1
|
Tefferi A, Fathima S, Alsugair AKA, Aperna F, Natu A, Abdelmagid MG, Csizmar CM, Gurney M, Lasho TL, Finke CM, Mangaonkar AA, Al-Kali A, Pardanani A, Reichard KK, He R, Gangat N, Patnaik MM. PHF6 mutations in chronic myelomonocytic leukemia identify a unique subset of patients with distinct phenotype and superior prognosis. Am J Hematol 2024; 99:2321-2327. [PMID: 39329442 DOI: 10.1002/ajh.27492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The current study was inspired by observations from exploratory analyses of an institutional cohort with chronic myelomonocytic leukemia (CMML; N = 398) that revealed no instances of blast transformation in the seven patients with plant homeodomain finger protein 6 (PHF6) mutation (PHF6MUT). A subsequent Mayo Clinic enterprise-wide database search identified 28 more cases with PHF6MUT. Compared with their wild-type PHF6 counterparts (PHF6WT; N = 391), PHF6MUT cases (N = 35) were more likely to co-express TET2 (89% vs. 45%; p < .01), RUNX1 (29% vs. 14%; p = .03), CBL (14% vs. 2%; p < .01), and U2AF1 (17% vs. 6%; p = .04) and less likely SRSF2 (23% vs. 45%; p < .01) mutation. They were also more likely to display loss of Y chromosome (LoY; 21% vs. 2%; p < .01) and platelets <100 × 109/L (83% vs. 51%; p < .01). Multivariable analysis identified PHF6MUT (HR 0.28, 95% CI 0.15-0.50) and DNMT3AMUT (HR 5.8, 95% CI 3.3-10.5) as the strongest molecular predictors of overall survival. The same was true for blast transformation-free survival with corresponding HR (95% CI) of 0.08 (0.01-0.6) and 9.5 (3.8-23.5). At median 20 months follow-up, blast transformation was documented in none of the 33 patients with PHF6MUT/DNMT3AWT but in 6 (32%) of 19 with DNMT3AMUT and 74 (20%) of 374 with PHF6WT/DNMT3AWT (p < .01). The specific molecular signatures sustained their significant predictive performance in the context of the CMML-specific molecular prognostic model (CPSS-mol). PHF6MUT identifies a unique subset of patients with CMML characterized by thrombocytopenia, higher prevalence of LoY, and superior prognosis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Saubia Fathima
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Fnu Aperna
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anuya Natu
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Mark Gurney
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terra L Lasho
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christy M Finke
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kaaren K Reichard
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rong He
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
2
|
McRae HM, Leong MPY, Bergamasco MI, Garnham AL, Hu Y, Corbett MA, Whitehead L, El-Saafin F, Sheikh BN, Wilcox S, Hannan AJ, Gécz J, Smyth GK, Thomas T, Voss AK. Loss of PHF6 causes spontaneous seizures, enlarged brain ventricles and altered transcription in the cortex of a mouse model of the Börjeson-Forssman-Lehmann intellectual disability syndrome. PLoS Genet 2024; 20:e1011428. [PMID: 39405291 PMCID: PMC11478892 DOI: 10.1371/journal.pgen.1011428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here, we show that PHF6 protein levels are greatly reduced in cells derived from a subset of patients with BFLS. We report the phenotypic, anatomical, cellular and molecular characterization of the brain in males and females in two mouse models of BFLS, namely loss of Phf6 in the germline and nervous system-specific deletion of Phf6. We show that loss of PHF6 resulted in spontaneous seizures occurring via a neural intrinsic mechanism. Histological and morphological analysis revealed a significant enlargement of the lateral ventricles in adult Phf6-deficient mice, while other brain structures and cortical lamination were normal. Phf6 deficient neural precursor cells showed a reduced capacity for self-renewal and increased differentiation into neurons. Phf6 deficient cortical neurons commenced spontaneous neuronal activity prematurely suggesting precocious neuronal maturation. We show that loss of PHF6 in the foetal cortex and isolated cortical neurons predominantly caused upregulation of genes, including Reln, Nr4a2, Slc12a5, Phip and ZIC family transcription factor genes, involved in neural development and function, providing insight into the molecular effects of loss of PHF6 in the developing brain.
Collapse
Affiliation(s)
- Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody P. Y. Leong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Maria I. Bergamasco
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L. Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Hu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Mark A. Corbett
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Farrah El-Saafin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bilal N. Sheikh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Jozef Gécz
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Jalnapurkar SS, Pawar AS, George SS, Antony C, Somers P, Grana J, Feist VK, Gurbuxani S, Paralkar VR. PHF6 suppresses self-renewal of leukemic stem cells in AML. Leukemia 2024; 38:1938-1948. [PMID: 39004675 PMCID: PMC11347380 DOI: 10.1038/s41375-024-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors accompanied by a differentiation arrest. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its isolated loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the "LIC-e" (leukemia initiating cells enriched) population. We find that Phf6 loss expands the LIC-e population and skews its transcriptome to a more stem-like state; concordant transcriptome shifts are also observed on PHF6 knockout in a human AML cell line and in PHF6 mutant patient samples from the BEAT AML dataset. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.
