1
|
Kumari S, Basu S, Kumar G. A systematic review on the implications of concurrent heat and drought stress in modulating floral development in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112248. [PMID: 39265654 DOI: 10.1016/j.plantsci.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The continuous change in climate, along with irregular rainfall patterns, poses a significant threat to sustainable agricultural productivity worldwide. Both high temperatures and drought stress are key factors limiting crop growth, and with global climate change, the occurrence of combined heat and drought stress is expected to rise. This will further exacerbate the vulnerability of agricultural yield. Simultaneous heat and drought stress is prevalent in field conditions, and while extensive research has been done on the individual effects of heat and drought stress on plants, little is known about the molecular mechanisms underlying plant acclimation to a combination of these stressors. The reproductive stage, especially the flowering phase, has been identified as the most sensitive to both heat and drought stress, leading to sterility in plants. However, our understanding of the combined stress response in commonly used crop plants is still limited. Hence, it is crucial to study and comprehend the effects and interactions between high temperatures and drought stress during the reproductive stages of crops. This review delves into the morpho-physiological changes in reproductive organs of various plant species under combined heat and drought stress and also details the molecular regulation of the mechanism of combined stress tolerance in plants. Notably, the article incorporates expression analyses of candidate genes in rice flowers, emphasizing the utilization of modern biotechnological methods to enhance stress tolerance in plants. Overall, the review provides a comprehensive insight into the regulation of floral development in plants following concurrent heat and drought stress.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Life Science, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar 824236, India.
| |
Collapse
|
2
|
Rosenkranz RE, Vraggalas S, Keller M, Sankaranarayanan S, McNicoll F, Löchli K, Bublak D, Benhamed M, Crespi M, Berberich T, Bazakos C, Feldbrügge M, Schleiff E, Müller-McNicoll M, Zarnack K, Fragkostefanakis S. A plant-specific clade of serine/arginine-rich proteins regulates RNA splicing homeostasis and thermotolerance in tomato. Nucleic Acids Res 2024; 52:11466-11480. [PMID: 39180404 PMCID: PMC11514476 DOI: 10.1093/nar/gkae730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Global warming poses a threat for crops, therefore, the identification of thermotolerance mechanisms is a priority. In plants, the core factors that regulate transcription under heat stress (HS) are well described and include several HS transcription factors (HSFs). Despite the relevance of alternative splicing in HS response and thermotolerance, the core regulators of HS-sensitive alternative splicing have not been identified. In tomato, alternative splicing of HSFA2 is important for acclimation to HS. Here, we show that several members of the serine/arginine-rich family of splicing factors (SRSFs) suppress HSFA2 intron splicing. Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) combined with RNA-Seq revealed that RS2Z35 and RS2Z36, which make up a plant-specific clade of SR proteins, not only regulate HSFA2 but approximately 50% of RNAs that undergo HS-sensitive alternative splicing, with preferential binding to purine-rich RNA motifs. Single and double CRISPR rs2z mutant lines show a dysregulation of splicing and exhibit lower basal and acquired thermotolerance compared to wild type plants. Our results suggest that RS2Z35 and RS2Z36 have a central role in mitigation of the negative effects of HS on RNA splicing homeostasis, and their emergence might have contributed to the increased capacity of plants to acclimate to high temperatures.
Collapse
Affiliation(s)
- Remus R E Rosenkranz
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - François McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Bublak
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Frankfurt, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO DEMETER, Thessaloniki, Greece
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Enrico Schleiff
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
4
|
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. THE NEW PHYTOLOGIST 2024; 244:51-64. [PMID: 39061112 DOI: 10.1111/nph.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.
Collapse
Affiliation(s)
- Ayat Bakery
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Botany Department, Faculty of Science, Ain Shams University, 11517, Cairo, Egypt
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Boushra Shalha
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Harsh Chauhan
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Moussa Benhamed
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Institut Universitaire de France (IUF), Orsay, 91405, France
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Wang H, Xu W, Zhang X, Wang L, Jia S, Zhao S, Li W, Lu R, Ren A, Zhang S. Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways. BMC PLANT BIOLOGY 2024; 24:874. [PMID: 39304829 DOI: 10.1186/s12870-024-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.
Collapse
Affiliation(s)
- Hua Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wanting Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojuan Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lian Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Suqi Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuwei Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wan Li
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Rongqianyi Lu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Aihua Ren
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuiming Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Zhang Z, Yang C, Xi J, Wang Y, Guo J, Liu Q, Liu Y, Ma Y, Zhang J, Ma F, Li C. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. THE PLANT CELL 2024; 36:3631-3653. [PMID: 38865439 PMCID: PMC11371167 DOI: 10.1093/plcell/koae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/12/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress severely restricts the growth and fruit development of apple (Malus domestica). Little is known about the involvement of WRKY proteins in the heat tolerance mechanism in apple. In this study, we found that the apple transcription factor (TF) MdWRKY75 responds to heat and positively regulates basal thermotolerance. Apple plants that overexpressed MdWRKY75 were more tolerant to heat stress while silencing MdWRKY75 caused the opposite phenotype. RNA-seq and reverse transcription quantitative PCR showed that heat shock factor genes (MdHsfs) could be the potential targets of MdWRKY75. Electrophoretic mobility shift, yeast one-hybrid, β-glucuronidase, and dual-luciferase assays showed that MdWRKY75 can bind to the promoters of MdHsf4, MdHsfB2a, and MdHsfA1d and activate their expression. Apple plants that overexpressed MdHsf4, MdHsfB2a, and MdHsfA1d exhibited heat tolerance and rescued the heat-sensitive phenotype of MdWRKY75-Ri3. In addition, apple heat shock cognate 70 (MdHSC70) interacts with MdWRKY75, as shown by yeast two-hybrid, split luciferase, bimolecular fluorescence complementation, and pull-down assays. MdHSC70 acts as a negative regulator of the heat stress response. Apple plants that overexpressed MdHSC70 were sensitive to heat, while virus-induced gene silencing of MdHSC70 enhanced heat tolerance. Additional research showed that MdHSC70 exhibits heat sensitivity by interacting with MdWRKY75 and inhibiting MdHsfs expression. In summary, we proposed a mechanism for the response of apple to heat that is mediated by the "MdHSC70/MdWRKY75-MdHsfs" molecular module, which enhances our understanding of apple thermotolerance regulated by WRKY TFs.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yusong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Pang S, Zheng H, Zhang J, Ren X, Zong X, Zou J, Wang L. Function Analysis of a Maize Endo-1,4-β-xylanase Gene ZmHSL in Response to High-Temperature Stress. Int J Mol Sci 2024; 25:8834. [PMID: 39201520 PMCID: PMC11354693 DOI: 10.3390/ijms25168834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Rising temperature is a major threat to the normal growth and development of maize, resulting in low yield production and quality. The mechanism of maize in response to heat stress remains uncertain. In this study, a maize mutant Zmhsl-1 (heat sensitive leaves) with wilting and curling leaves under high temperatures was identified from maize Zheng 58 (Z58) mutant lines generated by ethyl methanesulfonate (EMS) mutagenesis. The Zmhsl-1 plants were more sensitive to increased temperature than Z58 in the field during growth season. The Zmhsl-1 plants had lower plant height, lower yield, and lower content of photosynthetic pigments. A bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) enabled the identification of the corresponding gene, named ZmHSL, which encodes an endo-β-1,4-xylanase from the GH10 family. The loss-of-function of ZmHSL resulted in reduced lignin content in Zmhsl-1 plants, leading to defects in water transport and more severe leaf wilting with the increase in temperature. RNA-seq analysis revealed that the differentially expressed genes identified between Z58 and Zmhsl-1 plants are mainly related to heat stress-responsive genes and unfolded protein response genes. All these data indicated that ZmHSL plays a key role in lignin synthesis, and its defective mutation causes changes in the cell wall structure and gene expression patterns, which impedes water transport and confers higher sensitivity to high-temperature stress.
