least one SERBP1-regulated alternative splicing event were enriched in transcriptional regulation, suggesting a mechanism of the regulation of gene expression, and in pyruvate and fatty acid metabolic processes critical for tumorigenesis events. The SERBP1-regulated alternative splicing of ME3, LPIN3, CROT, PDP1, SLC27A1 and ALKBH7 was validated by RT-qPCR analysis. Conclusions We for the first time demonstrated the cellular function and molecular targets of SERBP1 in HeLa cells at transcriptional and post-transcriptional levels. The SERBP1-regulated gene expression and alternative splicing networks revealed by this study provide important information for exploring the functional roles and regulatory mechanisms of SERBP1 in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Wenhao Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wu Han, Hubei, China
| | - Chunguang Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| |
Collapse
|
50
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|