1
|
Peng Y, Yuan Q, Zhou S, Gan J, Shen Z, Xia X, Jiang Y, Chen Q, Yuan Y, He G, Wei Q, Feng X. FAK mediates mechanical signaling to maintain epithelial homeostasis through YAP/TAZ-TEADs. Histochem Cell Biol 2025; 163:31. [PMID: 39918604 DOI: 10.1007/s00418-025-02360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengzhong Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, 310000, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gu He
- Department of Dermatology and Venerology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li L, Tang Y, Qiu L, Li Z, Wang R. Extracellular matrix shapes cancer stem cell behavior in breast cancer: a mini review. Front Immunol 2025; 15:1503021. [PMID: 39850890 PMCID: PMC11754286 DOI: 10.3389/fimmu.2024.1503021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering. Scientists thereby presume that cancer stem cells (CSCs) are the underlying cause of metastasis and recurrence. In recent years, it was shown that not only can chemotherapy and radiotherapy underperform in the treatment of breast cancer, but they can also increase the number of breast cancer stem cells (BCSCs) that transform regular breast cancer cells into their own population. Such data somewhat support the aforementioned hypothesis. Meanwhile, our understanding of the extracellular matrix (ECM) has changed considerably over the last decade. A lot of studies have bit by bit complemented human knowledge regarding how the ECM greatly shapes the behaviors of BCSCs. In this review, we highlighted the influence on BCSCs exerted by different critical components and biochemical properties of ECM.
Collapse
Affiliation(s)
- Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shengli Clinical Medical College of Fujian Medical University, Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
3
|
Gelsomino L, Caruso A, Tasan E, Leonetti AE, Malivindi R, Naimo GD, Giordano F, Panza S, Gu G, Perrone B, Giordano C, Mauro L, Nardo B, Filippelli G, Bonofiglio D, Barone I, Fuqua SAW, Catalano S, Andò S. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal 2024; 22:545. [PMID: 39543704 PMCID: PMC11566413 DOI: 10.1186/s12964-024-01918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Endocrine therapy (ET) has improved the clinical outcomes of Estrogen receptor alpha-positive (ERɑ +) breast cancer (BC) patients, even though resistance to ET remains a clinical issue. Mutations in the hormone-binding domain of ERɑ represent an acquired intrinsic mechanism of ET resistance. However, the latter also depends on the multiple functional interactions between BC cells and the tumor microenvironment (TME). Here, we investigated how the most common Y537S-ERɑ mutation may influence the behavior of fibroblasts, the most prominent component of the TME. METHODS We conducted coculture experiments with normal human foreskin fibroblasts BJ1-hTERT (NFs), cancer-associated fibroblasts (CAFs), isolated from human BC specimens, and Y537S CRISPR-expressing MCF-7 BC cells (MCF-7YS). Mass spectrometry (MS) and Metacore analyses were performed to investigate how the functional interactions between BC cells/fibroblasts may affect their proteomic profile. The impact of fibroblasts on BC tumor growth and metastatic potential was evaluated in nude mice. RESULTS Mutant BC conditioned medium (CM) affected the morphology/proliferation/migration of both NFs and CAFs. 198 deregulated proteins signed the proteomic similarity profile of NFs exposed to the YS-CM and CAFs. Among the upregulated proteins, Yes-associated protein 1 (YAP1) was the main central hub in the direct interaction network. Increased YAP1 protein expression and activity were confirmed in NFs treated with MCF-7YS-CM. However, YAP1 activation appears to crosstalk with the insulin growth factor-1 receptor (IGF-1R). Higher amount of IGF-1 were noticed in the MCF-7YS-CM cells compared to the MCF-7P, and IGF-1 immunodepletion reversed the enhanced YAP1 expression and activity. Mutant cells upon exposure to the NF- and CAF-CM exhibited an enhanced proliferation/growth/migration/invasion compared to the MCF-7P. MCF-7YS cells when implanted with CAFs showed an early relative increased tumor volume compared to YS alone. No changes were observed when MCF-7P cells were co-implanted with CAFs. Compared with that in MCF-7P cells, the metastatic burden of MCF-7YS cells was intrinsically greater, and this effect was augmented upon treatment with NF-CM and further increased with CAF-CM. CONCLUSIONS YS mutant BC cells induced the conversion of fibroblasts into CAFs, via YAP, which represent a potential therapeutic target which interrupt the functional interactions between mutant cells/TME and to be implemented in the novel therapeutic strategy of a subset of metastatic BC patients carrying the frequent Y537S mutations.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Emine Tasan
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Adele Elisabetta Leonetti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Salvatore Panza
- Department of Experimental and Clinical Medicine, "Magna Graecia", University of Catanzaro, Catanzaro, Italy
| | - Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Benedetta Perrone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Loredana Mauro
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Department of Surgery, General Surgery Unit, Annunziata Hospital, Cosenza, Italy
| | | | - Daniela Bonofiglio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy.
