1
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024:1-13. [PMID: 39632509 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
- Ashley N Spirrison
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deborah A Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Ludwik KA, Greathouse FR, Han S, Stauffer K, Brenin DR, Stricker TP, Lannigan DA. Identifying the effectiveness of 3D culture systems to recapitulate breast tumor tissue in situ. Cell Oncol (Dordr) 2024; 47:481-496. [PMID: 37776423 PMCID: PMC11090829 DOI: 10.1007/s13402-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE Breast cancer heterogeneity contributes to chemotherapy resistance and decreased patient survival. To improve patient outcomes it is essential to develop a technology that is able to rapidly select the most efficacious therapy that targets the diverse phenotypes present within the tumor. Breast cancer organoid technologies are proposed as an attractive approach for evaluating drug responses prior to patient therapy. However, there remain challenges in evaluating the effectiveness of organoid cultures to recapitulate the heterogeneity present in the patient tumor in situ. METHOD Organoids were generated from seven normal breast and nineteen breast cancer tissues diagnosed as estrogen receptor positive or triple negative. The Jensen-Shannon divergence index, a measure of the similarity between distributions, was used to compare and evaluate heterogeneity in starting tissue and their resultant organoids. Heterogeneity was analyzed using cytokeratin 8 and cytokeratin 14, which provided an easily scored readout. RESULTS In the in vitro culture system HER1 and FGFR were able to drive intra-tumor heterogeneity to generate divergent phenotypes that have different sensitivities to chemotherapies. CONCLUSION Our methodology, which focuses on quantifiable cellular phenotypes, provides a tractable system that complements omics approaches to provide an unprecedented view of heterogeneity and will enhance the identification of novel therapies and facilitate personalized medicine.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Frances R Greathouse
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Kimberly Stauffer
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David R Brenin
- Department Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thomas P Stricker
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Deborah A Lannigan
- Department Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
3
|
Kim HY, Sinha I, Sears KE, Kuperwasser C, Rauner G. Expanding the evo-devo toolkit: generation of 3D mammary tissue from diverse mammals. Development 2024; 151:dev202134. [PMID: 38276965 PMCID: PMC10905751 DOI: 10.1242/dev.202134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.
Collapse
Affiliation(s)
- Hahyung Y. Kim
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
- Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Gat Rauner
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
4
|
Huang C, Jin H. Progress and perspective of organoid technology in breast cancer research. Chin Med J (Engl) 2024:00029330-990000000-00903. [PMID: 38185826 PMCID: PMC11407818 DOI: 10.1097/cm9.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 01/09/2024] Open
Abstract
ABSTRACT Breast cancer, a malignant tumor with a high incidence in women, lacks in vitro research models that can represent the biological functions of breast tumors in vivo. As a new biological tool, the organoid model has unique advantages over traditional methods, such as cell culture and patient-derived xenografts. Combining organoids with other emerging technologies, such as gene engineering and microfluidic chip technology, provides an effective method to compensate for the deficiencies in organoid models of breast cancer in vivo. The emergence of breast cancer organoids has provided new tools and research directions in precision medicine, personality therapy, and drug research. In this review, we summarized the merits and demerits of organoids compared to traditional biological models, explored the latest developments in the combination of new technologies and organoid models, and discussed the construction methods and application prospects of different breast organoid models.
Collapse
Affiliation(s)
- Changsheng Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
5
|
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol 2023; 11:1297292. [PMID: 38169775 PMCID: PMC10758423 DOI: 10.3389/fcell.2023.1297292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Serine/Threonine protein kinase family, p90 ribosomal S6 kinases (RSK) are downstream effectors of extracellular signal regulated kinase 1/2 (ERK1/2) and are activated in response to tyrosine kinase receptor or G-protein coupled receptor signaling. RSK contains two distinct kinase domains, an N-terminal kinase (NTKD) and a C-terminal kinase (CTKD). The sole function of the CTKD is to aid in the activation of the NTKD, which is responsible for substrate phosphorylation. RSK regulates various homeostatic processes including those involved in transcription, translation and ribosome biogenesis, proliferation and survival, cytoskeleton, nutrient sensing, excitation and inflammation. RSK also acts as a major negative regulator of ERK1/2 signaling. RSK is associated with numerous cancers and has been primarily studied in the context of transformation and metastasis. The development of specific RSK inhibitors as cancer therapeutics has lagged behind that of other members of the mitogen-activated protein kinase signaling pathway. Importantly, a pan-RSK inhibitor, PMD-026, is currently in phase I/1b clinical trials for metastatic breast cancer. However, there are four members of the RSK family, which have overlapping and distinct functions that can vary in a tissue specific manner. Thus, a problem for transitioning a RSK inhibitor to the clinic may be the necessity to develop isoform specific inhibitors, which will be challenging as the NTKDs are very similar to each other. CTKD inhibitors have limited use as therapeutics as they are not able to inhibit the activity of the NTKD but could be used in the development of proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Eric B. Wright
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Deborah A. Lannigan
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department Pathology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Pfannenstein A, Macara IG. A junction-dependent mechanism drives murine mammary cell intercalation for ductal elongation. Dev Cell 2023; 58:1126-1138.e4. [PMID: 37141887 PMCID: PMC10524519 DOI: 10.1016/j.devcel.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The luminal epithelium of the mammary gland is organized into monolayers; however, it originates from multilayered terminal end buds (TEBs) during development. Although apoptosis provides a plausible mechanism for cavitation of the ductal lumen, it doesn't account for ductal elongation behind TEBs. Spatial calculations in mice suggest that most TEB cells integrate into the outermost luminal layer to generate elongation. We developed a quantitative cell culture assay that models intercalation into epithelial monolayers. We found that tight junction proteins play a key role in this process. ZO-1 puncta form at the new cellular interface and resolve into a new boundary as intercalation proceeds. Deleting ZO-1 suppresses intercalation both in culture and in cells transplanted into mammary glands via intraductal injection. Cytoskeletal rearrangements at the interface are critical for intercalation. These data identify luminal cell rearrangements necessary for mammary development and suggest a mechanism for integration of cells into an existing monolayer.