Collapse
Affiliation(s)
- Sapana S Jalnapurkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aishwarya S Pawar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biomedical Graduate Studies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles Antony
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patrick Somers
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason Grana
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Victoria K Feist
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Mittal P, Myers JA, Carter RD, Radko-Juettner S, Malone HA, Rosikiewicz W, Robertson AN, Zhu Z, Narayanan IV, Hansen BS, Parrish M, Bhanu NV, Mobley RJ, Rehg JE, Xu B, Drosos Y, Pruett-Miller SM, Ljungman M, Garcia BA, Wu G, Partridge JF, Roberts CWM. PHF6 cooperates with SWI/SNF complexes to facilitate transcriptional progression. Nat Commun 2024; 15:7303. [PMID: 39181868 PMCID: PMC11344777 DOI: 10.1038/s41467-024-51566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Genes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are mutated in nearly 25% of cancers. To gain insight into the mechanisms by which SWI/SNF mutations drive cancer, we contributed ten rhabdoid tumor (RT) cell lines mutant for SWI/SNF subunit SMARCB1 to a genome-scale CRISPR-Cas9 depletion screen performed across 896 cell lines. We identify PHF6 as specifically essential for RT cell survival and demonstrate that dependency on Phf6 extends to Smarcb1-deficient cancers in vivo. As mutations in either SWI/SNF or PHF6 can cause the neurodevelopmental disorder Coffin-Siris syndrome, our findings of a dependency suggest a previously unrecognized functional link. We demonstrate that PHF6 co-localizes with SWI/SNF complexes at promoters, where it is essential for maintenance of an active chromatin state. We show that in the absence of SMARCB1, PHF6 loss disrupts the recruitment and stability of residual SWI/SNF complex members, collectively resulting in the loss of active chromatin at promoters and stalling of RNA Polymerase II progression. Our work establishes a mechanistic basis for the shared syndromic features of SWI/SNF and PHF6 mutations in CSS and the basis for selective dependency on PHF6 in SMARCB1-mutant cancers.
Collapse
Affiliation(s)
- Priya Mittal
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacquelyn A Myers
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raymond D Carter
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sandi Radko-Juettner
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexis N Robertson
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhexin Zhu
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ishwarya V Narayanan
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meadow Parrish
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Mobley
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiannis Drosos
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Mofunanya A, Cameron ER, Braun CJ, Celeste F, Zhao X, Hemann MT, Scott KL, Li J, Powers S. Simultaneous screening of overexpressed genes in breast cancer for oncogenic drivers and tumor dependencies. Sci Rep 2024; 14:13227. [PMID: 38851782 PMCID: PMC11162420 DOI: 10.1038/s41598-024-64297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving β-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Adaobi Mofunanya
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Eleanor R Cameron
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christian J Braun
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Frank Celeste
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xiaoyu Zhao
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA.
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA.
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Yuan S, Gao M, Wang Y, Lan Y, Li M, Du Y, Li Y, Ju W, Huang Y, Yuan K, Zeng L. PHF6 loss reduces leukemia stem cell activity in an acute myeloid leukemia mouse model. Cancer Cell Int 2024; 24:66. [PMID: 38336746 PMCID: PMC10858464 DOI: 10.1186/s12935-024-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.
Collapse
Affiliation(s)
- Shengnan Yuan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingming Gao
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Wang
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yanjie Lan
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Mengrou Li
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Jalnapurkar SS, Pawar A, George SS, Antony C, Grana J, Gurbuxani S, Paralkar VR. PHF6 suppresses self-renewal of leukemic stem cells in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.573649. [PMID: 38260439 PMCID: PMC10802281 DOI: 10.1101/2024.01.06.573649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the 'LIC-e' (leukemia initiating cells enriched) population. We find that Phf6 loss has context-specific transcriptional effects, skewing the LIC-e transcriptome to a more stem-like state. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Overall, our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.
Collapse
Affiliation(s)
- Sapana S Jalnapurkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aishwarya Pawar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biomedical Graduate Studies, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason Grana
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Pinton A, Courtois L, Doublet C, Cabannes-Hamy A, Andrieu G, Smith C, Balducci E, Cieslak A, Touzart A, Simonin M, Lhéritier V, Huguet F, Balsat M, Dombret H, Rousselot P, Spicuglia S, Macintyre E, Boissel N, Asnafi V. PHF6-altered T-ALL Harbor Epigenetic Repressive Switch at Bivalent Promoters and Respond to 5-Azacitidine and Venetoclax. Clin Cancer Res 2024; 30:94-105. [PMID: 37889114 DOI: 10.1158/1078-0432.ccr-23-2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.
Collapse
Affiliation(s)
- Antoine Pinton
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Lucien Courtois
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | | | | | - Guillaume Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Charlotte Smith
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Estelle Balducci
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Agata Cieslak
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Aurore Touzart
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Mathieu Simonin
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Véronique Lhéritier
- Coordination du Groupe Group for Research in Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Françoise Huguet
- Service d'Hématologie, CHU de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Marie Balsat
- Service d'Hématologie Clinique, Hôpital Lyon Sud, Lyon, France
| | - Hervé Dombret
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Versailles, France
- Université Versailles Saint Quentin en Yvelines Paris Saclay, INSERM U1184, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Elizabeth Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Nicolas Boissel
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| |
Collapse
|
9
|
Ramos A, Koch CE, Liu-Lupo Y, Hellinger RD, Kyung T, Abbott KL, Fröse J, Goulet D, Gordon KS, Eidell KP, Leclerc P, Whittaker CA, Larson RC, Muscato AJ, Yates KB, Dubrot J, Doench JG, Regev A, Vander Heiden MG, Maus MV, Manguso RT, Birnbaum ME, Hemann MT. Leukemia-intrinsic determinants of CAR-T response revealed by iterative in vivo genome-wide CRISPR screening. Nat Commun 2023; 14:8048. [PMID: 38052854 PMCID: PMC10698189 DOI: 10.1038/s41467-023-43790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.
Collapse
Affiliation(s)
- Azucena Ramos
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu-Lupo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riley D Hellinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Fröse
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Goulet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith P Eidell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Leclerc
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Immunology Program, Harvard Medical School, Boston, MA, USA
| | - Audrey J Muscato
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Kathleen B Yates
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Juan Dubrot
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Solid Tumors Program, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Immunology Program, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA, USA
| | - Robert T Manguso
- Immunology Program, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S, Zhao F, Fang A, Liu N, Yang W, Chu Y, Jiang E, Cheng T, Sun X, Yuan W. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway. Leukemia 2023; 37:1626-1637. [PMID: 37393343 PMCID: PMC10400421 DOI: 10.1038/s41375-023-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.