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy.
| |
Collapse
|
4
|
Nonnast E, Mira E, Mañes S. Biomechanical properties of laminins and their impact on cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189181. [PMID: 39299492 DOI: 10.1016/j.bbcan.2024.189181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Laminins (LMs) constitute a family of heterotrimeric glycoproteins essential for the formation of basement membranes (BM). They act as molecular bridges between cells and the extracellular matrix (ECM), thereby transmitting signals influencing cell behavior and tissue organization. In the realm of cancer pathobiology, LMs regulate key processes such as migration, differentiation, or fibrosis. This review critically examines the multifaceted impact of LMs on tumor progression, with a particular focus on the isoform-specific structure-function relationships, and how this structural diversity contributes to the biomechanical properties of BMs. LM interactions with integrin and non-integrin cell surface receptors, as well as with other ECM proteins, modify the response of cancer cells to the ECM stiffness, ultimately influencing the capacity of malignant cells to breach the BM, a limiting step in metastatic dissemination. Comprehension of the mechanisms underlying LM-driven tumor biomechanics holds potential for better understand cancer pathobiology and design new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
5
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
6
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
8
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Gurung SK, Shevde LA, Rao SS. Laminin I mediates resistance to lapatinib in HER2-positive brain metastatic breast cancer cells in vitro. Biochem Biophys Res Commun 2024; 720:150142. [PMID: 38788545 DOI: 10.1016/j.bbrc.2024.150142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
Collapse
Affiliation(s)
- Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
10
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
11
|
Faraldo MM, Romagnoli M, Wallon L, Dubus P, Deugnier MA, Fre S. Alpha-6 integrin deletion delays the formation of Brca1/p53-deficient basal-like breast tumors by restricting luminal progenitor cell expansion. Breast Cancer Res 2024; 26:91. [PMID: 38835038 PMCID: PMC11151721 DOI: 10.1186/s13058-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.
Collapse
Affiliation(s)
- Marisa M Faraldo
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| | - Mathilde Romagnoli
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
- Institut de Recherches Internationales Servier, 91190, Gif Sur Yvette, France
| | - Loane Wallon
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France
- Alacris Theranostics GmbH, 12489, Berlin, Germany
| | - Pierre Dubus
- Department of Histology and Pathology, Centre Hospitalier Universitaire de Bordeaux, 33000, Bordeaux, France
- BRIC U1312, INSERM, Bordeaux Institute of Oncology, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie-Ange Deugnier
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
| | - Silvia Fre
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| |
Collapse
|
12
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
13
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
15
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
17
|
Cogliati B, Yashaswini CN, Wang S, Sia D, Friedman SL. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol 2023; 20:647-661. [PMID: 37550577 PMCID: PMC10671228 DOI: 10.1038/s41575-023-00821-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis is a substantial risk factor for the development and progression of liver cancer, which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Studies utilizing cell fate mapping and single-cell transcriptomics techniques have identified quiescent perisinusoidal hepatic stellate cells (HSCs) as the primary source of activated collagen-producing HSCs and liver cancer-associated fibroblasts (CAFs) in HCC and liver metastasis, complemented in iCCA by contributions from portal fibroblasts. At the same time, integrative computational analysis of single-cell, single-nucleus and spatial RNA sequencing data have revealed marked heterogeneity among HSCs and CAFs, with distinct subpopulations displaying unique gene expression signatures and functions. Some of these subpopulations have divergent roles in promoting or inhibiting liver fibrogenesis and carcinogenesis. In this Review, we discuss the dual roles of HSC subpopulations in liver fibrogenesis and their contribution to liver cancer promotion, progression and metastasis. We review the transcriptomic and functional similarities between HSC and CAF subpopulations, highlighting the pathways that either promote or prevent fibrosis and cancer, and the immunological landscape from which these pathways emerge. Insights from ongoing studies will yield novel strategies for developing biomarkers, assessing prognosis and generating new therapies for both HCC and iCCA prevention and treatment.