Collapse
Affiliation(s)
- Shengyan Pang
- Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.P.); (H.Z.); (X.R.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Z.); (X.Z.)
| | - Hongyan Zheng
- Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.P.); (H.Z.); (X.R.)
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Z.); (X.Z.)
| | - Xiaotian Ren
- Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.P.); (H.Z.); (X.R.)
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Xuefeng Zong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Z.); (X.Z.)
| | - Junjie Zou
- Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.P.); (H.Z.); (X.R.)
| | - Lei Wang
- Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.P.); (H.Z.); (X.R.)
| |
Collapse
|
8
|
Ma J, Wang Y, Hong Y, Zhao M, Ma X, Liu J, Chai W, Zhao W, Sun L, Yang R, Wang S, Huang H. SlWRKY55 coordinately acts with SlVQ11 to enhance tomato thermotolerance by activating SlHsfA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39101617 DOI: 10.1111/tpj.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
High temperature (HT) severely restricts plant growth, development, and productivity. Plants have evolved a set of mechanisms to cope with HT, including the regulation of heat stress transcription factors (Hsfs) and heat shock proteins (Hsps). However, it is not clear how the transcriptional and translational levels of Hsfs and Hsps are controlled in tomato. Here, we reported that the HT-induced transcription factor SlWRKY55 recruited SlVQ11 to coordinately regulate defense against HT. SlWRKY55 directly bound to the promoter of SlHsfA2 and promoted its expression, which was increased by SlVQ11. Moreover, both SlWRKY55 and SlVQ11 physically interacted with SlHsfA2 to enhance the transcriptional activity of SlHsfA2. Thus, our results revealed a molecular mechanism that the SlWRKY55/SlVQ11-SlHsfA2 cascade enhanced thermotolerance and provided potential target genes for improving the adaptability of crops to HT.
Collapse
Affiliation(s)
- Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yingying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yihan Hong
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mingjie Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiapeng Liu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Weizhe Chai
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
9
|
Zhang L, Yang H, Zheng M, Zhou G, Yang Y, Liu S. Physiological and transcriptomic analyses reveal the regulatory mechanisms of Anoectochilus roxburghii in response to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:584. [PMID: 38898387 PMCID: PMC11188188 DOI: 10.1186/s12870-024-05088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND High temperatures significantly affect the growth, development, and yield of plants. Anoectochilus roxburghii prefers a cool and humid environment, intolerant of high temperatures. It is necessary to enhance the heat tolerance of A. roxburghii and breed heat-tolerant varieties. Therefore, we studied the physiological indexes and transcriptome of A. roxburghii under different times of high-temperature stress treatments. RESULTS Under high-temperature stress, proline (Pro), H2O2 content increased, then decreased, then increased again, catalase (CAT) activity increased continuously, peroxidase (POD) activity decreased rapidly, then increased, then decreased again, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and soluble sugars (SS) content all decreased, then increased, and chlorophyll and soluble proteins (SP) content increased, then decreased. Transcriptomic investigation indicated that a total of 2740 DEGs were identified and numerous DEGs were notably enriched for "Plant-pathogen interaction" and "Plant hormone signal transduction". We identified a total of 32 genes in these two pathways that may be the key genes for resistance to high-temperature stress in A. roxburghii. CONCLUSIONS To sum up, the results of this study provide a reference for the molecular regulation of A. roxburghii's tolerance to high temperatures, which is useful for further cultivation of high-temperature-tolerant A. roxburghii varieties.
Collapse
Affiliation(s)
- Linghui Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Heyue Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengxia Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Guo Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuesheng Yang
- Southern Medicine Research Institute of Yunfu, Yunfu, China.
| | - Siwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Heny Fok School of Biology and Agriculture, ShaoGuan University, Shaoguan, 512005, China.
| |
Collapse
|
10
|
Dong D, Qi C, Zhang J, Deng Q, Xia P, Li P, Jia C, Zhao B, Zhang N, Guo YD. CsHSFA1d Promotes Drought Stress Tolerance by Increasing the Content of Raffinose Family Oligosaccharides and Scavenging Accumulated Reactive Oxygen Species in Cucumber. PLANT & CELL PHYSIOLOGY 2024; 65:809-822. [PMID: 38564325 DOI: 10.1093/pcp/pcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Chuandong Qi
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan Hongshan District, Nanhudadao No. 43, Wuhan, Hubei Province 430064, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Pingxin Xia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| |
Collapse
|
11
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
12
|
Su R, Luo J, Wang Y, Xiao Y, Liu X, Deng H, Lu X, Chen Q, Chen G, Tang W, Zhang G. GDSL Lipase Gene HTA1 Negatively Regulates Heat Tolerance in Rice Seedlings by Regulating Reactive Oxygen Species Accumulation. Antioxidants (Basel) 2024; 13:592. [PMID: 38790697 PMCID: PMC11117967 DOI: 10.3390/antiox13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
High temperature is a significant environmental stress that limits plant growth and agricultural productivity. GDSL lipase is a hydrolytic enzyme with a conserved GDSL sequence at the N-terminus, which has various biological functions, such as participating in plant growth, development, lipid metabolism, and stress resistance. However, little is known about the function of the GDSL lipase gene in the heat tolerance of rice. Here, we characterized a lipase family protein coding gene HTA1, which was significantly induced by high temperature in rice. Rice seedlings in which the mutant hta1 was knocked out showed enhanced heat tolerance, whereas the overexpressing HTA1 showed more sensitivity to heat stress. Under heat stress, hta1 could reduce plant membrane damage and reactive oxygen species (ROS) levels and elevate the activity of antioxidant enzymes. Moreover, real-time quantitative PCR (RT-qPCR) analysis showed that mutant hta1 significantly activated gene expression in antioxidant enzymes, heat response, and defense. In conclusion, our results suggest that HTA1 negatively regulates heat stress tolerance by modulating the ROS accumulation and the expression of heat-responsive and defense-related genes in rice seedlings. This research will provide a valuable resource for utilizing HTA1 to improve crop heat tolerance.
Collapse
Affiliation(s)
- Rui Su
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Jingkai Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Guihua Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410000, China
- State Key Laboratory of Hybrid Rice, Changsha 410000, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| |
Collapse
|
13
|
Zhang F, Wang C, Yao J, Xing C, Xu K, Zhang Z, Chen Q, Qiao Q, Dong H, Han C, Lin L, Zhang S, Huang X. PbHsfC1a-coordinates ABA biosynthesis and H 2O 2 signalling pathways to improve drought tolerance in Pyrus betulaefolia. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1177-1197. [PMID: 38041554 PMCID: PMC11022796 DOI: 10.1111/pbi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jia‐Long Yao
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Caihua Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
14
|
Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, Genty B, Falter-Braun P, Christmann A, Grill E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 2024; 629:1126-1132. [PMID: 38750356 PMCID: PMC11136664 DOI: 10.1038/s41586-024-07424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.