Collapse
Affiliation(s)
- Alexander Pfannenstein
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
7
|
Morato A, Accornero P, Hovey RC. ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author. J Mammary Gland Biol Neoplasia 2023; 28:10. [PMID: 37219601 DOI: 10.1007/s10911-023-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Li J, Wang Z, Wang J, Guo Q, Fu Y, Dai Z, Wang M, Bai Y, Liu X, Cooper PR, Wu J, He W. Amphiregulin regulates odontogenic differentiation of dental pulp stem cells by activation of mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathways. Stem Cell Res Ther 2022; 13:304. [PMID: 35841013 PMCID: PMC9284861 DOI: 10.1186/s13287-022-02971-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Human dental pulp stem cells (hDPSCs) have received widespread attention in the fields of tissue engineering and regenerative medicine. Although amphiregulin (AREG) has been shown to play a vital function in the biological processes of various cell types, its effects on DPSCs remain largely unknown. The aim of this study was to explore the specific role of AREG as a biologically active factor in the regeneration of dental pulp tissue. Methods The growth of hDPSCs, together with their proliferation and apoptosis, in response to AREG was examined by CCK-8 assay and flow cytometry. We explored the effects of AREG on osteo/odontogenic differentiation in vitro and investigated the regeneration and mineralization of hDPSCs in response to AREG in vivo. The effects of AREG gain- and loss-of-function on DPSC differentiation were investigated following transfection using overexpression plasmids and shRNA, respectively. The involvement of the mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K)/Akt pathways in the mineralization process and the expression of odontoblastic marker proteins after AREG induction were investigated by using Alizarin Red S staining and Western blotting, respectively. Results AREG (0.01–0.1 µg/mL) treatment of hDPSCs from 1 to 7 days increased hDPSCs growth and affected apoptosis minimally compared with negative controls. AREG exposure significantly promoted hDPSC differentiation, shown by increased mineralized nodule formation and the expression of odontoblastic marker protein expression. In vivo micro-CT imaging and quantitative analysis showed significantly greater formation of highly mineralized tissue in the 0.1 μg/mL AREG exposure group in DPSC/NF-gelatin-scaffold composites. AREG also promoted extracellular matrix production, with collagen fiber, mineralized matrix, and calcium salt deposition on the composites, as shown by H&E, Masson, and Von Kossa staining. Furthermore, AREG overexpression boosted hDPSC differentiation while AREG silencing inhibited it. During the differentiation of hDPSCs, AREG treatment led to phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and PI3K/Akt. Notably, a specific inhibitor of ERK, JNK, and PI3K/Akt signaling markedly reduced AREG-induced differentiation, as well as levels of phosphorylated ERK and JNK in hDPSCs. Conclusions The data indicated that AREG promoted odontoblastic differentiation and facilitated regeneration and mineralization processes in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02971-4.
Collapse
Affiliation(s)
- Junqing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China.,Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China
| | - Zhihua Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Qian Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Yi Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China.,Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China
| | - Zihan Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Minghao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Yu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Te Whare Wānanga O Otāgo, PO Box 56, Dunedin, 9054, New Zealand
| | - Jiayuan Wu
- Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China.
| | - Wenxi He
- Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, People's Republic of China.
| |
Collapse
|
9
|
Parihar A, Pandita V, Khan R. 3D printed human organoids: High throughput system for drug screening and testing in current COVID-19 pandemic. Biotechnol Bioeng 2022; 119:2669-2688. [PMID: 35765706 DOI: 10.1002/bit.28166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
In the current pandemic, scenario the world is facing a huge shortage of effective drugs and other prophylactic medicine to treat patients which created havoc in several countries with poor resources. With limited demand and supply of effective drugs, researchers rushed to repurpose the existing approved drugs for the treatment of COVID-19. The process of drug screening and testing is very costly and requires several steps for validation and treatment efficacy evaluation ranging from in-vitro to in-vivo setups. After these steps, a clinical trial is mandatory for the evaluation of treatment efficacy and side effects in humans. These processes enhance the overall cost and sometimes the lead molecule show adverse effects in humans and the trial ends up in the final stages. Recently with the advent of 3D organoid culture which mimics the human tissue exactly the process of drug screening and testing can be done in a faster and cost-effective manner. Further 3D organoids prepared from stems cells taken from individuals can be beneficial for personalized drug therapy which could save millions of lives. This review discussed approaches and techniques for the synthesis of 3D-printed human organoids for drug screening. The key findings of the usage of organoids for personalized medicine for the treatment of COVID-19 have been discussed. In the end, the key challenges for the wide applicability of human organoids for drug screening with prospects of future orientation have been included. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Vasundhara Pandita
- Department of Biosciences, Barkatullah University, Habib Ganj, Bhopal, Madhya Pradesh, 462026, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Goldhammer N, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation. Commun Biol 2022; 5:219. [PMID: 35273332 PMCID: PMC8913783 DOI: 10.1038/s42003-022-03161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies. Breast myoepithelial cells are characterised using single cell sequencing, where they are distinguished by CD200 expression. Distinct properties of CD200-low and CD200-high are found, which suggest that CD200-low cells are multipotent, whereas CD200-high cells are bipotent.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
11
|
Design, synthesis and anti-breast cancer evaluation of biaryl pyridine analogues as potent RSK inhibitors. Bioorg Med Chem Lett 2022; 59:128565. [DOI: 10.1016/j.bmcl.2022.128565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
|
12
|
Wright EB, Lannigan DA. ERK1/2‐RSK regulation of oestrogen homeostasis. FEBS J 2022; 290:1943-1953. [PMID: 35176205 PMCID: PMC9381647 DOI: 10.1111/febs.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms regulating oestrogen homeostasis have been primarily studied in the mammary gland, which is the focus of this review. In the non-pregnant adult, the mammary gland undergoes repeated cycles of proliferation and apoptosis in response to the fluctuating levels of oestrogen that occur during the reproductive stage. Oestrogen actions are mediated through the steroid hormone receptors, oestrogen receptor α and β and through a G-protein coupled receptor. In the mammary gland, ERα is of particular importance and thus will be highlighted. Mechanisms regulating oestrogen-induced responses through ERα are necessary to maintain homeostasis given that the signalling pathways that are activated in response to ERα-mediated transcription can also induce transformation. ERK1/2 and its downstream effector, p90 ribosomal S6 kinase (RSK), control homeostasis in the mammary gland by limiting oestrogen-mediated ERα responsiveness. ERK1/2 drives degradation coupled ERα-mediated transcription, whereas RSK2 acts as a negative regulator of ERK1/2 activity to limit oestrogen responsiveness. Moreover, RSK2 acts as a positive regulator of translation. Thus, RSK2 provides both positive and negative signals to maintain oestrogen responsiveness. In addition to transmitting signals through tyrosine kinase receptors, ERK1/2-RSK engages with hedgehog signalling to maintain oestrogen levels and with the HIPPO pathway to regulate ERα-mediated transcription. Additionally, ERK1/2-RSK controls the progenitor populations within the mammary gland to maintain the ERα-positive population. RSK2 is involved in increased breast cancer risk in individuals taking oral contraceptives and in parity-induced protection against breast cancer. RSK2 and ERα may also co-operate in diseases in tissues outside of the mammary gland.
Collapse
Affiliation(s)
- Eric B. Wright
- Biomedical Engineering Vanderbilt University Nashville TN USA
| | - Deborah A. Lannigan
- Biomedical Engineering Vanderbilt University Nashville TN USA
- Pathology, Microbiology & Immunology Vanderbilt University Medical Center Nashville TN USA
- Cell and Developmental Biology Vanderbilt University Nashville TN USA
| |
Collapse
|
13
|
Iggo R. Modeling Breast Cancer in Organoid and Intraductal Models. Methods Mol Biol 2022; 2471:235-257. [PMID: 35175601 DOI: 10.1007/978-1-0716-2193-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present protocols to create estrogen receptor positive (ER+) and androgen receptor positive (AR+) breast cancer models by combining organoid culture with mammary intraductal injection.