Collapse
Affiliation(s)
- Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Sia
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Ordaz-Ramos A, Tellez-Jimenez O, Vazquez-Santillan K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front Cell Dev Biol 2023; 11:1221175. [PMID: 37492224 PMCID: PMC10363614 DOI: 10.3389/fcell.2023.1221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Breast cancer stem cells (BCSCs) represent a distinct subpopulation of cells with the ability to self-renewal and differentiate into phenotypically diverse tumor cells. The involvement of CSC in treatment resistance and cancer recurrence has been well established. Numerous studies have provided compelling evidence that the self-renewal ability of cancer stem cells is tightly regulated by specific signaling pathways, which exert critical roles to maintain an undifferentiated phenotype and prevent the differentiation of CSCs. Signaling pathways such as Wnt/β-catenin, NF-κB, Notch, Hedgehog, TGF-β, and Hippo have been implicated in the promotion of self-renewal of many normal and cancer stem cells. Given the pivotal role of BCSCs in driving breast cancer aggressiveness, targeting self-renewal signaling pathways holds promise as a viable therapeutic strategy for combating this disease. In this review, we will discuss the main signaling pathways involved in the maintenance of the self-renewal ability of BCSC, while also highlighting current strategies employed to disrupt the signaling molecules associated with stemness.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Olivia Tellez-Jimenez
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
| |
Collapse
|
19
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
20
|
Li C, Qiu S, Liu X, Guo F, Zhai J, Li Z, Deng L, Ge L, Qian H, Yang L, Xu B. Extracellular matrix-derived mechanical force governs breast cancer cell stemness and quiescence transition through integrin-DDR signaling. Signal Transduct Target Ther 2023; 8:247. [PMID: 37369642 DOI: 10.1038/s41392-023-01453-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) serves as signals that regulate specific cell states in tumor tissues. Increasing evidence suggests that extracellular biomechanical force signals are critical in tumor progression. In this study, we aimed to explore the influence of ECM-derived biomechanical force on breast cancer cell status. Experiments were conducted using 3D collagen, fibrinogen, and Matrigel matrices to investigate the role of mechanical force in tumor development. Integrin-cytoskeleton-AIRE and DDR-STAT signals were examined using RNA sequencing and western blotting. Data from 1358 patients and 86 clinical specimens were used for ECM signature-prognosis analysis. Our findings revealed that ECM-derived mechanical force regulated tumor stemness and cell quiescence in breast cancer cells. A mechanical force of ~45 Pa derived from the extracellular substrate activated integrin β1/3 receptors, stimulating stem cell signaling pathways through the cytoskeleton/AIRE axis and promoting tumorigenic potential and stem-like phenotypes. However, excessive mechanical force (450 Pa) could drive stem-like cancer cells into a quiescent state, with the removal of mechanical forces leading to vigorous proliferation in quiescent cancer stem cells. Mechanical force facilitated cell cycle arrest to induce quiescence, dependent on DDR2/STAT1/P27 signaling. Therefore, ECM-derived mechanical force governs breast cancer cell status and proliferative characteristics through stiffness alterations. We further established an ECM signature based on the fibrinogen/fibronectin/vitronectin/elastin axis, which efficiently predicts patient prognosis in breast cancer. Our findings highlight the vital role of ECM-derived mechanical force in governing breast cancer cell stemness/quiescence transition and suggest the novel use of ECM signature in predicting the clinical prognosis of breast cancer.
Collapse
Affiliation(s)
- Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, 6500, Switzerland
| | - Xiaohan Liu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China
| | - Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linghui Deng
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, 6500, Switzerland
| | - Liming Ge
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
21
|
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang M, Ling G, Li P. New insights into the ambivalent role of YAP/TAZ in human cancers. J Exp Clin Cancer Res 2023; 42:130. [PMID: 37211598 DOI: 10.1186/s13046-023-02704-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Hippo signaling was first identified in Drosophila as a key controller of organ size by regulating cell proliferation and anti-apoptosis. Subsequent studies have shown that this pathway is highly conserved in mammals, and its dysregulation is implicated in multiple events of cancer development and progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) (hereafter YAP/TAZ) are the downstream effectors of the Hippo pathway. YAP/TAZ overexpression or activation is sufficient to induce tumor initiation and progression, as well as recurrence and therapeutic resistance. However, there is growing evidence that YAP/TAZ also exert a tumor-suppressive function in a context-dependent manner. Therefore, caution should be taken when targeting Hippo signaling in clinical trials in the future. In this review article, we will first give an overview of YAP/TAZ and their oncogenic roles in various cancers and then systematically summarize the tumor-suppressive functions of YAP/TAZ in different contexts. Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based tumor targeted therapy and potential future directions.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Mingli Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Gengqiang Ling
- Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Sousa-Ortega A, Vázquez-Marín J, Sanabria-Reinoso E, Corbacho J, Polvillo R, Campoy-López A, Buono L, Loosli F, Almuedo-Castillo M, Martínez-Morales JR. A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly. Nat Commun 2023; 14:2804. [PMID: 37193708 DOI: 10.1038/s41467-023-38482-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The assembly of the embryo's primary axis is a fundamental landmark for the establishment of the vertebrate body plan. Although the morphogenetic movements directing cell convergence towards the midline have been described extensively, little is known on how gastrulating cells interpret mechanical cues. Yap proteins are well-known transcriptional mechanotransducers, yet their role in gastrulation remains elusive. Here we show that the double knockout of yap and its paralog yap1b in medaka results in an axis assembly failure, due to reduced displacement and migratory persistence in mutant cells. Accordingly, we identified genes involved in cytoskeletal organization and cell-ECM adhesion as potentially direct Yap targets. Dynamic analysis of live sensors and downstream targets reveal that Yap is acting in migratory cells, promoting cortical actin and focal adhesions recruitment. Our results indicate that Yap coordinates a mechanoregulatory program to sustain intracellular tension and maintain the directed cell migration for embryo axis development.