Collapse
Affiliation(s)
- Lisa Bohn
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Jin Huang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
- Chengdu Newsun Crop Science, Chengdu, China
| | - Susan Weidig
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Zhenyu Yang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Christoph Heidersberger
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Bernard Genty
- Aix-Marseille University, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexander Christmann
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| | - Erwin Grill
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| |
Collapse
|
15
|
Gao T, Zhang D, Shen W, Xu S, Jia X, Liu X, Tan K, Zhou Y, Zhang Z, Ma F, Li C. MdASMT9-mediated melatonin biosynthesis enhances basal thermotolerance in apple plants. PLANT, CELL & ENVIRONMENT 2024; 47:751-764. [PMID: 38164091 DOI: 10.1111/pce.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
High temperatures negatively impact the yield and quality of fruit crops. Exogenous melatonin (MT) application has been shown to enhance heat tolerance, but the response of endogenous MT to heat stress, particularly in perennial fruit trees, remains unclear. The present study investigated the effects of high temperatures on transgenic apple plants overexpressing the MT biosynthesis gene N-acetylserotonin methyltransferase 9 (MdASMT9). Endogenous MT protected transgenic plants from heat stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species (ROS), and protecting the chloroplasts from damage. Application of MT and overexpression of MdASMT9 also reduced abscisic acid accumulation through promoting MdWRKY33-mediated transcriptional inhibition of MdNCED1 and MdNCED3, thus inducing stomatal opening for better heat dissipation. Furthermore, MT-enhanced autophagic activity through promoting MdWRKY33-mediated transcriptional enhancement of MdATG18a under heat stress. These findings provide new insights into the regulation of endogenous MT and its role in improving basal thermotolerance in perennial fruit trees.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Danni Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kexin Tan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, Pomology Department, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Chen C, Zhang M, Ma X, Meng Q, Zhuang K. Differential heat-response characteristics of two plastid isoforms of triose phosphate isomerase in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:650-661. [PMID: 37878418 PMCID: PMC10893939 DOI: 10.1111/pbi.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Heat stress causes dysfunction of the carbon-assimilation metabolism. As a member of Calvin-Benson-Bassham (CBB) cycle, the chloroplast triose phosphate isomerases (TPI) catalyse the interconversion of glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). The tomato (Solanum lycopersicum) genome contains two individual SlTPI genes, Solyc10g054870 and Solyc01g111120, which encode the chloroplast-located proteins SlTPI1 and SlTPI2, respectively. The tpi1 and tpi2 single mutants had no visible phenotypes, but the leaves of their double mutant lines tpi1tpi2 had obviously reduced TPI activity and displayed chlorotic variegation, dysplasic chloroplasts and lower carbon-assimilation efficiency. In addition to altering carbon metabolism, proteomic data showed that the loss of both SlTPI1 and SlTPI2 severely affected photosystem proteins, reducing photosynthetic capacity. None of these phenotypes was evident in the tpi1 or tpi2 single mutants, suggesting that SlTPI1 and SlTPI2 are functionally redundant. However, the two proteins differed in their responses to heat stress; the protein encoded by the heat-induced SlTPI2 showed a higher level of thermotolerance than that encoded by the heat-suppressed SlTPI1. Notably, heat-induced transcription factors, SlWRKY21 and SlHSFA2/7, which negatively regulated SlTPI1 expression and positively regulated SlTPI2 expression, respectively. Our findings thus reveal that SlTPI1 and SlTPI2 have different thermostabilities and expression patterns in response to heat stress, which have the potential to be applied in thermotolerance strategies in crops.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
- College of Agriculture and BioengineeringHeze UniversityHe'zeShandongChina
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| | - Xiaocui Ma
- College of ForestryShandong Agricultural UniversityTai'anShandongChina
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| |
Collapse
|
17
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
18
|
Song Q, He F, Kong L, Yang J, Wang X, Zhao Z, Zhang Y, Xu C, Fan C, Luo K. The IAA17.1/HSFA5a module enhances salt tolerance in Populus tomentosa by regulating flavonol biosynthesis and ROS levels in lateral roots. THE NEW PHYTOLOGIST 2024; 241:592-606. [PMID: 37974487 DOI: 10.1111/nph.19382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Auxin signaling provides a promising approach to controlling root system architecture and improving stress tolerance in plants. However, how the auxin signaling is transducted in this process remains unclear. The Aux indole-3-acetic acid (IAA) repressor IAA17.1 is stabilized by salinity, and primarily expressed in the lateral root (LR) primordia and tips in poplar. Overexpression of the auxin-resistant form of IAA17.1 (IAA17.1m) led to growth inhibition of LRs, markedly reduced salt tolerance, increased reactive oxygen species (ROS) levels, and decreased flavonol content. We further identified that IAA17.1 can interact with the heat shock protein HSFA5a, which was highly expressed in roots and induced by salt stress. Overexpression of HSFA5a significantly increased flavonol content, reduced ROS accumulation, enhanced LR growth and salt tolerance in transgenic poplar. Moreover, HSFA5a could rescue the defective phenotypes caused by IAA17.1m. Expression analysis showed that genes associated with flavonol biosynthesis were altered in IAA17.1m- and HAFA5a-overexpressing plants. Furthermore, we identified that HSFA5a directly activated the expression of key enzyme genes in the flavonol biosynthesis pathway, while IAA17.1 suppressed HSFA5a-mediated activation of these genes. Collectively, the IAA17.1/HSFA5a module regulates flavonol biosynthesis, controls ROS accumulation, thereby modulating the root system of poplar to adapt to salt stress.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fu He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443000, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaojing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengjie Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Pandey V, Singh S. Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 2024; 27:1701-1715. [PMID: 38441014 DOI: 10.2174/0113862073300371240229100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
Collapse
Affiliation(s)
- Vineeta Pandey
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, 17 km Stone, NH-2, Mathura, Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
20
|
Guo R, Zhang X, Li M, Zhang H, Wu J, Zhang L, Xiao X, Han M, An N, Xing L, Zhang C. MdNup62 involved in salt and osmotic stress tolerance in apple. Sci Rep 2023; 13:20198. [PMID: 37980385 PMCID: PMC10657396 DOI: 10.1038/s41598-023-47024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Abiotic stress of plants has serious consequences on the development of the apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant abiotic stress response. However, the effects of NPCs on apple salt and osmotic stress responses have not been reported yet. In this study, we analyzed the expression and function of NUCLEOPORIN 62 (MdNup62), a component of apple NPC. MdNup62 expression was significantly increased by salt and mannitol (simulated osmotic stress) treatment. The MdNup62-overexpressing (OE) Arabidopsis and tomato lines exhibited significantly reduced salt stress tolerance, and MdNup62-OE Arabidopsis lines exhibited reduced osmotic stress tolerance. We further studied the function of HEAT SHOCK FACTOR A1d (MdHSFA1d), the interacting protein of MdNup62, in salt and osmotic stress tolerance. In contrast to MdNup62, MdHSFA1d-OE Arabidopsis lines showed significantly enhanced tolerance to salt and osmotic stress. Our findings suggest a possible interaction of MdNup62 with MdHSFA1d in the mediation of nuclear and cytoplasmic transport and the regulation of apple salt and osmotic stress tolerance. These results contribute to the understanding of the salt and osmotic stress response mechanism in apple.