Collapse
Affiliation(s)
- Richard Iggo
- INSERM U1218, Institut Bergonié, University of Bordeaux, Bordeaux, France.
- DRMCRL Lab, University of Adelaide Medical School, Adelaide, SA, Australia.
| |
Collapse
|
14
|
Koch MK, Murekatete B, Hutmacher DW, Haupt LM, Bray LJ. Label-free isolation and cultivation of patient-matched human mammary epithelial and stromal cells from normal breast tissue. Eur J Cell Biol 2021; 100:151187. [PMID: 34837767 DOI: 10.1016/j.ejcb.2021.151187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is primarily derived from mammary epithelial cells, the main cell type in human mammary glands. The majority of knowledge gained thus far around breast cancer has come from research using immortalized epithelial cell lines. The use of primary cells derived from breast tissue can be used in research to provide more biological relevance representative of the heterogeneous nature of breast cancer development and metastasis in its natural microenvironment. However, the successful isolation and propagation of human primary mammary gland cells can be costly and difficult due to their complex in vivo microenvironment and sensitivity when isolated. Here, we present a gentle isolation method for viable human mammary epithelial cells (hMECs) and donor-matched human mammary fibroblasts (hMFbs) from human mammary gland tissue. We isolated, expanded and passaged the hMECs and hMFbs in vitro and characterized cultures using cell-specific markers. A total of four primary cell lines were isolated and established from normal breast tissue and characterized through various markers, including pan cytokeratin (panCK), CK14, CD44, CD31, fibronectin and vimentin by immunofluorescence. To determine functional potential for subsequent studies, epithelial cells were examined via Matrigel® assays to assess spheroid development. Both cell type cultures expressed lineage specific markers with hMECs but not hMFbs forming spheroid structures in 3D Matrigel® assays. Our analyses confirm the successful isolation of two different cell phenotypes from normal breast tissues. This robust technique provides an inexpensive and accessible approach for mammary cell isolation.
Collapse
Affiliation(s)
- Maria K Koch
- Queensland University of Technology (QUT), Centre for Biomedical Technologies, School of Mechanical. Medical and Process Engineering, Science and Engineering Faculty, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Berline Murekatete
- Queensland University of Technology (QUT), Centre for Biomedical Technologies, School of Mechanical. Medical and Process Engineering, Science and Engineering Faculty, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Dietmar W Hutmacher
- Queensland University of Technology (QUT), Centre for Biomedical Technologies, School of Mechanical. Medical and Process Engineering, Science and Engineering Faculty, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Laura J Bray
- Queensland University of Technology (QUT), Centre for Biomedical Technologies, School of Mechanical. Medical and Process Engineering, Science and Engineering Faculty, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
15
|
Ludwik KA, Sandusky ZM, Stauffer KM, Li Y, Boyd KL, O'Doherty GA, Stricker TP, Lannigan DA. RSK2 Maintains Adult Estrogen Homeostasis by Inhibiting ERK1/2-Mediated Degradation of Estrogen Receptor Alpha. Cell Rep 2021; 32:107931. [PMID: 32697984 PMCID: PMC7465694 DOI: 10.1016/j.celrep.2020.107931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/17/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
In response to estrogens, estrogen receptor alpha (ERα), a critical regulator of homeostasis, is degraded through the 26S proteasome. However, despite the continued presence of estrogen before menopause, ERα protein levels are maintained. We discovered that ERK1/2-RSK2 activity oscillates during the estrous cycle. In response to high estrogen levels, ERK1/2 is activated and phosphorylates ERα to drive ERα degradation and estrogen-responsive gene expression. Reduction of estrogen levels results in ERK1/2 deactivation. RSK2 maintains redox homeostasis, which prevents sustained ERK1/2 activation. In juveniles, ERK1/2-RSK2 activity is not required. Mammary gland regeneration demonstrates that ERK1/2-RSK2 regulation of ERα is intrinsic to the epithelium. Reduced RSK2 and enrichment in an estrogen-regulated gene signature occur in individuals taking oral contraceptives. RSK2 loss enhances DNA damage, which may account for the elevated breast cancer risk with the use of exogenous estrogens. These findings implicate RSK2 as a critical component for the preservation of estrogen homeostasis. Ludwik et al. find that ERK1/2-RSK2 activity oscillates with each reproductive cycle. The estrogen surge activates ERK1/2, which phosphorylates estrogen receptor alpha to drive estrogen responsiveness. Active RSK2 acts as a brake on the estrogen response by maintaining redox homeostasis. Oral contraceptive use correlates with disruption of ERK1/2-RSK2 regulation.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly M Stauffer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Thomas P Stricker
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Ludwik KA, Sandusky ZM, Wright EB, Lannigan DA. FACS protocol for direct comparison of cell populations isolated from mice. STAR Protoc 2021; 2:100270. [PMID: 33490986 PMCID: PMC7811174 DOI: 10.1016/j.xpro.2020.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A FACS protocol is described that eliminates isolation and staining artifacts to allow accurate comparison between cell populations isolated from organs obtained from disparate mouse groups. This protocol was validated by characterizing the estrogen receptor positive cells within the mammary gland of transgenic mice with different genotypes at different stages of the estrous cycle. We include protocols necessary to batch stage animals within the cycle to proceed directly to FACS, which provides optimal RNA yields for RNA-seq. For complete details on the use and execution of this protocol, please refer to Ludwik et al. (2020).
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric B Wright
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273-288. [PMID: 33210256 DOI: 10.1007/s10911-020-09468-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
18
|
Fomicheva M, Macara IG. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. eLife 2020; 9:63603. [PMID: 33185187 PMCID: PMC7685705 DOI: 10.7554/elife.63603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells possess intrinsic mechanisms to maintain an appropriate cell density for normal tissue morphogenesis and homeostasis. Defects in such mechanisms likely contribute to hyperplasia and cancer initiation. To identify genes that regulate the density-dependent proliferation of murine mammary epithelial cells, we developed a fluorescence-activated cell sorting assay based on fluorescence ubiquitination cell cycle indicator, which marks different stages of the cell cycle with distinct fluorophores. Using this powerful assay, we performed a genome-wide CRISPR/Cas9 knockout screen, selecting for cells that proliferate normally at low density but continue to divide at high density. Unexpectedly, one top hit was Traf3, a negative regulator of NF-κB signaling that has never previously been linked to density-dependent proliferation. We demonstrate that loss of Traf3 specifically activates noncanonical NF-κB signaling. This in turn triggers an innate immune response and drives cell division independently of known density-dependent proliferation mechanisms, including YAP/TAZ signaling and cyclin-dependent kinase inhibitors, by blocking entry into quiescence.