Collapse
Affiliation(s)
- Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | | | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
23
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
24
|
Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, Pan Y, Li P. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br J Cancer 2023; 128:1611-1624. [PMID: 36759723 PMCID: PMC10133323 DOI: 10.1038/s41416-023-02182-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed form of cancer and a leading cause of cancer-related deaths among women worldwide. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are homologous transcriptional coactivators and downstream effectors of Hippo signalling. YAP/TAZ activation has been revealed to play essential roles in multiple events of BC development, including tumour initiation, progression, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of YAP/TAZ-mediated oncogenesis in BC, and then systematically summarise the oncogenic roles of YAP/TAZ in various BC subtypes, BC stem cells (BCSCs) and tumour microenvironments (TMEs). Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.,Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yunjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
26
|
Thiemann RF, Varney S, Moskwa N, Lamar J, Larsen M, LaFlamme SE. Regulation of myoepithelial differentiation. PLoS One 2022; 17:e0268668. [PMID: 35617216 PMCID: PMC9135247 DOI: 10.1371/journal.pone.0268668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
The salivary gland can be permanently impaired by radiation treatment for head and neck cancers. Efforts at tissue regeneration have focused on saliva-producing acinar cells. However, myoepithelial cells are also critical to gland function, but mechanisms that regulate their differentiation are poorly defined. To study myoepithelial differentiation, we employed mSG-PAC1 murine salivary gland epithelial cells. We demonstrate that mSG-PAC1 spheroids exhibit phenotypic plasticity between pro-acinar and myoepithelial cell fates. Increased expression of pro-acinar/acinar or myoepithelial RNAs was identified from spheroids cultured under different media conditions by microarray followed by gene-set enrichment analysis. Spheroids cultured with different medium components expressed proteins typical of either acinar or myoepithelial cells, as detected by immunocytochemistry. We demonstrate that the pattern of TAZ expression in the epithelial compartment of the differentiating murine salivary gland correlates with the expression of the myoepithelial marker alpha-SMA, as is the case for TAZ expression in mSG-PAC1 spheroids. Our analysis also indicates that YAP/TAZ target genes are upregulated together with myoepithelial markers. Importantly, siRNA targeting of TAZ expression in mSG-PAC1 spheroids diminished the expression of myoepithelial markers. Our results in this in vitro cell model implicate TAZ signaling in myoepithelial differentiation.
Collapse
Affiliation(s)
- Renee F. Thiemann
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Scott Varney
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - Susan E. LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
28
|
Tsai CR, Martin JF. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr Top Dev Biol 2022; 149:91-121. [PMID: 35606063 PMCID: PMC10898347 DOI: 10.1016/bs.ctdb.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays key roles in regulating the balance between cell proliferation and apoptosis, cell differentiation, organ size control, tissue repair, and regeneration. Recently, the Hippo pathway has been shown to regulate heart fibrosis, defined as excess extracellular matrix (ECM) deposition and increased tissue stiffness. Cardiac fibroblasts (CFs) are the primary cell type that produces, degrades, and remodels the ECM during homeostasis, aging, inflammation, and tissue repair and regeneration. Here, we review the available evidence from the current literature regarding how the Hippo pathway regulates the formation and function of CFs during heart development and tissue repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, United States.