Collapse
Affiliation(s)
- Ruxuan Guo
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyuan Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Huiwen Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Das JR, Mathur S. HSFA1a: the quarterback of heat stress response and 3D-chromatin organization. TRENDS IN PLANT SCIENCE 2023; 28:1198-1200. [PMID: 37544818 DOI: 10.1016/j.tplants.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
In eukaryotes, the highly complex chromatin exhibits structural dynamism to modulate cellular responses. Recently, Huang et al. have shown a novel role of the heat stress master regulator, HSFA1a, in transiently reorganizing the 3D chromatin to promote distal and proximal enhancer-promoter contacts to regulate stress-responsive genes in tomato.
Collapse
Affiliation(s)
- Jaishri Rubina Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi - 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi - 110 067, India.
| |
Collapse
|
22
|
Isono K, Nakamura K, Hanada K, Shirai K, Ueki M, Tanaka K, Tsuchimatsu T, Iuchi S, Kobayashi M, Yotsui I, Sakata Y, Taji T. LHT1/MAC7 contributes to proper alternative splicing under long-term heat stress and mediates variation in the heat tolerance of Arabidopsis. PNAS NEXUS 2023; 2:pgad348. [PMID: 38024403 PMCID: PMC10644991 DOI: 10.1093/pnasnexus/pgad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Natural genetic variation has facilitated the identification of genes underlying complex traits such as stress tolerances. We here evaluated the long-term (L-) heat tolerance (37°C for 5 days) of 174 Arabidopsis thaliana accessions and short-term (S-) heat tolerance (42°C, 50 min) of 88 accessions and found extensive variation, respectively. Interestingly, L-heat-tolerant accessions are not necessarily S-heat tolerant, suggesting that the tolerance mechanisms are different. To elucidate the mechanisms underlying the variation, we performed a chromosomal mapping using the F2 progeny of a cross between Ms-0 (a hypersensitive accession) and Col-0 (a tolerant accession) and found a single locus responsible for the difference in L-heat tolerance between them, which we named Long-term Heat Tolerance 1 (LHT1). LHT1 is identical to MAC7, which encodes a putative RNA helicase involved in mRNA splicing as a component of the MOS4 complex. We found one amino acid deletion in LHT1 of Ms-0 that causes a loss of function. Arabidopsis mutants of other core components of the MOS4 complex-mos4-2, cdc5-1, mac3a mac3b, and prl1 prl2-also showed hypersensitivity to L-heat stress, suggesting that the MOS4 complex plays an important role in L-heat stress responses. L-heat stress induced mRNA processing-related genes and compromised alternative splicing. Loss of LHT1 function caused genome-wide detrimental splicing events, which are thought to produce nonfunctional mRNAs that include retained introns under L-heat stress. These findings suggest that maintaining proper alternative splicing under L-heat stress is important in the heat tolerance of A. thaliana.
Collapse
Affiliation(s)
- Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kotaro Nakamura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Mao Ueki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
23
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
24
|
Mizoi J, Todaka D, Imatomi T, Kidokoro S, Sakurai T, Kodaira KS, Takayama H, Shinozaki K, Yamaguchi-Shinozaki K. The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1269964. [PMID: 37868310 PMCID: PMC10585066 DOI: 10.3389/fpls.2023.1269964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars.
Collapse
Affiliation(s)
- Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Todaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Imatomi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kidokoro
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Japan
| | - Ken-Suke Kodaira
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
25
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Ren Y, Ma R, Xie M, Fan Y, Feng L, Chen L, Yang H, Wei X, Wang X, Liu K, Cheng P, Wang B. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC PLANT BIOLOGY 2023; 23:441. [PMID: 37726665 PMCID: PMC10510194 DOI: 10.1186/s12870-023-04418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Heat shock factor (HSF), a typical class of transcription factors in plants, has played an essential role in plant growth and developmental stages, signal transduction, and response to biotic and abiotic stresses. The HSF genes families has been identified and characterized in many species through leveraging whole genome sequencing (WGS). However, the identification and systematic analysis of HSF family genes in Rye is limited. RESULTS In this study, 31 HSF genes were identified in Rye, which were unevenly distributed on seven chromosomes. Based on the homology of A. thaliana, we analyzed the number of conserved domains and gene structures of ScHSF genes that were classified into seven subfamilies. To better understand the developmental mechanisms of ScHSF family during evolution, we selected one monocotyledon (Arabidopsis thaliana) and five (Triticum aestivum L., Hordeum vulgare L., Oryza sativa L., Zea mays L., and Aegilops tauschii Coss.) specific representative dicotyledons associated with Rye for comparative homology mapping. The results showed that fragment replication events modulated the expansion of the ScHSF genes family. In addition, interactions between ScHSF proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScHSF expression was complex. A total of 15 representative genes were targeted from seven subfamilies to characterize their gene expression responses in different tissues, fruit developmental stages, three hormones, and six different abiotic stresses. CONCLUSIONS This study demonstrated that ScHSF genes, especially ScHSF1 and ScHSF3, played a key role in Rye development and its response to various hormones and abiotic stresses. These results provided new insights into the evolution of HSF genes in Rye, which could help the success of molecular breeding in Rye.
Collapse
Affiliation(s)
- Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhua Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, People's Republic of China
| | - Long Chen
- Tianfu New Area General Aviation Profession Academy, Meishan, 620564, China
| | - Hao Yang
- Agricultural Service Center of Langde Town of Leishan County, Qiandongnan Miao and Dong Autonomous Prefecture, 556019, China
| | - Xiaobao Wei
- Guizhou Provincial Center For Disease Control And Prevention, Guiyang, 550025, People's Republic of China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kouhan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
27
|
Löchli K, Torbica E, Haile-Weldeslasie M, Baku D, Aziz A, Bublak D, Fragkostefanakis S. Crosstalk between endoplasmic reticulum and cytosolic unfolded protein response in tomato. Cell Stress Chaperones 2023; 28:511-528. [PMID: 36449150 PMCID: PMC10469158 DOI: 10.1007/s12192-022-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Conditions that cause proteotoxicity like high temperature trigger the activation of unfolded protein response (UPR). The cytosolic (CPR) and endoplasmic reticulum (ER) UPR rely on heat stress transcription factor (HSF) and two members of the basic leucine zipper (bZIP) gene family, respectively. In tomato, HsfA1a is the master regulator of CPR. Here, we identified the core players of tomato ER-UPR including the two central transcriptional regulators, namely bZIP28 and bZIP60. Interestingly, the induction of ER-UPR genes and the activation of bZIP60 are altered in transgenic plants where HsfA1a is either overexpressed (A1aOE) or suppressed (A1CS), indicating an interplay between CPR and ER-UPR systems. Several ER-UPR genes are differentially expressed in the HsfA1a transgenic lines either exposed to heat stress or to the ER stress elicitor tunicamycin (TUN). The ectopic expression of HsfA1a is associated with higher tolerance against TUN. On the example of the ER-resident Hsp70 chaperone BIP3, we show that the presence of cis-elements required for HSF and bZIP regulation serves as a putative platform for the co-regulation of these genes by both CPR and ER-UPR mechanisms, in the case of BIP3 in a stimulatory manner under high temperatures. In addition, we show that the accumulation of HsfA1a results in higher levels of three ATG genes and a more sensitized induction of autophagy in response to ER stress which also supports the increased tolerance to ER stress of the A1aOE line. These findings provide a basis for the coordination of protein homeostasis in different cellular compartments under stress conditions.