Collapse
Affiliation(s)
- Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100039, China.
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Na Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
11
|
Lan Y, Yuan S, Guo T, Hou S, Zhao F, Yang W, Cao Y, Chu Y, Jiang E, Yuan W, Wang X. R274X-mutated Phf6 increased the self-renewal and skewed T cell differentiation of hematopoietic stem cells. iScience 2023; 26:106817. [PMID: 37288345 PMCID: PMC10241978 DOI: 10.1016/j.isci.2023.106817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
The PHD finger protein 6 (PHF6) mutations frequently occurred in hematopoietic malignancies. Although the R274X mutation in PHF6 (PHF6R274X) is one of the most common mutations identified in T cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) patients, the specific role of PHF6R274X in hematopoiesis remains unexplored. Here, we engineered a knock-in mouse line with conditional expression of Phf6R274X-mutated protein in the hematopoietic system (Phf6R274X mouse). The Phf6R274X mice displayed an enlargement of hematopoietic stem cells (HSCs) compartment and increased proportion of T cells in bone marrow. More Phf6R274X T cells were in activated status than control. Moreover, Phf6R274X mutation led to enhanced self-renewal and biased T cells differentiation of HSCs as assessed by competitive transplantation assays. RNA-sequencing analysis confirmed that Phf6R274X mutation altered the expression of key genes involved in HSC self-renewal and T cell activation. Our study demonstrated that Phf6R274X plays a critical role in fine-tuning T cells and HSC homeostasis.
Collapse
Affiliation(s)
- Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
12
|
Wang X, Fang A, Peng Y, Yu J, Yu C, Xie J, Zheng Y, Song L, Li P, Li J, Kang X, Lin Y, Li W. PHF6 promotes the progression of endometrial carcinoma by increasing cancer cells growth and decreasing T-cell infiltration. J Cell Mol Med 2023; 27:609-621. [PMID: 36756714 PMCID: PMC9983320 DOI: 10.1111/jcmm.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC-1-A and KLE cell proliferation in vitro and decreased HEC-1-A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T-cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T-cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.
Collapse
Affiliation(s)
- Xiaomin Wang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianyu Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chunna Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinxuan Xie
- Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yi Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xun Kang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yi Lin
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Eisa YA, Guo Y, Yang FC. The Role of PHF6 in Hematopoiesis and Hematologic Malignancies. Stem Cell Rev Rep 2023; 19:67-75. [PMID: 36008597 DOI: 10.1007/s12015-022-10447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/29/2023]
Abstract
Epigenetic regulation of gene expression represents an important mechanism in the maintenance of stem cell function. Alterations in epigenetic regulation contribute to the pathogenesis of hematological malignancies. Plant homeodomain finger protein 6 (PHF6) is a member of the plant homeodomain (PHD)-like zinc finger family of proteins that is involved in transcriptional regulation through the modification of the chromatin state. Germline mutation of PHF6 is the causative genetic alteration of the X-linked mental retardation Borjeson-Forssman-Lehmann syndrome (BFLS). Somatic mutations in PHF6 are identified in human leukemia, such as adult T-cell acute lymphoblastic leukemia (T-ALL, ~ 38%), pediatric T-ALL (~ 16%), acute myeloid leukemia (AML, ~ 3%), chronic myeloid leukemia (CML, ~ 2.5%), mixed phenotype acute leukemia (MPAL, ~ 20%), and high-grade B-cell lymphoma (HGBCL, ~ 3%). More recent studies imply an oncogenic effect of PHF6 in B-cell acute lymphoblastic leukemia (B-ALL) and solid tumors. These data demonstrate that PHF6 could act as a double-edged sword, either a tumor suppressor or an oncogene, in a lineage-dependent manner. However, the underlying mechanisms of PHF6 in normal hematopoiesis and leukemogenesis remain largely unknown. In this review, we summarize current knowledge of PHF6, emphasizing the role of PHF6 in hematological malignancies. Epigenetic regulation of PHF6 in B-ALL. PHF6 maintains a chromatin structure that is permissive to B-cell identity genes, but not T-cell-specific genes (left). Loss of PHF6 leads to aberrant expression of B-cell- and T-cell-specific genes resulting from lineage promiscuity and binding of T-cell transcription factors (right).
Collapse
Affiliation(s)
- Yusra A Eisa
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ying Guo
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
14
|
Huang K, Wang L, Zheng Y, Yue C, Xu X, Chen H, Huang R, Li Y. PHF6 mutation is associated with poor outcome in acute myeloid leukaemia. Cancer Med 2022; 12:2795-2804. [PMID: 36176187 PMCID: PMC9939093 DOI: 10.1002/cam4.5173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Mutation of plant homeodomain finger protein 6 (PHF6) occurs in approximately 3% of acute myeloid leukaemia (AML) cases. Although it was reported to be associated with poor prognosis, it was not confirmed by other groups. Recently, propensity score matching has provided an effective way to minimise bias by creating two groups that are well balanced with respect to baseline characteristics, providing more convincing results, which has an advantage, especially for rare subtype studies. To provide further evidence on the role of PHF6 mutation, we performed a retrospective propensity score-matched cohort study to assess the therapeutic responses and survival outcomes of AML patients with PHF6 mutation compared with those without PHF6 mutation after balancing age, sex and risk categories. PATIENTS AND METHODS A total of 22 patients with PHF6 mutation from 801 consecutive newly diagnosed AML cases in our center were identified, and 43 patients with the PHF6 wild-type genotype were successfully matched at a 1:2 ratio. RESULTS AML harbouring PHF6 mutation was associated with a lower complete remission (CR) rate (41% vs. 69%; OR = 3.64, 95% CI 1.10, 12.10; p = 0.035) and shorter median overall survival (OS) (6.0 vs. 39.0 months; p < 0.001) and event-free survival (EFS) (2.0 vs. 11.0 months; p = 0.013) compared with PHF6 wild-type patients. Further multivariate analysis supported that PHF6 mutation was an independent risk factor for overall survival in AML (HR = 8.910, 95% CI 3.51, 22.63; p < 0.001). In addition, allogeneic haematopoietic stem cell transplantation (allo-HSCT) seemed to ameliorate the poor prognosis of AML with PHF6 mutation in this study. CONCLUSION Our data revealed that PHF6 mutation was associated with a lower chemotherapy response and shorter survival, suggesting that PHF6 mutation is a predictor of poor prognosis in AML.