| |
Collapse
|
29
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
30
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
31
|
Gu X, Ge L, Ren B, Fang Y, Li Y, Wang Y, Xu H. Glucocorticoids Promote Extracellular Matrix Component Remodeling by Activating YAP in Human Retinal Capillary Endothelial Cells. Front Cell Dev Biol 2022; 9:738341. [PMID: 34970541 PMCID: PMC8712730 DOI: 10.3389/fcell.2021.738341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Remodeling of extracellular matrix (ECM) components of endothelial cells is the main cause of retinal vascular basement membrane (BM) thickening, which leads to the initiation and perpetuation of microvasculopathy of diabetic retinopathy (DR). Excessive amounts of glucocorticoids (GCs) are related to the presence and severity of DR, however transcriptional effects of GCs on the biology of human retinal capillary endothelial cells (HRCECs) and its impacts on DR are still unclear. Here, we showed that GC (hydrocortisone) treatment induced ECM component [fibronectin (FN) and type IV collagen (Col IV)] expression and morphological changes in HRCECs via the glucocorticoid receptor (GR), which depended on the nuclear translocation of YAP coactivator. Mechanistically, GCs induced stress fiber formation in HRCECs, while blocking stress fiber formation inhibited GC-induced YAP nuclear translocation. Overexpression of FN, but not Col IV, activated YAP through the promotion of stress fiber formation via ECM-integrin signaling. Thus, a feedforward loop is established to sustain YAP activity. Using mRNA sequencing of HRCECs with overexpressed YAP or GC treatment, we found a similarity in Gene Ontology (GO) terms, differentially expressed genes (DEGs) and transcription factors (TFs) between the two RNA-seq datasets. In vivo, YAP was activated in retina vascular ECs of STZ-induced diabetic mice, and TF prediction analysis of published RNA-seq data of dermal vascular ECs from T2DM patients showed that GR and TEAD (the main transcription factor for YAP) were enriched. Together, GCs activate YAP and promote ECM component (FN and Col IV) remodeling in retinal capillary endothelial cells, and the underlying regulatory mechanism may provide new insights into the vascular BM thickening of the retina in the early pathogenesis of DR.
Collapse
Affiliation(s)
- Xianliang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
32
|
The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int J Mol Sci 2021; 23:ijms23010430. [PMID: 35008857 PMCID: PMC8745604 DOI: 10.3390/ijms23010430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Collapse
|
33
|
Godavarthy PS, Walter CB, Lengerke C, Klein G. The Laminin Receptors Basal Cell Adhesion Molecule/Lutheran and Integrin α7β1 on Human Hematopoietic Stem Cells. Front Cell Dev Biol 2021; 9:675240. [PMID: 34746117 PMCID: PMC8570280 DOI: 10.3389/fcell.2021.675240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
In the adult organism, hematopoietic stem and progenitor cells (HSPC) reside in the bone marrow (BM) in specialized hematopoietic stem cell niches of which the extracellular matrix (ECM) is an integral component. Laminins (LM) are a family of heterotrimeric ECM molecules of which mainly family members containing an α4 or α5 chain are expressed in cells from BM niches and involved in HSPC homing and proliferation. Various integrin and non-integrin laminin receptors have been identified and characterized. Among these, the integrins α6β1 and α3β1 were reported to be strongly expressed on human and mouse HSPC. In the present study, we focus on two further specific laminin receptors, namely integrin α7β1 and basal cell adhesion molecule/Lutheran (BCAM/Lu). Using RT-PCR analyses, immunofluorescence staining, immunoblotting and flow cytometry, we show that both are strongly expressed by human lineage-negative CD34 + HSPC. Treatment with function-blocking antibodies against BCAM/Lu neither inhibits the strong adhesive interaction of CD34 + HSPC with LM-511/LM-521 nor the LM-511/LM-521 mediated changes in CD34 + HSPC proliferation, but however, influences the cytokine-induced differentiation of HSPC in colony formation assays. In addition, stromal-derived factor (SDF) 1α-mediated transmigration of CD34 + HSPC through an endothelial cell layer was effectively diminished by BCAM/Lu antibodies, suggesting a direct involvement of BCAM/Lu in the migration process. This study indicates that both laminin receptors newly identified on human CD34 + HSPC should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Parimala Sonika Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Christina B Walter
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Gerd Klein
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Chen J, Wan R, Li Q, Rao Z, Wang Y, Zhang L, Teichmann AT. Utilizing the Hippo pathway as a therapeutic target for combating endocrine-resistant breast cancer. Cancer Cell Int 2021; 21:306. [PMID: 34112175 PMCID: PMC8194146 DOI: 10.1186/s12935-021-01999-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is always a great obstacle in any endocrine therapy of breast cancer. Although the combination of endocrine therapy and targeted therapy has been shown to significantly improve prognosis, refractory endocrine resistance is still common. Dysregulation of the Hippo pathway is often related to the occurrence and the development of many tumors. Targeted therapies of this pathway have played important roles in the study of triple negative breast cancer (TNBC). Targeting the Hippo pathway in combination with chemotherapy or other targeted therapies has been shown to significantly improve specific antitumor effects and reduce cancer antidrug resistance. Further exploration has shown that the Hippo pathway is closely related to endocrine resistance, and it plays a "co-correlation point" role in numerous pathways involving endocrine resistance, including related pathways in breast cancer stem cells (BCSCs). Agents and miRNAs targeting the components of the Hippo pathway are expected to significantly enhance the sensitivity of breast cancer cells to endocrine therapy. This review initially explains the possible mechanism of the Hippo pathway in combating endocrine resistance, and it concludes by recommending endocrine therapy in combination with therapies targeting the Hippo pathway in the study of endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Runlan Wan
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China
| | - Qinqin Li
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhenghuan Rao
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China.,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yanlin Wang
- North Sichuan Medical College, Nanchong, 637000, China
| | - Lei Zhang
- Department of Gynaecology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Alexander Tobias Teichmann
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People's Republic of China. .,Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
36
|
Swaroop B SS, Kanumuri R, Ezhil I, Naidu Sampangi JK, Kremerskothen J, Rayala SK, Venkatraman G. KIBRA connects Hippo signaling and cancer. Exp Cell Res 2021; 403:112613. [PMID: 33901448 DOI: 10.1016/j.yexcr.2021.112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.