Collapse
Affiliation(s)
- Maria Fomicheva
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine Nashville, Nashville, United States
| | - Ian G Macara
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine Nashville, Nashville, United States
| |
Collapse
|
19
|
Understanding of tumourigenesis in canine mammary tumours based on cancer stem cell research. Vet J 2020; 265:105560. [PMID: 33129557 DOI: 10.1016/j.tvjl.2020.105560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Mammary tumours occur frequently in female dogs, where such tumours exhibit complexity when examined histologically. These tumours are composed not only of proliferative luminal epithelial cells, but also of myoepithelial cells and/or mesenchymal cells with cartilage and osseous tissues in a solitary mass. The origin of this complexed histogenesis remains speculative, but cancer stem cells (CSCs) are likely involved. CSCs possess self-renewing capacity, differentiation potential, high tumourigenicity in immunodeficient mice, and resistance to chemotherapy and radiation. These cells are at the apex of a hierarchy in cancer tissues and are involved in tumour initiation, recurrence, and metastasis. For these reasons, understanding the properties of CSCs is of paramount importance. Analysis of the characteristics of CSCs may contribute to the elucidation of the histogenesis underlying canine mammary tumours, formulation of novel CSC-targeted therapeutic strategies, and development of biomarkers for early diagnostic and prognostic applications. Here, we review research on CSCs in canine mammary tumours, focusing on: (1) identification and properties of CSCs; (2) hypotheses regarding hierarchal structures in simple type, complex type and mixed tumours of the canine mammary gland; and (3) current and prospective studies of CSC metabolism.
Collapse
|
20
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Cornelissen LM, Drenth AP, van der Burg E, de Bruijn R, Pritchard CEJ, Huijbers IJ, Zwart W, Jonkers J. TRPS1 acts as a context-dependent regulator of mammary epithelial cell growth/differentiation and breast cancer development. Genes Dev 2019; 34:179-193. [PMID: 31879358 PMCID: PMC7000918 DOI: 10.1101/gad.331371.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
In this study, Cornelissen et al. set out to elucidate the role of the GATA-type zinc finger transcription factor TRPS1 in breast cancer. Using in vitro and in vivo loss-of-function approaches, the authors demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells. The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.
Collapse
Affiliation(s)
- Lisette M Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Colin E J Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Division of Oncogenomics, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Laboratory of Chemical Biology, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
22
|
Goldhammer N, Kim J, Timmermans-Wielenga V, Petersen OW. Characterization of organoid cultured human breast cancer. Breast Cancer Res 2019; 21:141. [PMID: 31829259 PMCID: PMC6907265 DOI: 10.1186/s13058-019-1233-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Organoid cultures are increasingly used to model human cancers experimentally with a view to tailoring personalized medicine and predicting drug responses. Breast cancer is no exception, but in particular, primary breast cancer poses some inherent difficulties due to the frequent presence of residual non-malignant cells in the biopsies. We originally developed an assay for the distinction between malignant and non-malignant structures in primary breast cancer organoid cultures (Petersen et al., Proc Natl Acad Sci (USA) 89(19):9064–8, 1992). Here, we apply this assay to assess the frequency of normal-like organoids in primary breast carcinoma cultures and the cellular composition as a consequence of passaging. We find that in consecutively collected samples of primary human breast cancers, residual non-malignant tissues were observed histologically in five out of ten biopsies. Based on relevant morphogenesis and correct polarization as recorded by expression in luminal epithelial cells of mucin 1 (Muc1), occludin, and keratin 19 (K19) and expression in basal cells of integrin β4, p63, and K14, non-malignant organoids were present in all primary human breast cancer-derived cultures. Furthermore, passaging in a contemporary culture medium was in favor of the selective expansion of basal-like cells. We conclude that organoid cultures of human breast cancers are most representative of the tissue origin in primary culture.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Vera Timmermans-Wielenga
- Pathology Department, Centre of Diagnostic Investigations, Rigshospitalet, DK-2100, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
23
|
High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia. Cell Rep 2019; 23:1205-1219. [PMID: 29694896 PMCID: PMC5946804 DOI: 10.1016/j.celrep.2018.03.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 03/25/2018] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. CyTOF analysis reveals human mammary epithelial heterogeneity with age Age-emergent luminal cells share phenotypes with candidate breast cancer cells of origin Classification models correctly assign tissue samples to their age group Age-related changes are conserved between mammary epithelial tissue and primary cells
Collapse
|
24
|
Samocha A, Doh H, Kessenbrock K, Roose JP. Unraveling Heterogeneity in Epithelial Cell Fates of the Mammary Gland and Breast Cancer. Cancers (Basel) 2019; 11:E1423. [PMID: 31554261 PMCID: PMC6826786 DOI: 10.3390/cancers11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Fluidity in cell fate or heterogeneity in cell identity is an interesting cell biological phenomenon, which at the same time poses a significant obstacle for cancer therapy. The mammary gland seems a relatively straightforward organ with stromal cells and basal- and luminal- epithelial cell types. In reality, the epithelial cell fates are much more complex and heterogeneous, which is the topic of this review. Part of the complexity comes from the dynamic nature of this organ: the primitive epithelial tree undergoes extensively remodeling and expansion during puberty, pregnancy, and lactation and, unlike most other organs, the bulk of mammary gland development occurs late, during puberty. An active cell biological debate has focused on lineage commitment to basal- and luminal- epithelial cell fates by epithelial progenitor and stem cells; processes that are also relevant to cancer biology. In this review, we discuss the current understanding of heterogeneity in mammary gland and recent insights obtained through lineage tracing, signaling assays, and organoid cultures. Lastly, we relate these insights to cancer and ongoing efforts to resolve heterogeneity in breast cancer with single-cell RNAseq approaches.
Collapse
Affiliation(s)
- Alexandr Samocha
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Hanna Doh
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Ding L, Su Y, Fassl A, Hinohara K, Qiu X, Harper NW, Huh SJ, Bloushtain-Qimron N, Jovanović B, Ekram M, Zi X, Hines WC, Alečković M, Gil Del Alcazar C, Caulfield RJ, Bonal DM, Nguyen QD, Merino VF, Choudhury S, Ethington G, Panos L, Grant M, Herlihy W, Au A, Rosson GD, Argani P, Richardson AL, Dillon D, Allred DC, Babski K, Kim EMH, McDonnell CH, Wagner J, Rowberry R, Bobolis K, Kleer CG, Hwang ES, Blum JL, Cristea S, Sicinski P, Fan R, Long HW, Sukumar S, Park SY, Garber JE, Bissell M, Yao J, Polyak K. Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ. Nat Commun 2019; 10:4182. [PMID: 31519911 PMCID: PMC6744561 DOI: 10.1038/s41467-019-12125-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression.