Collapse
Affiliation(s)
- Kexiu Huang
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| | - Lei Wang
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| | - Yaling Zheng
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| | - Chunyan Yue
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| | - Xuedan Xu
- Department of HaematologyJiangmen Central HospitalJiangMenP.R. China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenP.R. China
| | - Rui Huang
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| | - Yuhua Li
- Department of HaematologyZhujiang Hospital of Southern Medical UniversityGuangzhouP.R. China
| |
Collapse
|
15
|
Wei Y, Huang YH, Skopelitis DS, Iyer SV, Costa AS, Yang Z, Kramer M, Adelman ER, Klingbeil O, Demerdash OE, Polyanskaya SA, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Vakoc CR. SLC5A3-Dependent Myo-inositol Auxotrophy in Acute Myeloid Leukemia. Cancer Discov 2022; 12:450-467. [PMID: 34531253 PMCID: PMC8831445 DOI: 10.1158/2159-8290.cd-20-1849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Abstract
An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate-limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme. SIGNIFICANCE: We show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically defined subset of AML.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V. Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Stony Brook University, Stony Brook, New York
| | - Ana S.H. Costa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emmalee R. Adelman
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Sofya A. Polyanskaya
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Christopher R. Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Corresponding Author: Christopher R. Vakoc, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724. Phone: 516-367-5030; E-mail:
| |
Collapse
|
16
|
Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana D, Nulsen J, Goldman J, Pollitt M, Davis P, Strange A, Ambrose K, Ciccarelli FD. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol 2022; 23:35. [PMID: 35078504 PMCID: PMC8790917 DOI: 10.1186/s13059-022-02607-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. Results Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. Conclusions Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02607-z.
Collapse
|
17
|
Emergence of clone with PHF6 nonsense mutation in chronic myelomonocytic leukemia at relapse after allogeneic HCT. Int J Hematol 2022; 115:748-752. [PMID: 34988909 DOI: 10.1007/s12185-021-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Disease relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (HCT) and the mechanisms of relapse remain unclear. We encountered a 58-year-old man with chronic myelomonocytic leukemia (CMML) that relapsed after haploidentical HCT from his daughter. Peripheral blood samples collected at HCT and at relapse were analyzed, and CD14+/CD16- monocytes that typically accumulate in CMML were isolated by flow cytometry. Whole-exome sequencing of the monocytes revealed 8 common mutations in CMML at HCT. In addition, a PHF6 nonsense mutation not detected at HCT was detected at relapse. RNA sequencing could not detect changes in expression of HLA or immune-checkpoint molecules, which are important mechanisms of immune evasion. However, gene set enrichment analysis (GSEA) revealed that a TNF-α signaling pathway was downregulated at relapse. Ubiquitination of histone H2B at lysine residue 120 (H2BK120ub) at relapse was significantly decreased at the protein level, indicating that PHF6 loss might downregulate a TNF-α signaling pathway by reduction of H2BK120ub. This case illustrates that PHF6 loss contributes to a competitive advantage for the clone under stress conditions and leads to relapse after HCT.
Collapse
|
18
|
Huang X, Zhang X, Zong L, Gao Q, Zhang C, Wei R, Guan Y, Huang L, Zhang L, Lyu G, Tao W. Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3. J Biol Chem 2021; 297:101195. [PMID: 34520760 PMCID: PMC8511956 DOI: 10.1016/j.jbc.2021.101195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.
Collapse
Affiliation(s)
- Xiaoke Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xuebin Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Le Zong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qianqian Gao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ran Wei
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yiting Guan
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Li Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Lijun Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
19
|
Kurzer JH, Weinberg OK. PHF6 Mutations in Hematologic Malignancies. Front Oncol 2021; 11:704471. [PMID: 34381727 PMCID: PMC8350393 DOI: 10.3389/fonc.2021.704471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Next generation sequencing has uncovered several genes with associated mutations in hematologic malignancies that can serve as potential biomarkers of disease. Keeping abreast of these genes is therefore of paramount importance in the field of hematology. This review focuses on PHF6, a highly conserved epigenetic transcriptional regulator that is important for neurodevelopment and hematopoiesis. PHF6 serves as a tumor suppressor protein, with PHF6 mutations and deletions often implicated in the development of T-lymphoblastic leukemia and less frequently in acute myeloid leukemia and other myeloid neoplasms. PHF6 inactivation appears to be an early event in T-lymphoblastic leukemogenesis, requiring cooperating events, including NOTCH1 mutations or overexpression of TLX1 and TLX3 for full disease development. In contrast, PHF6 mutations tend to occur later in myeloid malignancies, are frequently accompanied by RUNX1 mutations, and are often associated with disease progression. Moreover, PHF6 appears to play a role in lineage plasticity within hematopoietic malignancies, with PHF6 mutations commonly present in mixed phenotype acute leukemias with a predilection for T-lineage marker expression. Due to conflicting data, the prognostic significance of PHF6 mutations remains unclear, with a subset of studies showing no significant difference in outcomes compared to malignancies with wild-type PHF6, and other studies showing inferior outcomes in certain patients with mutated PHF6. Future studies are necessary to elucidate the role PHF6 plays in development of T-lymphoblastic leukemia, progression of myeloid malignancies, and its overall prognostic significance in hematopoietic neoplasms.