Collapse
Affiliation(s)
- Karin Löchli
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Emma Torbica
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | | | - Deborah Baku
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Aatika Aziz
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | - Daniela Bublak
- Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, D-60438, Germany
| | | |
Collapse
|
28
|
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. THE NEW PHYTOLOGIST 2023; 239:2235-2247. [PMID: 37403528 DOI: 10.1111/nph.19100] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.
Collapse
Affiliation(s)
- Jingjing Wen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongli Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Wang X, Tan NWK, Chung FY, Yamaguchi N, Gan ES, Ito T. Transcriptional Regulators of Plant Adaptation to Heat Stress. Int J Mol Sci 2023; 24:13297. [PMID: 37686100 PMCID: PMC10487819 DOI: 10.3390/ijms241713297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| | - Nicholas Wui Kiat Tan
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Fong Yi Chung
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Nobutoshi Yamaguchi
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| | - Eng-Seng Gan
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Toshiro Ito
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| |
Collapse
|
30
|
Huang J, Zhao X, Bürger M, Chory J, Wang X. The role of ethylene in plant temperature stress response. TRENDS IN PLANT SCIENCE 2023; 28:808-824. [PMID: 37055243 DOI: 10.1016/j.tplants.2023.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.
Collapse
Affiliation(s)
- Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
31
|
Wang L, Liu Y, Chai G, Zhang D, Fang Y, Deng K, Aslam M, Niu X, Zhang W, Qin Y, Wang X. Identification of passion fruit HSF gene family and the functional analysis of PeHSF-C1a in response to heat and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107800. [PMID: 37253279 DOI: 10.1016/j.plaphy.2023.107800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Heat stress transcription factors (HSFs) are the major regulators of plant response to environmental stress, especially heat and drought stress. To gain a deeper understanding of the mechanisms underlying HSFs in the abiotic stress response of passion fruit, we conducted an in silico analysis of the HSF gene family. Through bioinformatics and phylogenetic analyses, we identified 18 PeHSF members and classified them into A, B, and C groups. Collinearity analysis results revealed that the expansion of the PeHSF gene family was due to the presence of segmental duplication. Furthermore, gene structure and protein domain analysis illustrated that PeHSFs in the same subgroup are relatively conserved. Conserved motif and function domain analysis suggested that PeHSF proteins possess typical conserved functional domains of the HSF family. A protein interaction network and 3D structure prediction were used to study the potential regulatory relationship of PeHSFs. Additionally, the subcellular localization results of PeHSF-A6a, PeHSF-B4b, and PeHSF-C1a were consistent with the predictions. RNA-seq and RT-qPCR analysis revealed the expression patterns of PeHSFs in different tissues of passion fruit floral organs. Promoter analysis and the expression patterns of the PeHSFs under different treatments demonstrated their involvement in various abiotic stress processes. Notably, overexpression of PeHSF-C1a consistently enhanced tolerance to drought and heat stress in Arabidopsis. Overall, our findings provide a scientific basis for further functional studies of PeHSFs that could contribute to improvement of passion fruit breeding.
Collapse
Affiliation(s)
- Lulu Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan, 364000, China
| | - Gaifeng Chai
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Dan Zhang
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yunying Fang
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kao Deng
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Mohammad Aslam
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoping Niu
- College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenbin Zhang
- Fine Variety Breeding Farm in Xinluo District, Longyan, 364000, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; College of Agriculture, College of Life Sciences, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China.
| |
Collapse
|
32
|
Samtani H, Sharma A, Khurana P. Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01355-3. [PMID: 37166615 DOI: 10.1007/s11103-023-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Heat stress transcription factors (Hsfs) play an important role in regulating the heat stress response in plants. Among the Hsf family members, the group A members act upstream in initiating the response upon sensing heat stress and thus, impart thermotolerance to the plants. In the present study, wheat HsfA5 (TaHsfA5) was found to be one of the Hsfs, which was upregulated both in heat stress and during the recovery period after the stress. TaHsfA5 was found to interact with TaHsfA3 and TaHsfA4, both of which are known to positively regulate the heat stress-responsive genes. Apart from these, TaHsfA5 also interacted with TaHSBP2 protein, whose role has been implicated in attenuating the heat stress response. Further, its heterologous overexpression in Arabidopsis and Oryza sativa promoted thermotolerance in these plants. This indicated that TaHsfA5 positively regulated the heat stress response. Interestingly, the TaHsfA5 overexpression Arabidopsis plants when grown at warm temperatures showed a hyper-thermomorphogenic response in comparison to the wild-type plants. This was found to be consistent with the higher expression of PIF4 and its target auxin-responsive genes in these transgenics in contrast to the wild-type plants. Thus, these results suggest the involvement of TaHsfA5 both in the heat stress response as well as in the thermomorphogenic response in plants.