Collapse
Affiliation(s)
- Lina Ding
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Su
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Deciphera Pharmaceuticals, Waltham, MA, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas W Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
| | - Sung Jin Huh
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- ImmunoGen, Inc, Waltham, MA, USA
| | - Noga Bloushtain-Qimron
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- EMEA Site Intelligence and Activation, Tel Aviv, Israel
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Muhammad Ekram
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- WuXi NextCODE, Cambridge, MA, USA
| | - Xiaoyuan Zi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Second Military Medical University, Shanghai, 200433, P.R. China
| | - William C Hines
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Gil Del Alcazar
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ryan J Caulfield
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
| | - Vanessa F Merino
- Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sibgat Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Metamark Genetics Inc, Worcester, MA, USA
| | | | - Laura Panos
- Baylor-Charles A. Sammons Cancer Center, Dallas, TX, 75246, USA
| | - Michael Grant
- Baylor-Charles A. Sammons Cancer Center, Dallas, TX, 75246, USA
| | - William Herlihy
- Baylor-Charles A. Sammons Cancer Center, Dallas, TX, 75246, USA
| | - Alfred Au
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94143, USA
| | - Gedge D Rosson
- Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Pedram Argani
- Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
- Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - D Craig Allred
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kirsten Babski
- Sutter Roseville Medical Center, Roseville, CA, 95661, USA
| | - Elizabeth Min Hui Kim
- Sutter Roseville Medical Center, Roseville, CA, 95661, USA
- Cancer Treatment Centers of America, Atlanta, GA, USA
| | | | - Jon Wagner
- Sutter Roseville Medical Center, Roseville, CA, 95661, USA
| | - Ron Rowberry
- Sutter Roseville Medical Center, Roseville, CA, 95661, USA
| | | | - Celina G Kleer
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - E Shelley Hwang
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94143, USA
- Duke University, Durham, NC, USA
| | - Joanne L Blum
- Baylor-Charles A. Sammons Cancer Center, Dallas, TX, 75246, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health Boston, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, Cambridge, MA, 02138, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saraswati Sukumar
- Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Mina Bissell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jun Yao
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Mo Li
- From the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (M.L.); and the Salk Institute for Biological Studies, La Jolla, CA (J.C.I.B.)
| | - Juan C Izpisua Belmonte
- From the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (M.L.); and the Salk Institute for Biological Studies, La Jolla, CA (J.C.I.B.)
| |
Collapse
|
27
|
Mao SPH, Park M, Cabrera RM, Christin JR, Karagiannis GS, Oktay MH, Zaiss DMW, Abrams SI, Guo W, Condeelis JS, Kenny PA, Segall JE. Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res 2018; 20:131. [PMID: 30367629 PMCID: PMC6203982 DOI: 10.1186/s13058-018-1057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. METHODS We crossed AREG-null (AREG-/-) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG-/- PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. RESULTS Intriguingly, PyMT-induced lesions progress more rapidly in AREG-/- mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG-/- mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG-/- PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. CONCLUSIONS Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.
Collapse
MESH Headings
- Amphiregulin/genetics
- Amphiregulin/metabolism
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Female
- Humans
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Invasiveness/pathology
- Polyomavirus/genetics
- Polyomavirus/immunology
Collapse
Affiliation(s)
- Serena P. H. Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - Minji Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - Ramon M. Cabrera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John R. Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Dietmar M. W. Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Wenjun Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Paraic A. Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI 54601 USA
| | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461 USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
28
|
Hopkinson BM, Klitgaard MC, Petersen OW, Villadsen R, Rønnov-Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget 2018; 8:10580-10593. [PMID: 28076334 PMCID: PMC5354682 DOI: 10.18632/oncotarget.14554] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-positive (ERpos) MCF7 cell line. However, luminal specific comparisons have suffered from the lack of a relevant non-malignant counterpart. Our previous work has shown that transforming growth factor-β receptor (TGFβR) inhibition suffices to propagate prospectively isolated ERpos human breast luminal cells from reduction mammoplasties (HBEC). Here we demonstrate that transduction of these cells with hTERT/shp16 renders them immortal while remaining true to the luminal lineage including expression of functional ER (iHBECERpos). Under identical culture conditions a major difference between MCF7 and normal-derived cells is the dependence of the latter on TGFβR inhibition for ER expression. In a breast fibroblast co-culture model we further show that whereas MCF7 proliferate concurrently with ER expression, iHBECERpos form correctly polarized acini, and segregate into proliferating and ER expressing cells. We propose that iHBECERpos may serve to shed light on hitherto unappreciated differences in ER regulation and function between normal breast and breast cancer.
Collapse
Affiliation(s)
- Branden M Hopkinson
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marie C Klitgaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Ludwik KA, McDonald OG, Brenin DR, Lannigan DA. ERα-Mediated Nuclear Sequestration of RSK2 Is Required for ER + Breast Cancer Tumorigenesis. Cancer Res 2018; 78:2014-2025. [PMID: 29351904 DOI: 10.1158/0008-5472.can-17-2063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Although ribosomal protein S6 kinase A3 (RSK2) activation status positively correlates with patient responses to antiestrogen hormonal therapies, the mechanistic basis for these observations is unknown. Using multiple in vitro and in vivo models of estrogen receptor-positive (ER+) breast cancer, we report that ERα sequesters active RSK2 into the nucleus to promote neoplastic transformation and facilitate metastatic tumor growth. RSK2 physically interacted with ERα through its N terminus to activate a proneoplastic transcriptional network critical to the ER+ lineage in the mammary gland, thereby providing a gene signature that effectively stratified patient tumors according to ERα status. ER+ tumor growth was strongly dependent on nuclear RSK2, and transgenic mice engineered to stably express nuclear RSK2 in the mammary gland developed high-grade ductal carcinoma in situ Mammary cells isolated from the transgenic model and introduced systemically successfully disseminated and established metastatic lesions. Antiestrogens disrupted the interaction between RSK2 and ERα, driving RSK2 into the cytoplasm and impairing tumor formation. These findings establish RSK2 as an obligate participant of ERα-mediated transcriptional programs, tumorigenesis, and divergent patient responses to antiestrogen therapies.Significance: Nuclear accumulation of active RSK drives a protumorigenic transcriptional program and renders ER+ breast cancer susceptible to endocrine-based therapies. Cancer Res; 78(8); 2014-25. ©2018 AACR.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Oliver G McDonald
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David R Brenin
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Deborah A Lannigan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
30
|
Abstract
We have devised a culture system with conditions that allow primary breast myoepithelial cells (MEPs) to be passaged in a manner that sustains either nonmyodifferentiated or myodifferentiated cell populations without permitting contaminating luminal cells to grow. We show that progenitor activity and potency of MEPs to generate luminal cells in culture and in vivo rely on maintenance of myodifferentiation. Specific isolation and propagation of topographically distinct MEPs reveal the existence of multipotent progenitors in terminal duct lobular units. These findings have important implications for our understanding of the emergence of candidate luminal precursor cells to human breast cancer. The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.