Collapse
Affiliation(s)
- Jason H. Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Olga K. Weinberg
- Department of Pathology, UT Southwestern, Dallas, TX, United States
| |
Collapse
|
20
|
Kiefer KC, Cremer S, Pardali E, Assmus B, Abou-El-Ardat K, Kirschbaum K, Dorsheimer L, Rasper T, Berkowitsch A, Serve H, Dimmeler S, Zeiher AM, Rieger MA. Full spectrum of clonal haematopoiesis-driver mutations in chronic heart failure and their associations with mortality. ESC Heart Fail 2021; 8:1873-1884. [PMID: 33779075 PMCID: PMC8120376 DOI: 10.1002/ehf2.13297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Aims Somatic mutations in haematopoietic stem cells can lead to the clonal expansion of mutated blood cells, known as clonal haematopoiesis (CH). Mutations in the most prevalent driver genes DNMT3A and TET2 with a variant allele frequency (VAF) ≥ 2% have been associated with atherosclerosis and chronic heart failure of ischemic origin (CHF). However, the effects of mutations in other driver genes for CH with low VAF (<2%) on CHF are still unknown. Methods and results Therefore, we analysed mononuclear bone marrow and blood cells from 399 CHF patients by deep error‐corrected targeted sequencing of 56 genes and associated mutations with the long‐term mortality in these patients (3.95 years median follow‐up). We detected 1113 mutations with a VAF ≥ 0.5% in 347 of 399 patients, and only 13% had no detectable CH. Despite a high prevalence of mutations in the most frequently mutated genes DNMT3A (165 patients) and TET2 (107 patients), mutations in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2 were associated with increased death compared with the average death rate of all patients. To avoid confounding effects, we excluded patients with DNMT3A‐related, TET2‐related, and other clonal haematopoiesis of indeterminate potential (CHIP)‐related mutations with a VAF ≥ 2% for further analyses. Kaplan–Meier survival analyses revealed a significantly higher mortality in patients with mutations in either of the seven genes (53 patients), combined as the CH‐risk gene set for CHF. Baseline patient characteristics showed no significant differences in any parameter including patient age, confounding diseases, severity of CHF, or blood cell parameters except for a reduced number of platelets in patients with mutations in the risk gene set in comparison with patients without. However, carrying a mutation in any of the risk genes remained significant after multivariate cox regression analysis (hazard ratio, 3.1; 95% confidence interval, 1.8–5.4; P < 0.001), whereas platelet numbers did not. Conclusions Somatic mutations with low VAF in a distinct set of genes, namely, in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2, are significantly associated with mortality in CHF, independently of the most prevalent CHIP‐mutations in DNMT3A and TET2. Mutations in these genes are prevalent in young CHF patients and comprise an independent risk factor for the outcome of CHF, potentially providing a novel tool for risk assessment in CHF.
Collapse
Affiliation(s)
- Katharina C Kiefer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Sebastian Cremer
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Evangelia Pardali
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Birgit Assmus
- Department of Medicine, Cardiology, Giessen University Hospital, Giessen, Germany
| | - Khalil Abou-El-Ardat
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | | | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Andreas M Zeiher
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
21
|
Plant homeodomain finger protein 6 in the regulation of normal and malignant hematopoiesis. Curr Opin Hematol 2021; 27:248-253. [PMID: 32398456 DOI: 10.1097/moh.0000000000000588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Even though an increasing amount of sequencing data on the leukemia genome has highlighted a tumor-suppressive function for plant homeodomain finger protein 6 (PHF6), its role in the hematopoietic system remained elusive until recently. The purpose of this review is to describe the role of PHF6 in normal hematopoiesis and leukemogenesis based on recent findings from knockout mouse models. RECENT FINDINGS In a mouse model, the loss of Phf6 enhanced the bone marrow repopulating capacity of hematopoietic stem cells (HSCs) during serial transplantations without transforming hematopoietic cells, whereas donor mice, which lacked Phf6 expression in the hematopoietic system, did not show any apparent phenotypes in the steady-state. Mechanistically, Phf6 activates effectors in the tumor necrosis factor α (Tnfα) pathway. Therefore, a Phf6 deficiency attenuates the expression of the effectors and confers resistance against Tnfα-mediated growth inhibition to HSCs. Moreover, the loss of Phf6 promoted the development of leukemia induced by aberrant TLX3 expression or an active NOTCH mutation. SUMMARY Phf6 restricts the self-renewal of HSCs by governing the Tnfα pathway. Phf6 fulfills a tumor-suppressive function, and its loss synergizes with leukemic lesions to promote the onset of hematological malignancies.
Collapse
|
22
|
Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers (Basel) 2020; 12:cancers12123695. [PMID: 33317042 PMCID: PMC7763270 DOI: 10.3390/cancers12123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) are a recently discovered class of molecules in the cell, with potential to be utilized as therapeutic targets in cancer. A number of lncRNAs have been described to play important roles in tumor progression and drive molecular processes involved in cell proliferation, apoptosis or invasion. However, the vast majority of lncRNAs have not been studied in the context of cancer thus far. With the advent of CRISPR/Cas genome editing, high-throughput functional screening approaches to identify lncRNAs that impact cancer growth are becoming more accessible. Here, we review currently available methods to study hundreds to thousands of lncRNAs in parallel to elucidate their role in tumorigenesis and cancer progression. Abstract Recent technological advancements such as CRISPR/Cas-based systems enable multiplexed, high-throughput screening for new therapeutic targets in cancer. While numerous functional screens have been performed on protein-coding genes to date, long non-coding RNAs (lncRNAs) represent an emerging class of potential oncogenes and tumor suppressors, with only a handful of large-scale screens performed thus far. Here, we review in detail currently available screening approaches to identify new lncRNA drivers of tumorigenesis and tumor progression. We discuss the various approaches of genomic and transcriptional targeting using CRISPR/Cas9, as well as methods to post-transcriptionally target lncRNAs via RNA interference (RNAi), antisense oligonucleotides (ASOs) and CRISPR/Cas13. We discuss potential advantages, caveats and future applications of each method to provide an overview and guide on investigating lncRNAs as new therapeutic targets in cancer.