Collapse
Affiliation(s)
- Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
33
|
Qu R, Wang S, Wang X, Peng J, Guo J, Cui G, Chen M, Mu J, Lai C, Huang L, Wang S, Shen Y. Genome-Wide Characterization and Expression of the Hsf Gene Family in Salvia miltiorrhiza (Danshen) and the Potential Thermotolerance of SmHsf1 and SmHsf7 in Yeast. Int J Mol Sci 2023; 24:8461. [PMID: 37239808 PMCID: PMC10218652 DOI: 10.3390/ijms24108461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese herb with significant medicinal value. The yield and quality of Danshen are greatly affected by climatic conditions, in particular high temperatures. Heat shock factors (Hsfs) play important regulatory roles in plant response to heat and other environmental stresses. However, little is currently known about the role played by the Hsf gene family in S. miltiorrhiza. Here, we identified 35 SmHsf genes and classified them into three major groups: SmHsfA (n = 22), SmHsfB (n = 11), and SmHsfC (n = 2) using phylogenetic analysis. The gene structure and protein motifs were relatively conserved within subgroups but diverged among the different groups. The expansion of the SmHsf gene family was mainly driven by whole-genome/segmental and dispersed gene duplications. The expression profile of SmHsfs in four distinct organs revealed its members (23/35) are predominantly expressed in the root. The expression of a large number of SmHsfs was regulated by drought, ultraviolet, heat and exogenous hormones. Notably, the SmHsf1 and SmHsf7 genes in SmHsfB2 were the most responsive to heat and are conserved between dicots and monocots. Finally, heterologous expression analysis showed that SmHsf1 and SmHsf7 enhance thermotolerance in yeast. Our results provide a solid foundation for further functional investigation of SmHsfs in Danshen plants as a response to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
34
|
Liu L, Zhang Y, Tang C, Shen Q, Fu J, Wang Q. Maize Transcription Factor ZmHsf28 Positively Regulates Plant Drought Tolerance. Int J Mol Sci 2023; 24:ijms24098079. [PMID: 37175787 PMCID: PMC10179534 DOI: 10.3390/ijms24098079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Identification of central genes governing plant drought tolerance is fundamental to molecular breeding and crop improvement. Here, maize transcription factor ZmHsf28 is identified as a positive regulator of plant drought responses. ZmHsf28 exhibited inducible gene expression in response to drought and other abiotic stresses. Overexpression of ZmHsf28 diminished drought effects in Arabidopsis and maize. Gene silencing of ZmHsf28 via the technology of virus-induced gene silencing (VIGS) impaired maize drought tolerance. Overexpression of ZmHsf28 increased jasmonate (JA) and abscisic acid (ABA) production in transgenic maize and Arabidopsis by more than two times compared to wild-type plants under drought conditions, while it decreased reactive oxygen species (ROS) accumulation and elevated stomatal sensitivity significantly. Transcriptomic analysis revealed extensive gene regulation by ZmHsf28 with upregulation of JA and ABA biosynthesis genes, ROS scavenging genes, and other drought related genes. ABA treatment promoted ZmHsf28 regulation of downstream target genes. Specifically, electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assay indicated that ZmHsf28 directly bound to the target gene promoters to regulate their gene expression. Taken together, our work provided new and solid evidence that ZmHsf28 improves drought tolerance both in the monocot maize and the dicot Arabidopsis through the implication of JA and ABA signaling and other signaling pathways, shedding light on molecular breeding for drought tolerance in maize and other crops.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
35
|
Chen H, Liu X, Li S, Yuan L, Mu H, Wang Y, Li Y, Duan W, Fan P, Liang Z, Wang L. The class B heat shock factor HSFB1 regulates heat tolerance in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad001. [PMID: 36938570 PMCID: PMC10018785 DOI: 10.1093/hr/uhad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Grape is a widely cultivated crop with high economic value. Most cultivars derived from mild or cooler climates may not withstand increasing heat stress. Therefore, dissecting the mechanisms of heat tolerance in grapes is of particular significance. Here, we performed comparative transcriptome analysis of Vitis davidii 'Tangwei' (heat tolerant) and Vitis vinifera 'Jingxiu' (heat sensitive) grapevines after exposure to 25°C, 40°C, or 45°C for 2 h. More differentially expressed genes (DEGs) were detected in 'Tangwei' than in 'Jingxiu' in response to heat stress, and the number of DEGs increased with increasing treatment temperatures. We identified a class B Heat Shock Factor, HSFB1, which was significantly upregulated in 'Tangwei', but not in 'Jingxiu', at high temperature. VdHSFB1 from 'Tangwei' and VvHSFB1 from 'Jingxiu' differ in only one amino acid, and both showed similar transcriptional repression activities. Overexpression and RNA interference of HSFB1 in grape indicated that HSFB1 positively regulates the heat tolerance. Moreover, the heat tolerance of HSFB1-overexpressing plants was positively correlated to HSFB1 expression level. The activity of the VdHSFB1 promoter is higher than that of VvHSFB1 under both normal and high temperatures. Promoter analysis showed that more TATA-box and AT~TATA-box cis-elements are present in the VdHSFB1 promoter than the VvHSFB1 promoter. The promoter sequence variations between VdHSFB1 and VvHSFB1 likely determine the HSFB1 expression levels that influence heat tolerance of the two grape germplasms with contrasting thermotolerance. Collectively, we validated the role of HSFB1 in heat tolerance, and the knowledge gained will advance our ability to breed heat-tolerant grape cultivars.
Collapse
Affiliation(s)
- Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
36
|
Yang D, Wang Z, Huang X, Xu C. Molecular regulation of tomato male reproductive development. ABIOTECH 2023; 4:72-82. [PMID: 37220538 PMCID: PMC10199995 DOI: 10.1007/s42994-022-00094-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The reproductive success of flowering plants, which directly affects crop yield, is sensitive to environmental changes. A thorough understanding of how crop reproductive development adapts to climate changes is vital for ensuring global food security. In addition to being a high-value vegetable crop, tomato is also a model plant used for research on plant reproductive development. Tomato crops are cultivated under highly diverse climatic conditions worldwide. Targeted crosses of hybrid varieties have resulted in increased yields and abiotic stress resistance; however, tomato reproduction, especially male reproductive development, is sensitive to temperature fluctuations, which can lead to aborted male gametophytes, with detrimental effects on fruit set. We herein review the cytological features as well as genetic and molecular pathways influencing tomato male reproductive organ development and responses to abiotic stress. We also compare the shared features among the associated regulatory mechanisms of tomato and other plants. Collectively, this review highlights the opportunities and challenges related to characterizing and exploiting genic male sterility in tomato hybrid breeding programs.
Collapse
Affiliation(s)
- Dandan Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
37
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
38
|
Tokić M, Leljak Levanić D, Ludwig-Müller J, Bauer N. Growth and Molecular Responses of Tomato to Prolonged and Short-Term Heat Exposure. Int J Mol Sci 2023; 24:ijms24054456. [PMID: 36901887 PMCID: PMC10002527 DOI: 10.3390/ijms24054456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Tomatoes are one of the most important vegetables for human consumption. In the Mediterranean's semi-arid and arid regions, where tomatoes are grown in the field, global average surface temperatures are predicted to increase. We investigated tomato seed germination at elevated temperatures and the impact of two different heat regimes on seedlings and adult plants. Selected exposures to 37 °C and heat waves at 45 °C mirrored frequent summer conditions in areas with a continental climate. Exposure to 37 °C or 45 °C differently affected seedlings' root development. Both heat stresses inhibited primary root length, while lateral root number was significantly suppressed only after exposure to 37 °C. Heat stress treatments induced significant accumulation of indole-3-acetic acid (IAA) and reduced abscisic acid (ABA) levels in seedlings. As opposed to the heat wave treatment, exposure to 37 °C increased the accumulation of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which may have been involved in the root architecture modification of seedlings. Generally, more drastic phenotypic changes (chlorosis and wilting of leaves and bending of stems) were found in both seedlings and adult plants after the heat wave-like treatment. This was also reflected by proline, malondialdehyde and heat shock protein HSP90 accumulation. The gene expression of heat stress-related transcription factors was perturbed and DREB1 was shown to be the most consistent heat stress marker.