Collapse
Affiliation(s)
- Srikanth Swamy Swaroop B
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Rahul Kanumuri
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Jagadeesh Kumar Naidu Sampangi
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India.
| |
Collapse
|
37
|
Zhao Y, Zheng X, Zheng Y, Chen Y, Fei W, Wang F, Zheng C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front Oncol 2021; 11:650453. [PMID: 33968752 PMCID: PMC8100244 DOI: 10.3389/fonc.2021.650453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
Collapse
Affiliation(s)
- Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Lab Women's Reproductive Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
39
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
40
|
Parra AS, Johnston CA. Mud Loss Restricts Yki-Dependent Hyperplasia in Drosophila Epithelia. J Dev Biol 2020; 8:E34. [PMID: 33322177 PMCID: PMC7768408 DOI: 10.3390/jdb8040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue development demands precise control of cell proliferation and organization, which is achieved through multiple conserved signaling pathways and protein complexes in multicellular animals. Epithelia are a ubiquitous tissue type that provide diverse functions including physical protection, barrier formation, chemical exchange, and secretory activity. However, epithelial cells are also a common driver of tumorigenesis; thus, understanding the molecular mechanisms that control their growth dynamics is important in understanding not only developmental mechanisms but also disease. One prominent pathway that regulates epithelial growth is the conserved Hippo/Warts/Yorkie network. Hippo/Warts inactivation, or activating mutations in Yorkie that prevent its phosphorylation (e.g., YkiS168A), drive hyperplastic tissue growth. We recently reported that loss of Mushroom body defect (Mud), a microtubule-associated protein that contributes to mitotic spindle function, restricts YkiS168A-mediated growth in Drosophila imaginal wing disc epithelia. Here we show that Mud loss alters cell cycle progression and triggers apoptosis with accompanying Jun kinase (JNK) activation in YkiS168A-expressing discs. To identify additional molecular insights, we performed RNAseq and differential gene expression profiling. This analysis revealed that Mud knockdown in YkiS168A-expressing discs resulted in a significant downregulation in expression of core basement membrane (BM) and extracellular matrix (ECM) genes, including the type IV collagen gene viking. Furthermore, we found that YkiS168A-expressing discs accumulated increased collagen protein, which was reduced following Mud knockdown. Our results suggest that ECM/BM remodeling can limit untoward growth initiated by an important driver of tumor growth and highlight a potential regulatory link with cytoskeleton-associated genes.
Collapse
|
41
|
Geng Y, Amante JJ, Goel HL, Zhang X, Walker MR, Luther DC, Mercurio AM, Rotello VM. Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. ACS NANO 2020; 14:15276-15285. [PMID: 33164505 PMCID: PMC10566532 DOI: 10.1021/acsnano.0c05589] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are a crucial therapeutic target because of their role in resistance to chemo- and radiation therapy, metastasis, and tumor recurrence. Differentiation therapy presents a potential strategy for "defanging" CSCs. To date, only a limited number of small-molecule and nanomaterial-based differentiating agents have been identified. We report here the integrated use of nanoparticle engineering and hypothesis-free sensing to identify nanoparticles capable of efficient differentiation of CSCs into non-CSC phenotypes. Using this strategy, we identified a nanoparticle that induces CSC differentiation by increasing intracellular reactive oxygen species levels. Importantly, this unreported phenotype is more susceptible to drug treatment than either CSCs or non-CSCs, demonstrating a potentially powerful strategy for anticancer therapeutics.