Collapse
|
23
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
24
|
Loontiens S, Vanhauwaert S, Depestel L, Dewyn G, Van Loocke W, Moore FE, Garcia EG, Batchelor L, Borga C, Squiban B, Malone-Perez M, Volders PJ, Olexiouk V, Van Vlierberghe P, Langenau DM, Frazer JK, Durinck K, Speleman F. A novel TLX1-driven T-ALL zebrafish model: comparative genomic analysis with other leukemia models. Leukemia 2020; 34:3398-3403. [PMID: 32591643 PMCID: PMC7906429 DOI: 10.1038/s41375-020-0938-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Suzanne Vanhauwaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Finola E Moore
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Stem Cell Institute, Boston, MA, 02114, USA
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elaine G Garcia
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Stem Cell Institute, Boston, MA, 02114, USA
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lance Batchelor
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chiara Borga
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Barbara Squiban
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Megan Malone-Perez
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Volodimir Olexiouk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - David M Langenau
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Stem Cell Institute, Boston, MA, 02114, USA
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J Kimble Frazer
- Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
25
|
Loontiens S, Dolens AC, Strubbe S, Van de Walle I, Moore FE, Depestel L, Vanhauwaert S, Matthijssens F, Langenau DM, Speleman F, Van Vlierberghe P, Durinck K, Taghon T. PHF6 Expression Levels Impact Human Hematopoietic Stem Cell Differentiation. Front Cell Dev Biol 2020; 8:599472. [PMID: 33251223 PMCID: PMC7672048 DOI: 10.3389/fcell.2020.599472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
Transcriptional control of hematopoiesis involves complex regulatory networks and functional perturbations in one of these components often results in malignancies. Loss-of-function mutations in PHF6, encoding a presumed epigenetic regulator, have been primarily described in T cell acute lymphoblastic leukemia (T-ALL) and the first insights into its function in normal hematopoiesis only recently emerged from mouse modeling experiments. Here, we investigated the role of PHF6 in human blood cell development by performing knockdown studies in cord blood and thymus-derived hematopoietic precursors to evaluate the impact on lineage differentiation in well-established in vitro models. Our findings reveal that PHF6 levels differentially impact the differentiation of human hematopoietic progenitor cells into various blood cell lineages, with prominent effects on lymphoid and erythroid differentiation. We show that loss of PHF6 results in accelerated human T cell development through reduced expression of NOTCH1 and its downstream target genes. This functional interaction in developing thymocytes was confirmed in vivo using a phf6-deficient zebrafish model that also displayed accelerated developmental kinetics upon reduced phf6 or notch1 activation. In summary, our work reveals that appropriate control of PHF6 expression is important for normal human hematopoiesis and provides clues towards the role of PHF6 in T-ALL development.
Collapse
Affiliation(s)
- Siebe Loontiens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Finola E. Moore
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, United States
| | - Lisa Depestel
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Filip Matthijssens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - David M. Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Frank Speleman
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Oh S, Boo K, Kim J, Baek SA, Jeon Y, You J, Lee H, Choi HJ, Park D, Lee JM, Baek SH. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res 2020; 48:9037-9052. [PMID: 32735658 PMCID: PMC7498345 DOI: 10.1093/nar/gkaa626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.
Collapse
Affiliation(s)
- Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyungjin Boo
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaebeom Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seon Ah Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Junghyun You
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, South Korea
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
27
|
Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Adv 2020; 3:2355-2367. [PMID: 31395598 DOI: 10.1182/bloodadvances.2019000391] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Plant homeodomain finger gene 6 (PHF6) encodes a 365-amino-acid protein containing 2 plant homology domain fingers. Germline mutations of human PHF6 cause Börjeson-Forssman-Lehmann syndrome, a congenital neurodevelopmental disorder. Loss-of-function mutations of PHF6 are detected in patients with acute leukemia, mainly of T-cell lineage and in a small proportion of myeloid lineage. The functions of PHF6 in physiological hematopoiesis and leukemogenesis remain incompletely defined. To address this question, we generated a conditional Phf6 knockout mouse model and investigated the impact of Phf6 loss on the hematopoietic system. We found that Phf6 knockout mice at 8 weeks of age had reduced numbers of CD4+ and CD8+ T cells in the peripheral blood compared with the wild-type littermates. There were decreased granulocyte-monocytic progenitors but increased Lin-c-Kit+Sca-1+ cells in the marrow of young Phf6 knockout mice. Functional studies, including competitive repopulation unit and serial transplantation assays, revealed an enhanced reconstitution and self-renewal capacity in Phf6 knockout hematopoietic stem cells (HSCs). Aged Phf6 knockout mice had myelodysplasia-like presentations, including decreased platelet counts, megakaryocyte dysplasia, and enlarged spleen related to extramedullary hematopoiesis. Moreover, we found that Phf6 loss lowered the threshold of NOTCH1-induced leukemic transformation at least partially through increased leukemia-initiating cells. Transcriptome analysis on the restrictive rare HSC subpopulations revealed upregulated cell cycling and oncogenic functions, with alteration of key gene expression in those pathways. In summary, our studies show the in vivo crucial roles of Phf6 in physiological and malignant hematopoiesis.