Collapse
Affiliation(s)
- Mirta Tokić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Dunja Leljak Levanić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606263
| |
Collapse
|
39
|
Xue J, Zeng P, Cui J, Zhang Y, Yang J, Zhu L, Hu H, Xu J. Physiological and gene expression changes of Cryptomeria fortunei Hooibrenk families under heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1083847. [PMID: 36794229 PMCID: PMC9923103 DOI: 10.3389/fpls.2023.1083847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is one of the major abiotic stresses affecting plant growth and productivity. Cryptomeria fortunei (Chinese cedar) is an excellent timber and landscaping tree species in southern China thanks to its beautiful appearance, straight texture and ability to purify the air and improve the environment. In this study, we first screened 8 excellent C. fortunei families (#12, #21, #37, #38, #45, #46, #48, #54) in a second generation seed orchard. We then analyzed the electrolyte leakage (EL) and lethal temperature at 50% (LT50) values under heat stress, to identify the families with the best heat resistance (#48) and the lowest heat resistance (#45) and determine the physiological and morphological response of different threshold-resistance of C. fortune to heat stress. The relative conductivity of the C. fortunei families showed an increasing trend with increasing temperature, following an "S" curve, and the half-lethal temperature ranges between 39°C and 43.2°C. The activities of SOD and POD fluctuated in the early stage of stress but decreased after 37°C. We observed the changes in the cell ultrastructure at 43°C, and the mesophyll cell structure of #48 was less damaged than that of #45. Eight heat resistance gene, including CfAPX1, CfAPX2, CfHSP11, CfHSP21, CfHSP70, CfHSFA1a, CfHSFB2a and CfHSFB4, were all up-regulated in #45 and #48, and there were significant differences between #45 and #48 under different heat stress treatments. We found a significant difference in heat tolerance between #45 and #48, such that #48 shows higher heat tolerance capability and could be exploited in breeding programs. We conclude that the strongly heat-resistant family had a more stable physiological state and a wider range of heat stress adaptations.
Collapse
Affiliation(s)
- Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Pingsheng Zeng
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
40
|
HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nat Commun 2023; 14:469. [PMID: 36709329 PMCID: PMC9884265 DOI: 10.1038/s41467-023-36227-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
Collapse
|
41
|
Shang S, Zhang Z, Li L, Chen J, Zang Y, Liu X, Wang J, Tang X. Transcriptome analysis reveals genes expression pattern of Spirodela polyrhiza response to heat stress. Int J Biol Macromol 2023; 225:767-775. [PMID: 36403776 DOI: 10.1016/j.ijbiomac.2022.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
With global warming, high-temperature stress has become an essential abiotic factor affecting plant growth and survival. However, little knowledge was available of the molecular mechanism that aquatic plants respond to this stress. In the present study, we explore the adaptation mechanism of Spirodela polyrhiza, a surface-water-grown duckweed species broadly distributed worldwide to high temperatures, and analyze its gene expression pattern of S. polyrhiza under heat stress. Three temperature stress treatments, including room temperature group (CK), middle high-temperature group (MTS), and high-temperature group (45 °C, HTS) were set. The results showed that the contents of SOD first increased and then decreased, and those of MDA showed an upward trend under elevated high-temperature stress. According to the transcriptome data, 3145, 3487, and 3089 differently expressed genes (DEGs) were identified between MTS and CK, HTS and CK, and HTS and MTS, respectively. The transcription factors (TFs) analysis showed that 14 deferentially expressed TFs, including HSF, ERF, WRKY, and GRAS family, were responsive to heat stress, suggesting they might play vital roles in improving resistance to heat stress. In conclusion, S. polyrhiza could resist high temperatures by increasing SOD activity and MDA at the physiological level. Several transcription factors, energy accumulation processes, and cell membranes were involved in high-temperature stress at the molecular level. Our findings are helpful in better grasping the adaptation rules of some aquatic plants to high temperatures.
Collapse
Affiliation(s)
- Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Zaiwang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China
| | - Liangyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Yu Zang
- Department of Natural Resources, First Institute of Oceanography, Qingdao 266100, China
| | - Xiaoxue Liu
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256601, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China.
| |
Collapse
|
42
|
Goel K, Kundu P, Gahlaut V, Sharma P, Kumar A, Thakur S, Verma V, Bhargava B, Chandora R, Zinta G. Functional divergence of Heat Shock Factors (Hsfs) during heat stress and recovery at the tissue and developmental scales in C4 grain amaranth ( Amaranthus hypochondriacus). FRONTIERS IN PLANT SCIENCE 2023; 14:1151057. [PMID: 37123843 PMCID: PMC10141669 DOI: 10.3389/fpls.2023.1151057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
Two major future challenges are an increase in global earth temperature and a growing world population, which threaten agricultural productivity and nutritional food security. Underutilized crops have the potential to become future climate crops due to their high climate-resilience and nutritional quality. In this context, C4 pseudocereals such as grain amaranths are very important as C4 crops are more heat tolerant than C3 crops. However, the thermal sensitivity of grain amaranths remains unexplored. Here, Amaranthus hypochondriacus was exposed to heat stress at the vegetative and reproductive stages to capture heat stress and recovery responses. Heat Shock Factors (Hsfs) form the central module to impart heat tolerance, thus we sought to identify and characterize Hsf genes. Chlorophyll content and chlorophyll fluorescence (Fv/Fm) reduced significantly during heat stress, while malondialdehyde (MDA) content increased, suggesting that heat exposure caused stress in the plants. The genome-wide analysis led to the identification of thirteen AhHsfs, which were classified into A, B and C classes. Gene expression profiling at the tissue and developmental scales resolution under heat stress revealed the transient upregulation of most of the Hsfs in the leaf and inflorescence tissues, which reverted back to control levels at the recovery time point. However, a few Hsfs somewhat sustained their upregulation during recovery phase. The study reported the identification, physical location, gene/motif structure, promoter analysis and phylogenetic relationships of Hsfs in Amaranthus hypochondriacus. Also, the genes identified may be crucial for future gene functional studies and develop thermotolerant cultivars.
Collapse
Affiliation(s)
- Komal Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pravesh Kundu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Paras Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ayush Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiwali Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bhavya Bhargava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rahul Chandora
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Shimla, Himachal Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- *Correspondence: Gaurav Zinta, ;;
| |
Collapse
|
43
|
Zhou Y, Xu F, Shao Y, He J. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3410. [PMID: 36559522 PMCID: PMC9788449 DOI: 10.3390/plants11243410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
Collapse
Affiliation(s)
| | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Almutairi MM, Almotairy HM. Analysis of Heat Shock Proteins Based on Amino Acids for the Tomato Genome. Genes (Basel) 2022; 13:2014. [PMID: 36360251 PMCID: PMC9690137 DOI: 10.3390/genes13112014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
This research aimed to investigate heat shock proteins in the tomato genome through the analysis of amino acids. The highest length among sequences was found in seq19 with 3534 base pairs. This seq19 was reported and contained a family of proteins known as HsfA that have a domain of transcriptional activation for tolerance to heat and other abiotic stresses. The values of the codon adaptation index (CAI) ranged from 0.80 in Seq19 to 0.65 in Seq10, based on the mRNA of heat shock proteins for tomatoes. Asparagine (AAT, AAC), aspartic acid (GAT, GAC), phenylalanine (TTT, TTC), and tyrosine (TAT, TAC) have relative synonymous codon usage (RSCU) values bigger than 0.5. In modified relative codon bias (MRCBS), the high gene expressions of the amino acids under heat stress were histidine, tryptophan, asparagine, aspartic acid, lysine, phenylalanine, isoleucine, cysteine, and threonine. RSCU values that were less than 0.5 were considered rare codons that affected the rate of translation, and thus selection could be effective by reducing the frequency of expressed genes under heat stress. The normal distribution of RSCU shows about 68% of the values drawn from the standard normal distribution were within 0.22 and -0.22 standard deviations that tend to cluster around the mean. The most critical component based on principal component analysis (PCA) was the RSCU. These findings would help plant breeders in the development of growth habits for tomatoes during breeding programs.