Collapse
|
31
|
Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F. Skeletal Colonization by Breast Cancer Cells Is Stimulated by an Osteoblast and β2AR-Dependent Neo-Angiogenic Switch. J Bone Miner Res 2017; 32:1442-1454. [PMID: 28300321 PMCID: PMC5489363 DOI: 10.1002/jbmr.3133] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
The skeleton is a common site for breast cancer metastasis. Although significant progress has been made to manage osteolytic bone lesions, the mechanisms driving the early steps of the bone metastatic process are still not sufficiently understood to design efficacious strategies needed to inhibit this process and offer preventative therapeutic options. Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. In this study, we show that stimulation of the beta 2-adrenergic receptor (β2AR) by isoproterenol, used as a pharmacological surrogate of sympathetic nerve activation, led to increased blood vessel density and Vegf-a expression in bone. It also raised levels of secreted Vegf-a in osteoblast cultures, and accordingly, the conditioned media from isoproterenol-treated osteoblast cultures promoted new vessel formation in two ex vivo models of angiogenesis. Blocking the interaction between Vegf-a and its receptor, Vegfr2, blunted the increase in vessel density induced by isoproterenol. Genetic loss of the β2AR globally, or specifically in type 1 collagen-expressing osteoblasts, diminished the increase in Vegf-positive osteoblast number and bone vessel density induced by isoproterenol, and reduced the higher incidence of bone metastatic lesions induced by isoproterenol after intracardiac injection of an osteotropic variant of MDA-MB-231 breast cancer cells. Inhibition of the interaction between Vegf-a and Vegfr2 with the blocking antibody mcr84 also prevented the increase in bone vascular density and bone metastasis triggered by isoproterenol. Together, these results indicate that stimulation of the β2AR in osteoblasts triggers a Vegf-dependent neo-angiogenic switch that promotes bone vascular density and the colonization of the bone microenvironment by metastatic breast cancer cells. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, São José dos Campos School of Dentistry, Univ. Estadual Paulista-UNESP, São José dos Campos, Brazil
| | - Alyssa R Merkel
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rolf A Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX, USA
| | - Julie A Sterling
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, Bin Ali R, van Gerwen B, Siteur B, Drenth AP, Schut E, van de Ven M, Boelens MC, Klarenbeek S, Huijbers IJ, van Miltenburg MH, Jonkers J. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 2017; 30:1470-80. [PMID: 27340177 PMCID: PMC4926868 DOI: 10.1101/gad.279190.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 11/25/2022]
Abstract
Annunziato et al. describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC). Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting sgRNA in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell–cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Micha Nethe
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hatice Yücel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jessica Del Bravo
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas van Gerwen
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bjørn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mirjam C Boelens
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
33
|
Mohapatra B, Zutshi N, An W, Goetz B, Arya P, Bielecki TA, Mushtaq I, Storck MD, Meza JL, Band V, Band H. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development 2017; 144:1072-1086. [PMID: 28100467 DOI: 10.1242/dev.138164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitin ligases CBL and CBL-B are negative regulators of tyrosine kinase signaling with established roles in the immune system. However, their physiological roles in epithelial tissues are unknown. Here, we used MMTV-Cre-mediated Cbl gene deletion on a Cbl-b null background, as well as a tamoxifen-inducible mammary stem cell (MaSC)-specific Cbl and Cbl-b double knockout (Cbl/Cbl-b DKO) using Lgr5-EGFP-IRES-CreERT2, to demonstrate a mammary epithelial cell-autonomous requirement of CBL and CBL-B in the maintenance of MaSCs. Using a newly engineered tamoxifen-inducible Cbl and Cbl-b deletion model with a dual fluorescent reporter (Cblflox/flox; Cbl-bflox/flox; Rosa26-CreERT; mT/mG), we show that Cbl/Cbl-b DKO in mammary organoids leads to hyperactivation of AKT-mTOR signaling with depletion of MaSCs. Chemical inhibition of AKT or mTOR rescued MaSCs from Cbl/Cbl-b DKO-induced depletion. Our studies reveal a novel, cell-autonomous requirement of CBL and CBL-B in epithelial stem cell maintenance during organ development and remodeling through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA .,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Morsing M, Klitgaard MC, Jafari A, Villadsen R, Kassem M, Petersen OW, Rønnov-Jessen L. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. Breast Cancer Res 2016; 18:108. [PMID: 27809866 PMCID: PMC5093959 DOI: 10.1186/s13058-016-0769-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.
Collapse
Affiliation(s)
- Mikkel Morsing
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marie Christine Klitgaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Jardé T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 2016; 7:13207. [PMID: 27782124 PMCID: PMC5095178 DOI: 10.1038/ncomms13207] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
The development of in vitro culture systems quantitatively and qualitatively recapitulating normal breast biology is key to the understanding of mammary gland biology. Current three-dimensional mammary culture systems have not demonstrated concurrent proliferation and functional differentiation ex vivo in any system for longer than 2 weeks. Here, we identify conditions including Neuregulin1 and R-spondin 1, allowing maintenance and expansion of mammary organoids for 2.5 months in culture. The organoids comprise distinct basal and luminal compartments complete with functional steroid receptors and stem/progenitor cells able to reconstitute a complete mammary gland in vivo. Alternative conditions are also described that promote enrichment of basal cells organized into multiple layers surrounding a keratinous core, reminiscent of structures observed in MMTV-Wnt1 tumours. These conditions comprise a unique tool that should further understanding of normal mammary gland development, the molecular mechanism of hormone action and signalling events whose deregulation leads to breast tumourigenesis.
Collapse
Affiliation(s)
- Thierry Jardé
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Cancer Program, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Bethan Lloyd-Lewis
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Mairian Thomas
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- Division of Breast Cancer Research, Breast Cancer Now, Institute of Cancer Research, London SW3 6JB, UK
| | - Lauriane Bougaret
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter D. Watson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth Ewan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor C. Dale
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
36
|
Richard E, Grellety T, Velasco V, MacGrogan G, Bonnefoi H, Iggo R. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. J Pathol 2016; 240:256-261. [PMID: 27447842 DOI: 10.1002/path.4772] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023]
Abstract
There is a paucity of models for hormone receptor-positive (HR+) breast cancer because of the difficulty of establishing xenografts from these tumours. We show that this obstacle can be overcome by injecting human tumour cells directly into the mammary ducts of immunodeficient mice. Tumours from 31 patients were infected overnight with a lentiviral vector expressing tdTomato and injected through the nipple into the mammary ducts of NOD-SCID-IL2RG-/- mice. Tumours formed in the mice in 77% of cases after the first injection (6/8 luminal A, 15/20 luminal B, and 3/3 molecular apocrine). Four luminal A and one molecular apocrine graft were tested in secondary and tertiary grafts: all were successfully passaged in secondary and 4/5 in tertiary grafts. None of the samples engrafted when injected subcutaneously. The morphology, oestrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), and Ki-67 profiles of the clinical samples were maintained in the tertiary grafts. We also show that the intraductal approach can be used to test the response to targeted therapy with fulvestrant and palbociclib, using a genetically defined ER+ model. We conclude that the mammary ducts create a microenvironment that is uniquely favourable to the survival and growth of tumours derived from mammary hormone-sensing cells. This approach opens the door to testing genomically targeted treatment of HR+ tumours in precision medicine programmes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elodie Richard
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France
| | - Thomas Grellety
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France
| | - Valerie Velasco
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France
| | - Gaetan MacGrogan
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France
| | - Hervé Bonnefoi
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France
| | - Richard Iggo
- INSERM U1218, Bergonie Cancer Institute, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
37
|
Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 2016; 18:19. [PMID: 26926363 PMCID: PMC4772689 DOI: 10.1186/s13058-016-0677-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Methods Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. Results When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. Conclusions These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0677-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ethan S Sokol
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Daniel H Miller
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anne Breggia
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA.
| | - Kevin C Spencer
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53711, USA.