Collapse
|
28
|
Mucignat-Caretta C, Caretta A. Protein Kinase A Catalytic and Regulatory Subunits Interact Differently in Various Areas of Mouse Brain. Int J Mol Sci 2020; 21:ijms21093051. [PMID: 32357495 PMCID: PMC7246855 DOI: 10.3390/ijms21093051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Protein kinase A (PKA) are tetramers of two catalytic and two regulatory subunits, docked at precise intracellular sites to provide localized phosphorylating activity, triggered by cAMP binding to regulatory subunits and subsequent dissociation of catalytic subunits. It is unclear whether in the brain PKA dissociated subunits may also be found. PKA catalytic subunit was examined in various mouse brain areas using immunofluorescence, equilibrium binding and western blot, to reveal its location in comparison to regulatory subunits type RI and RII. In the cerebral cortex, catalytic subunits colocalized with clusters of RI, yet not all RI clusters were bound to catalytic subunits. In stria terminalis, catalytic subunits were in proximity to RI but separated from them. Catalytic subunits clusters were also present in the corpus striatum, where RII clusters were detected, whereas RI clusters were absent. Upon cAMP addition, the distribution of regulatory subunits did not change, while catalytic subunits were completely released from regulatory subunits. Unpredictably, catalytic subunits were not solubilized; instead, they re-targeted to other binding sites within the tissue, suggesting local macromolecular reorganization. Hence, the interactions between catalytic and regulatory subunits of protein kinase A consistently vary in different brain areas, supporting the idea of multiple interaction patterns.
Collapse
Affiliation(s)
- Carla Mucignat-Caretta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
- Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Correspondence:
| | - Antonio Caretta
- Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Food and Drug, University of Parma, 43100 Parma, Italy
| |
Collapse
|
29
|
Aypar U, Taylor J, Garcia JS, Momeni-Boroujeni A, Gao Q, Baik J, Londono D, Benayed R, Sigler A, Haddadin M, Penson AV, Arcila ME, Mullaney K, Sukhadia P, Quesada AE, Roshal M, Cullen N, Lako A, Rodig SJ, Goldberg AD, Zhang Y, Xiao W, Ho C. P2RY8-CRLF2Fusion-Positive Acute Myeloid Leukemia With Myelodysplasia-Related Changes: Response to Novel Therapy. JCO Precis Oncol 2020; 4:152-160. [PMID: 32395681 PMCID: PMC7213523 DOI: 10.1200/po.19.00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Umut Aypar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Taylor
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Qi Gao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeeyeon Baik
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dory Londono
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allison Sigler
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Haddadin
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander V. Penson
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kerry Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Purvil Sukhadia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andres E. Quesada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicole Cullen
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Ana Lako
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Aaron D. Goldberg
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
30
|
Yu Q, Zhou J, Jian Y, Xiu Z, Xiang L, Yang D, Zeng W. MicroRNA-214 suppresses cell proliferation and migration and cell metabolism by targeting PDK2 and PHF6 in hepatocellular carcinoma. Cell Biol Int 2020; 44:117-126. [PMID: 31329335 DOI: 10.1002/cbin.11207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 01/24/2023]
Abstract
MiR-214 has been reported to act as a tumor suppressor or oncogene involved in various malignancies. However, the biological functions and molecular mechanisms of miR-214 in hepatocellular carcinoma (HCC) still remain unclear. Previous studies suggest that pyruvate dehydrogenase kinase 2 (PDK2) and plant homeodomain finger protein 6 (PHF6) may be involved in some tumor cell proliferation and migration. Therefore, we studied the relationship between PDK2/PHF6 and miR-214. The expression of miR-214, PDK2, and PHF6 was determined by quantitative real-time polymerase chain reaction in HCC tissues and cell lines. The Luciferase reporter assay was used to confirm the interaction between miR-214 and PDK2/PHF6. Cell proliferation, apoptosis, and migration were evaluated by cell counting kit-8 assay, flow cytometry, and transwell assay, respectively. The expressions levels of α-smooth muscle actin (α-SMA) and E-cadherin were detected via immunofluorescence assay. Here, we found that the expression of miR-214 decreased in HCC and was negatively correlated with PDK2 and PHF6. Moreover, PDK2 and PHF6 were the direct targets of miR-214 in HCC cells. Functional analysis showed that knockdown of PDK2 or PHF6 as well as miR-214 overexpression significantly suppressed cell proliferation and migration in HCC cells. Furthermore, we found that the suppression of cell proliferation and migration through PDK2 or PHF6 knockdown could be partially reversed by miR-214 down-regulation. Moreover, we demonstrated a decrease of mesenchymal cell marker α-SMA and increase of the epithelial marker E-cadherin after miR-214 overexpression, PDK2 knockdown or PHF6 knockdown, respectively, which also suggested that cell proliferation and migration were suppressed. Additionally, lactate and pyruvic acid production experiments confirmed miR-214 could suppress the HCC cell lactate and pyruvic acid levels by down-regulating PDK2/PHF6. In conclusion, MiR-214 may act as a tumor suppressor gene, presenting its suppressive role in cell proliferation and migration of HCC cells by targeting PDK2 and PHF6, and might provide a potential therapy target for patients with HCC.
Collapse
Affiliation(s)
- Qiangfeng Yu
- Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Fujian, 364000, China.,Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, 510080, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Yizeng Jian
- Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Fujian, 364000, China
| | - Zhe Xiu
- Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Fujian, 364000, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, 510080, China
| | - Wenlong Zeng
- Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Fujian, 364000, China
| |
Collapse
|
31
|
|
32
|
Milan T, Canaj H, Villeneuve C, Ghosh A, Barabé F, Cellot S, Wilhelm BT. Pediatric leukemia: Moving toward more accurate models. Exp Hematol 2019; 74:1-12. [PMID: 31154068 DOI: 10.1016/j.exphem.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Differentiation
- Child
- Child, Preschool
- Female
- Heterografts
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Male
- Mice
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Translocation, Genetic
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Hera Canaj
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Chloe Villeneuve
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Aditi Ghosh
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec, Quebec City, QC, Canada; CHU de Québec Hôpital Enfant-Jésus, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
33
|
|
34
|
The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood 2019; 133:2495-2506. [PMID: 30917958 DOI: 10.1182/blood.2019000468] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at various developmental stages. The Phf6 deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The Phf6 deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating PHF6 mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6 deficiency alone is not sufficient to induce hematopoietic transformation.