Collapse
Affiliation(s)
- Meshal M. Almutairi
- National Center of Agricultural Technology, Sustainability and Environment, King Abdulaziz City for Science and Technology KACST, Box 6086, Riyadh 11442, Saudi Arabia
| | | |
Collapse
|
45
|
Singh AK, Mishra P, Kashyap SP, Karkute SG, Singh PM, Rai N, Bahadur A, Behera TK. Molecular insights into mechanisms underlying thermo-tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1040532. [PMID: 36388532 PMCID: PMC9645296 DOI: 10.3389/fpls.2022.1040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.
Collapse
Affiliation(s)
- Achuit K. Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Pallavi Mishra
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Suhas G. Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Nagendra Rai
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anant Bahadur
- Division of Crop Production, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Tusar K. Behera
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
46
|
Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, Blilou I, Deng Y. The genome of single-petal jasmine ( Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1045194. [PMID: 36340389 PMCID: PMC9627619 DOI: 10.3389/fpls.2022.1045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Jasmine [Jasminum sambac (L.) Aiton] is a commercially important cultivated plant species known for its fragrant flowers used in the perfume industry, medicine and cosmetics. In the present study, we obtained a draft genome for the J. sambac cultivar 'Danbanmoli' (JSDB, a single-petal phenotype). We showed that the final genome of J. sambac was 520.80 Mb in size (contig N50 = 145.43 kb; scaffold N50 = 145.53 kb) and comprised 35,363 genes. Our analyses revealed that the J. sambac genome has undergone only an ancient whole-genome duplication (WGD) event. We estimated that the lineage that has given rise to J. sambac diverged from the lineage leading to Osmanthus fragrans and Olea europaea approximately 31.1 million years ago (Mya). On the basis of a combination of genomic and transcriptomic analyses, we identified 92 transcription factors (TFs) and 206 genes related to heat stress response. Base on a combination of genomic, transcriptomic and metabolomic analyses, a range of aroma compounds and genes involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways were identified. In the newly assembled J. sambac genome, we identified a total of 122 MYB, 122 bHLH and 69 WRKY genes. Our assembled J. sambac JSDB genome provides fundamental knowledge to study the molecular mechanism of heat stress tolerance, and improve jasmine flowers and dissect its fragrance.
Collapse
Affiliation(s)
- Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ikram Blilou
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Zhang Y, Wang C, Wang C, Yun L, Song L, Idrees M, Liu H, Zhang Q, Yang J, Zheng X, Zhang Z, Gao J. OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms231810830. [PMID: 36142741 PMCID: PMC9501395 DOI: 10.3390/ijms231810830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liu Yun
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Muhammad Idrees
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
| | - Huiying Liu
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| | - Jie Gao
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| |
Collapse
|
48
|
Shi Z, Han X, Wang G, Qiu J, Zhou LJ, Chen S, Fang W, Chen F, Jiang J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1003635. [PMID: 36186082 PMCID: PMC9515547 DOI: 10.3389/fpls.2022.1003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature is an important environmental factor affecting plant anthocyanin synthesis. High temperatures are associated with decreased anthocyanin pigmentation in chrysanthemum. To reveal the effects of high temperature on anthocyanin biosynthesis in chrysanthemum, ray florets of the heat-sensitive cultivar "Nannong Ziyunying" (ZYY) were subjected to RNA sequencing. A total of 18,286 unigenes were differentially expressed between the control and treatment groups. Functional annotation and enrichment analyses of these unigenes revealed that the heat shock response and flavonoid pathways were significantly enriched, suggesting that the expression of these genes in response to high temperature is associated with the fading of chrysanthemum flower color. In addition, genes related to anthocyanin synthesis and heat shock response were differentially expressed under high-temperature stress. Finally, to further investigate the molecular mechanism of discoloration under high-temperature stress and facilitate the use of marker-assisted breeding for developing novel heat-tolerant cultivars, these results were used to mine candidate genes by analyzing changes in their transcription levels in chrysanthemum.
Collapse
|
49
|
Qin Q, Zhao Y, Zhang J, Chen L, Si W, Jiang H. A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants. BMC PLANT BIOLOGY 2022; 22:406. [PMID: 35986244 PMCID: PMC9392289 DOI: 10.1186/s12870-022-03789-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are highly conserved among eukaryote and always play vital role in plant stress responses. Whereas, function and mechanism of Hsfs in maize are limited. RESULTS In this study, an HSF gene ZmHsf11, a member of class B Hsfs, was cloned from maize, and it was up-regulated under heat treatment. ZmHsf11 was a nuclear protein with no transcriptional autoactivation activity in yeast. Overexpression of ZmHsf11 gene in Arabidopsis and rice significantly reduced the survival rate under heat shock treatment and decreased ABA sensitivity of transgenic plants. Under heat stress, transgenic rice accumulated more H2O2, increased cell death, and decreased proline content compared with wild type. In addition, RT-qPCR analysis revealed that ZmHsf11 negatively regulated some oxidative stress-related genes APX2, DREB2A, HsfA2e, NTL3, GR and HSP17 under heat stress treatment. CONCLUSIONS Our results indicate that ZmHsf11 decreases plant tolerance to heat stress by negatively regulating the expression of oxidative stress-related genes, increasing ROS levels and decreasing proline content. It is a negative regulator involved in high temperature stress response.
Collapse
Affiliation(s)
- Qianqian Qin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujun Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jiajun Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Li Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
50
|
Cheng X, Pang F, Tian W, Tang X, Wu L, Hu X, Zhu H. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC 1 involving in rapid vegetative growth and early flowering in tobacco. Sci Rep 2022; 12:13612. [PMID: 35948667 PMCID: PMC9365820 DOI: 10.1038/s41598-022-18064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In previous study, ectopic expression of GhSAMDC1 improved vegetative growth and early flowering in tobacco, which had been explained through changes of polyamine content, polyamines and flowering relate genes expression. To further disclose the transcript changes of ectopic expression of GhSAMDC1 in tobacco, the leaves from wild type and two transgenic lines at seedling (30 days old), bolting (60 days old) and flowering (90 days old) stages were performed for transcriptome analysis. Compared to wild type, a total of 938 differentially expressed genes (DEGs) were found to be up- or down-regulated in the two transgenic plants. GO and KEGG analysis revealed that tobacco of wild-type and transgenic lines were controlled by a complex gene network, which regulated multiple metabolic pathways. Phytohormone detection indicate GhSAMDC1 affect endogenous phytohormone content, ABA and JA content are remarkably increased in transgenic plants. Furthermore, transcript factor analysis indicated 18 transcript factor families, including stress response, development and flowering related transcript factor families, especially AP2-EREBP, WRKY, HSF and Tify are the most over-represented in those transcript factor families. In conclusion, transcriptome analysis provides insights into the molecular mechanism of GhSAMDC1 involving rapid vegetative growth and early flowering in tobacco.
Collapse
Affiliation(s)
- Xinqi Cheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Fangqin Pang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China.
| |
Collapse
|