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
38
|
Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system. Sci Rep 2016; 6:20209. [PMID: 26831618 PMCID: PMC4735799 DOI: 10.1038/srep20209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Epithelial cell plasticity is controlled by extracellular cues, but the underlying mechanisms remain to be fully understood. Epidermal growth factor (EGF) and amphiregulin (AREG) are high- and low-affinity ligands for EGF receptor (EGFR), respectively. EGFR signaling is known to promote epithelial-mesenchymal transition (EMT) by the activation of ERK and the induction of an EMT transcription factor, ZEB1. Here, we demonstrate that ligand-switching between EGF and AREG at equivalent molarity reversibly interconverts epithelial and mesenchymal-like states of EGFR signal-dependent mammary epithelial cells. The EGF- and AREG-cultured cells also differ in their epithelial characteristics, including the expression of cell surface markers, the mode of migration and the ability for acinus-formation. The ligand-switching between EGF and AREG temporally alters strength of the shared EGFR-ERK signaling. This alteration inverts relative expression levels of ZEB1 and its antagonizing microRNAs, miR-205 and miR-200c, those are critical determinants of the epithelial phenotype. Further, AREG-induced EGFR accumulation on the plasma membrane compensates for the weak association between AREG and EGFR. The EGFR dynamics enables AREG to support proliferation as efficiently as EGF at equivalent molarity and to maintain epithelial characteristics. Our findings reveal a role of EGFR ligands-generated signal strength in the regulation of mammary epithelial cell plasticity.
Collapse
|
39
|
LIU YANCHEN, ZOU TIANBIAO, WANG SHUHUAI, CHEN HONG, SU DONGJU, FU XIAONA, ZHANG QINGYUAN, KANG XINMEI. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. Int J Oncol 2016; 48:1063-72. [DOI: 10.3892/ijo.2016.3351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
|
40
|
Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, Rønnov-Jessen L. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun 2015; 6:8786. [PMID: 26564780 PMCID: PMC4660059 DOI: 10.1038/ncomms9786] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/04/2015] [Indexed: 02/07/2023] Open
Abstract
Investigating the susceptibility of oestrogen receptor-positive (ERpos) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ERpos cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ERpos HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ERpos HBECs are released from growth restraint by small molecule inhibitors of TGFβ signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ERpos cells in extended culture. These findings open a new avenue of experimentation with normal ERpos HBECs and provide a basis for understanding the evolution of human breast cancer. Culturing normal primary breast cells that express the oestrogen receptor is difficult. Here, the authors isolate oestrogen receptor positive normal breast cells using the cell surface markers CD166 and CD117, and show that the cultures can be repeatedly passaged and retain oestrogen receptor protein expression.
Collapse
Affiliation(s)
- Agla J Fridriksdottir
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marie Christine Klitgaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Branden M Hopkinson
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
41
|
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42:216-226. [PMID: 25692699 DOI: 10.1016/j.immuni.2015.01.020] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/14/2023]
Abstract
Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens, and infectious agents, and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair, and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the epidermal growth factor (EGF)-like molecule Amphiregulin (AREG) might be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2s), and a subset of tissue-resident regulatory CD4(+) T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation and propose a model for the function of this pathway in the context of resistance and tissue tolerance.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Lisa C Osborne
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
42
|
Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y, Pearson GW. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest 2015; 125:1927-43. [PMID: 25844900 DOI: 10.1172/jci77767] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these "trailblazer" cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis.
Collapse
|
43
|
Verbeke S, Richard E, Monceau E, Schmidt X, Rousseau B, Velasco V, Bernard D, Bonnefoi H, MacGrogan G, Iggo RD. Humanization of the mouse mammary gland by replacement of the luminal layer with genetically engineered preneoplastic human cells. Breast Cancer Res 2014; 16:504. [PMID: 25527189 PMCID: PMC4407301 DOI: 10.1186/s13058-014-0504-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction The cell of origin for estrogen receptor α (ERα) positive breast cancer is
probably a luminal stem cell in the terminal duct lobular units. To model these
cells we have used the murine myoepithelial layer in the mouse mammary ducts as a
scaffold upon which to build a human luminal layer. To prevent squamous
metaplasia, a common artifact in genetically engineered breast cancer models, we
sought to limit activation of the epidermal growth factor receptor (EGFR) during
in vitro cell culture before grafting the
cells. Methods Human reduction mammoplasty cells were grown in
vitro in WIT medium. Epidermal growth factor (EGF) in the medium was
replaced with amphiregulin and neuregulin to decrease activation of EGFR and
increase activation of EGFR homologs 3 and 4 (ERBB3 and ERBB4). Lentiviral vectors
were used to express oncogenic transgenes and fluorescent proteins. Human mammary
epithelial cells were mixed with irradiated mouse fibroblasts and matrigel, then
injected through the nipple into the mammary ducts of immunodeficient mice.
Engrafted cells were visualized by stereomicroscopy for fluorescent proteins and
characterized by histology and immunohistochemistry. Results Growth of normal mammary epithelial cells in conditions favoring ERBB3/4
signaling prevented squamous metaplasia in
vitro. Normal human cells were quickly lost after intraductal
injection but cells infected with lentiviruses expressing CCND1, MYC, TERT, BMI1 and a
short hairpin RNA targeting TP53 were able to
engraft and progressively replace the luminal layer in the mouse mammary ducts,
resulting in the formation of an extensive network of humanized ducts. Despite
expressing multiple oncogenes, the human cells formed a morphologically normal
luminal layer. Expression of a single additional oncogene, PIK3CA-H1047R, converted the
cells into invasive cancer cells. The resulting tumors were ERα+, Ki67+ luminal B
adenocarcinomas that were resistant to treatment with fulvestrant. Conclusions Injection of preneoplastic human mammary epithelial cells into the mammary
ducts of immunodeficient mice leads to replacement of the murine luminal layer
with morphologically normal human cells. Genetic manipulation of the injected
cells makes it possible to study defined steps in the transformation of human
mammary epithelial cells in a more physiological environment than has hitherto
been possible. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0504-9) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Stephanie Verbeke
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France.
| | - Elodie Richard
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France.
| | - Elodie Monceau
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France.
| | - Xenia Schmidt
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France. .,School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, KY16 9TF, UK.
| | - Benoit Rousseau
- Animalerie A2, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.
| | - Valerie Velasco
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France. .,Pathology Department, Bergonié Cancer Institute, 229 cours de l'Argonne, 33076, Bordeaux, France.
| | - David Bernard
- INSERM U1052, Centre Leon Berard, University of Lyon, 28 rue Laennec, 69008, Lyon, France.
| | - Herve Bonnefoi
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France.
| | - Gaetan MacGrogan
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France. .,Pathology Department, Bergonié Cancer Institute, 229 cours de l'Argonne, 33076, Bordeaux, France.