Collapse
Affiliation(s)
- Yingying Geng
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - John J. Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Hira L. Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Melanie R. Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - David C. Luther
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Vincent M. Rotello
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
42
|
Jokela TA, LaBarge MA. Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states. CURRENT STEM CELL REPORTS 2020; 7:39-47. [PMID: 33777660 DOI: 10.1007/s40778-020-00182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Cancer stem cells (CSCs) are increasingly understood to play a central role in tumor progression. Growing evidence implicates tumor microenvironments as a source of signals that regulate or even impose CSC states on tumor cells. This review explores points of integration for microenvironment-derived signals that are thought to regulate CSCs in carcinomas. Recent findings CSC states are directly regulated by the mechanical properties and extra cellular matrix (ECM) composition of tumor microenvironments that promote CSC growth and survival, which may explain some modes of therapeutic resistance. CSCs sense mechanical forces and ECM composition through integrins and other cell surface receptors, which then activate a number of intracellular signaling pathways. The relevant signaling events are dynamic and context-dependent. Summary CSCs are thought to drive cancer metastases and therapeutic resistance. Cells that are in CSC states and more differentiated states appear to be reversible and conditional upon the components of the tumor microenvironment. Signals imposed by tumor microenvironment are of a combinatorial nature, ultimately representing the integration of multiple physical and chemical signals. Comprehensive understanding of the tumor microenvironment-imposed signaling that maintains cells in CSC states may guide future therapeutic interventions.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| |
Collapse
|
43
|
The role of basement membrane laminins in vascular function. Int J Biochem Cell Biol 2020; 127:105823. [DOI: 10.1016/j.biocel.2020.105823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
|
44
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-Yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-Ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-Hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-Wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-Ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-Ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
45
|
Zhang W, Liu X, Piao L. Chlorogenic acid-enriched extract of Ilex kudingcha C.J. Tseng tea inhibits neutrophil recruitment in injured zebrafish by promoting reverse migration via the focal adhesion pathway. J Food Biochem 2020; 44:e13279. [PMID: 32686853 DOI: 10.1111/jfbc.13279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Neutrophil-regulated inflammation plays crucial roles in tissue damage and repair. Dysregulation of the neutrophil response system can contribute to diseases such as cancer. Clearance of excessive neutrophils at the site of inflammation by reverse migration provides a promising strategy to mitigate the negative effects. Chlorogenic acid treatment of injured zebrafish embryos showed low-developmental toxicity. Using a transgenic zebrafish Tg (mpx: egfp) model, chlorogenic acid-enriched kudingcha extract promoted neutrophil reverse migration via phosphorylation of ERK and AKT. Using i-TRAQ analysis, differentially expressed proteins involved in focal adhesion were identified, such as: Cdc42, SRC, MLC, ITGA, and Calpain. In support of this, ERK and AKT proteins are involved in the focal adhesion pathway. Real time qPCR determined that CGA downregulates genes associated with cancer metastasis, such as: HSPA5, YWHAZ, RP17, and ITGAV. Together, these results suggest that CGA-enriched Kudingcha extract may have potential as an anticancer or anti-inflammatory therapeutic agent. PRACTICAL APPLICATIONS: Ilex kudingcha C.J Tseng, commonly referred to as the large-leaved kudingcha, is a tea variety naturally rich in chlorogenic acid. Chlorogenic acid, the ester of caffeic and quinic acids, has antioxidant, antibacterial, anticancer, and anti-inflammatory, activities. Kudingcha has several known biological functions, including: anticancer, anti-inflammatory, antidiabetic, and hypolipidemic effects. Treatment with kudingcha extract reduces the recruitment of neutrophils, potentially by inhibiting focal adhesion, and activation of cancer metastasis-related genes. Importantly, kudingcha extract could be used as an alternative nutritional supplement for anticancer or anti-inflammation via its ability to suppress neutrophil recruitment.