| | - Richard D Iggo
- INSERM U916, Bergonié Cancer Institute, University of Bordeaux, 229 cours de l'Argonne, Bordeaux, 33076, France. .,School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
44
|
Balk-Møller E, Kim J, Hopkinson B, Timmermans-Wielenga V, Petersen OW, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1198-208. [PMID: 24655379 DOI: 10.1016/j.ajpath.2013.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022]
Abstract
Elucidating the phenotypic evolution of breast cancer through distinct subtypes relies heavily on defining a lineage blueprint of the normal human breast. Here, we show that in normal breast, within the luminal epithelial lineage, a subset of cells characterized by strong staining for endocrine receptors are also characterized by expression of the surface marker CEACAM6. Topographically, this pattern of staining predominates in terminal ductal lobular units, rather than in interlobular ducts. In culture, CEACAM6-expressing cells remain essentially postmitotic under conditions in which the other cells of luminal epithelial lineage are highly proliferative. We examined the pattern of expression among three major breast cancer subtypes: luminal, HER2-enriched, and basal-like. In 104 biopsies, the luminal and HER2-enriched subtypes showed a high proportion of CEACAM6(+) tumors (78% and 83%, respectively); the basal-like subtype showed a low proportion (28%). Further accentuation of this pattern was observed in 13 established breast cancer cell lines. When differentiation was induced by all-trans retinoic acid, CEACAM6 expression strongly correlated with luminal-like differentiation. Furthermore, CEACAM6(+) cancer cells were less proliferative than CEACAM6(-) cells in tumorsphere assays and were less tumorigenic in nude mice. Based on these observations, we propose that luminal and HER2-enriched breast cancers are more closely related than previously thought and may share a common cell of origin.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Branden Hopkinson
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole W Petersen
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, the Panum Institute, the Center for Biological Disease Analysis, and the Danish Stem Cell Center, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia 2014; 15:1354-62. [PMID: 24403857 DOI: 10.1593/neo.131660] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is characterized by a high degree of resistance to chemotherapy. Epidermal growth factor receptor (EGFR) inhibition using the small-molecule inhibitor erlotinib was shown to provide a small survival benefit in a subgroup of patients. To identify kinases whose inhibition acts synergistically with erlotinib, we employed a kinome-wide small-interfering RNA (siRNA)-based loss-of-function screen in the presence of erlotinib. Of 779 tested kinases, we identified several targets whose inhibition acted synergistically lethal with EGFR inhibition by erlotinib, among them the S6 kinase ribosomal protein S6 kinase 2 (RPS6KA2)/ribosomal S6 kinase 3. Activated RPS6KA2 was expressed in approximately 40% of 123 human pancreatic cancer tissues. RPS6KA2 was shown to act downstream of EGFR/RAS/mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling and was activated by EGF independently of the presence of KRAS mutations. Knockdown of RPS6KA2 by siRNA led to increased apoptosis only in the presence of erlotinib, whereas RPS6KA2 activation or overexpression rescued from erlotinib- and gemcitabine-induced apoptosis. This effect was at least in part mediated by downstream activation of ribosomal protein S6. Genetic as well as pharmacological inhibition of RPS6KA2 by the inhibitor BI-D1870 acted synergistically with erlotinib. By applying this synergistic lethality screen using a kinome-wide RNA interference-library approach, we identified RPS6KA2 as potential drug target whose inhibition synergistically enhanced the effect of erlotinib on tumor cell survival. This kinase therefore represents a promising drug candidate suitable for the development of novel inhibitors for pancreatic cancer therapy.
Collapse
|
46
|
Godde NJ, Sheridan JM, Smith LK, Pearson HB, Britt KL, Galea RC, Yates LL, Visvader JE, Humbert PO. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet 2014; 10:e1004323. [PMID: 24852022 PMCID: PMC4031063 DOI: 10.1371/journal.pgen.1004323] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022] Open
Abstract
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.
Collapse
Affiliation(s)
- Nathan J. Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie M. Sheridan
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lorey K. Smith
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen B. Pearson
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kara L. Britt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ryan C. Galea
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura L. Yates
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep 2014; 4:4663. [PMID: 24722541 PMCID: PMC3983616 DOI: 10.1038/srep04663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Collapse
|
48
|
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol 2014; 25-26:43-51. [DOI: 10.1016/j.semcdb.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
|
49
|
Jenkins EC, Debnath S, Varriano S, Gundry S, Fata JE. Na+/H+exchanger 1 (NHE1) function is necessary for maintaining mammary tissue architecture. Dev Dyn 2013; 243:229-42. [DOI: 10.1002/dvdy.24032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Edmund C. Jenkins
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
| | - Shawon Debnath
- Department of Biology; College of Staten Island; Staten Island New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| | - Sophia Varriano
- Department of Biology; College of Staten Island; Staten Island New York
| | - Stephen Gundry
- Electrical Engineering Doctoral Program; City College of New York, The City University of New York; New York New York
| | - Jimmie E. Fata
- Department of Biology; College of Staten Island; Staten Island New York
- Biology Doctoral Program; City University of New York Graduate Center; New York New York
- Biochemistry Doctoral Program; City University of New York Graduate Center; New York New York
| |
Collapse
|
50
|
Mukhopadhyay C, Zhao X, Maroni D, Band V, Naramura M. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation. PLoS One 2013; 8:e75907. [PMID: 24124521 PMCID: PMC3790811 DOI: 10.1371/journal.pone.0075907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Based on gene expression patterns, breast cancers can be divided into subtypes that closely resemble various developmental stages of normal mammary epithelial cells (MECs). Thus, understanding molecular mechanisms of MEC development is expected to provide critical insights into initiation and progression of breast cancer. Epidermal growth factor receptor (EGFR) and its ligands play essential roles in normal and pathological mammary gland. Signals through EGFR is required for normal mammary gland development. Ligands for EGFR are over-expressed in a significant proportion of breast cancers, and elevated expression of EGFR is associated with poorer clinical outcome. In the present study, we examined the effect of signals through EGFR on MEC differentiation using the human telomerase reverse transcriptase (hTERT)-immortalized human stem/progenitor MECs which express cytokeratin 5 but lack cytokeratin 19 (K5+K19- hMECs). As reported previously, these cells can be induced to differentiate into luminal and myoepithelial cells under appropriate culture conditions. K5+K19- hMECs acquired distinct cell fates in response to EGFR ligands epidermal growth factor (EGF), amphiregulin (AREG) and transforming growth factor alpha (TGFα) in differentiation-promoting MEGM medium. Specifically, presence of EGF during in vitro differentiation supported development into both luminal and myoepithelial lineages, whereas cells differentiated only towards luminal lineage when EGF was replaced with AREG. In contrast, substitution with TGFα led to differentiation only into myoepithelial lineage. Chemical inhibition of the MEK-Erk pathway, but not the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, interfered with K5+K19- hMEC differentiation. The present data validate the utility of the K5+K19- hMEC cells for modeling key features of human MEC differentiation. This system should be useful in studying molecular/biochemical mechanisms of human MEC differentiation.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiangshan Zhao
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dulce Maroni
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|