Collapse
Affiliation(s)
- Weihao Zhang
- School of Life and Pharmaceutical Science, Hainan University, Haikou, China
| | - Xiande Liu
- School of Life and Pharmaceutical Science, Hainan University, Haikou, China
| | - Linghua Piao
- Department of Physiology, Hainan Medical University, Haikou, China
| |
Collapse
|
46
|
Zhao L, Qiu T, Jiang D, Xu H, Zou L, Yang Q, Chen C, Jiao B. SGCE Promotes Breast Cancer Stem Cells by Stabilizing EGFR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903700. [PMID: 32714745 PMCID: PMC7375232 DOI: 10.1002/advs.201903700] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Indexed: 05/15/2023]
Abstract
Breast cancer stem cells (BCSCs) are responsible for resistance to chemotherapy, high degree of metastasis, and poor prognosis, especially in triple-negative breast cancer (TNBC). The CD24lowCD44high and high aldehyde dehydrogenase 1 (ALDH1) cell subpopulation (CD24lowCD44high ALDH1+) exhibit very high tumor initiating capacity. In the current study, the upregulated genes are analyzed in both CD24lowCD44high and ALDH1+ cell populations at single-cell resolution, and a highly expressed membrane protein, SGCE, is identified in both BCSC populations. Further results show that SGCE depletion reduces BCSC self-renewal, chemoresistance, and metastasis both in vitro and in vivo, partially through affecting the accumulation of extracellular matrix (ECM). For the underlying mechanism, SGCE functions as a sponge molecule for the interaction between epidermal growth factor receptor (EGFR) and its E3 ubiquitination ligase (c-Cbl), and thus inhibits EGFR lysosomal degradation to stabilize the EGFR protein. SGCE knockdown promotes sensitivity to EGFR tyrosine kinase inhibitors (TKIs), providing new clues for deciphering the current failure of targeting EGFR in clinical trials and highlighting a novel candidate for BCSC stemness regulation.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
| | - Ting Qiu
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650223China
| | - Li Zou
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650223China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650223China
| |
Collapse
|
47
|
Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci 2020; 133:jcs246595. [PMID: 32409567 DOI: 10.1242/jcs.246595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
During angiogenesis, endothelial cells engage components of the extracellular matrix through integrin-mediated adhesion. Endothelial expression of laminin-411 and laminin-511 is known to promote vessel stability. However, little is known about the contribution of these laminins to endothelial morphogenesis. We used two organotypic cell culture angiogenesis assays, in conjunction with RNAi approaches, to demonstrate that depletion of either the α4 chain of laminin-411 (LAMA4) or the α5 chain of laminin-511 (LAMA5) from endothelial cells inhibits sprouting and tube formation. Depletion of α6 (ITGA6) integrins resulted in similar phenotypes. Gene expression analysis indicated that loss of either laminin-511 or α6 integrins inhibited the expression of CXCR4, a gene previously associated with angiogenic endothelial cells. Pharmacological or RNAi-dependent inhibition of CXCR4 suppressed endothelial sprouting and morphogenesis. Importantly, expression of recombinant CXCR4 rescued endothelial morphogenesis when α6 integrin expression was inhibited. Additionally, the depletion of α6 integrins from established tubes resulted in the loss of tube integrity and laminin-511. Taken together, our results indicate that α6 integrins and laminin-511 can promote endothelial morphogenesis by regulating the expression of CXCR4 and suggest that the α6-dependent deposition of laminin-511 protects the integrity of established endothelial tubes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| |
Collapse
|
48
|
Kyriazoglou A, Liontos M, Zakopoulou R, Kaparelou M, Tsiara A, Papatheodoridi AM, Georgakopoulou R, Zagouri F. The Role of the Hippo Pathway in Breast Cancer Carcinogenesis, Prognosis, and Treatment: A Systematic Review. Breast Care (Basel) 2020; 16:6-15. [PMID: 33716627 DOI: 10.1159/000507538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Hippo pathway is a developmental pathway recently discovered in Drosophila melanogaster; in mammals it normally controls organ development and wound healing. Hippo signaling is deregulated in breast cancer (BC). MST1/2 and LATS1/2 kinases are the upstream molecular elements of Hippo signaling which phosphorylate and regulate the two effectors of Hippo signaling, YAP1 and TAZ cotranscriptional activators. The two molecular effectors of the Hippo pathway facilitate their activity through TEAD transcription factors. Several molecular pathways with known oncogenic functions cross-talk with the Hippo pathway. Methods A systematic review studying the correlation of the Hippo pathway with BC tumorigenesis, prognosis, and treatment was performed. Results Recent literature highlights the critical role of Hippo signaling in a wide spectrum of biological mechanisms in BC. Discussion The Hippo pathway has a crucial position in BC molecular biology, cellular behavior, and response to treatment. Targeting the Hippo pathway could potentially improve the prognosis and outcome of BC patients.
Collapse
Affiliation(s)
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Maria Kaparelou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Anna Tsiara
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | | | | | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| |
Collapse
|
49
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
50
|
Bigoni-Ordóñez GD, Czarnowski D, Parsons T, Madlambayan GJ, Villa-Diaz LG. Integrin α6 (CD49f), The Microenvironment and Cancer Stem Cells. Curr Stem Cell Res Ther 2019; 14:428-436. [PMID: 30280675 DOI: 10.2174/1574888x13666181002151330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Gabriele D Bigoni-Ordóñez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Secretaria de Salud, Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, UNAM, Mexico City, Mexico
| | - Daniel Czarnowski
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Tyler Parsons
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| |
Collapse
|