Collapse
|
35
|
Yu Q, Yin L, Jian Y, Li P, Zeng W, Zhou J. Downregulation of PHF6 Inhibits Cell Proliferation and Migration in Hepatocellular Carcinoma. Cancer Biother Radiopharm 2019; 34:245-251. [PMID: 30888215 DOI: 10.1089/cbr.2018.2671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The plant homeodomain finger 6 (PHF6) was originally identified as single gene mutated in Börjeson-Forssman-Lehmann syndrome, which was reported to be a tumor suppressor in T-cell acute lymphoblastic leukemia. However, the biological function of PHF6 in hepatocellular carcinoma (HCC) has been poorly characterized. Materials and Methods: In this study, we first determined the mRNA levels of PHF6 in HCC tissues and adjacent normal tissues using quantitative real-time PCR. Then the expression of PHF6 was knocked down in HCC cell lines (HepG2, SMMC-7721, and Bel-7402) by siRNA transfection. A series of functional experiments, including EdU proliferation assay, colony formation assay, and Transwell assay, were performed in HCC cells. Western blot analysis was used to detect the expression of PHF6, E-cadherin, and Vimentin. Results: We found that PHF6 was significantly elevated in HCC tissues and positively correlated with TNM stage, differentiation, and lymph node metastasis. Silencing PHF6 significantly inhibited cell proliferation, colony formation, and migration in HCC cells. Furthermore, silencing PHF6 obviously increased E-cadherin and decreased Vimentin expression. Conclusions: These findings suggest that PHF6 plays a positive role in the growth of HCC cells, and targeting PHF6 could serve as a promising therapeutic strategy for human HCC.
Collapse
Affiliation(s)
- Qiangfeng Yu
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China.,2 Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Libo Yin
- 3 Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral & Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yizeng Jian
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China
| | - Pengtao Li
- 4 Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Wenlong Zeng
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China
| | - Jianyin Zhou
- 4 Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv 2019; 2:1229-1242. [PMID: 29853524 DOI: 10.1182/bloodadvances.2017015610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the addition of tyrosine kinase inhibitors (TKIs) to the treatment of patients with BCR-ABL1+ B-cell precursor acute lymphoblastic leukemia (BCR-ABL1+ BCP-ALL), relapse both with and without BCR-ABL1 mutations is a persistent clinical problem. To identify BCR-ABL1-independent genetic mediators of response to the TKI dasatinib, we performed in vivo and in vitro RNA interference (RNAi) screens in a transplantable syngeneic mouse model of BCR-ABL1+ BCP-ALL. By using a novel combination of a longitudinal screen design and independent component analysis of screening data, we identified hairpins that have distinct behavior in different therapeutic contexts as well as in the in vivo vs in vitro settings. In the set of genes whose loss sensitized BCR-ABL1+ BCP-ALL cells to dasatinib, we identified Pafah1b3, which regulates intracellular levels of platelet-activating factor (PAF), as an in vivo-specific mediator of therapeutic response. Pafah1b3 loss significantly sensitized leukemia cells to the multiple TKIs, indicating that inhibition of PAFAH1B3 in combination with TKI treatment may be an effective therapeutic strategy for BCR-ABL1+ BCP-ALL patients. PAF-induced cell death as well as surface levels of PAF receptor (PAFR) in our model are altered upon dasatinib treatment and depend on the local leukemia microenvironment; the response of Pafah1b3 KO vs overexpressing cells to dasatinib is also dependent on microenvironmental context. Antagonism of the PAFR partially reverses the observed sensitization to TKI treatment upon Pafah1b3 loss in vivo, suggesting that signaling via the PAF/PAFR pathway is at least partially responsible for this effect.
Collapse
|
37
|
O'Loughlin TA, Gilbert LA. Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. ANNUAL REVIEW OF CANCER BIOLOGY 2019. [DOI: 10.1146/annurev-cancerbio-030518-055742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional genomics holds great promise for the dissection of cancer biology. The elucidation of genetic cooperation and molecular details that govern oncogenesis, metastasis, and response to therapy is made possible by robust technologies for perturbing gene function coupled to quantitative analysis of cancer phenotypes resulting from genetic or epigenetic perturbations. Multiplexed genetic perturbations enable the dissection of cooperative genetic lesions as well as the identification of synthetic lethal gene pairs that hold particular promise for constructing innovative cancer therapies. Lastly, functional genomics strategies enable the highly multiplexed in vivo analysis of genes that govern tumorigenesis as well as of the complex multicellular biology of a tumor, such as immune response and metastasis phenotypes. In this review, we discuss both historical and emerging functional genomics approaches and their impact on the cancer research landscape.
Collapse
Affiliation(s)
- Thomas A. O'Loughlin
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| | - Luke A. Gilbert
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
- Innovative Genomics Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
38
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
39
|
PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood 2019; 133:1729-1741. [PMID: 30755422 DOI: 10.1182/blood-2018-07-860726] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Somatically acquired mutations in PHF6 (plant homeodomain finger 6) frequently occur in hematopoietic malignancies and often coincide with ectopic expression of TLX3. However, there is no functional evidence to demonstrate whether these mutations contribute to tumorigenesis. Similarly, the role of PHF6 in hematopoiesis is unknown. We report here that Phf6 deletion in mice resulted in a reduced number of hematopoietic stem cells (HSCs), an increased number of hematopoietic progenitor cells, and an increased proportion of cycling stem and progenitor cells. Loss of PHF6 caused increased and sustained hematopoietic reconstitution in serial transplantation experiments. Interferon-stimulated gene expression was upregulated in the absence of PHF6 in hematopoietic stem and progenitor cells. The numbers of hematopoietic progenitor cells and cycling hematopoietic stem and progenitor cells were restored to normal by combined loss of PHF6 and the interferon α and β receptor subunit 1. Ectopic expression of TLX3 alone caused partially penetrant leukemia. TLX3 expression and loss of PHF6 combined caused fully penetrant early-onset leukemia. Our data suggest that PHF6 is a hematopoietic tumor suppressor and is important for fine-tuning hematopoietic stem and progenitor cell homeostasis.
Collapse
|
40
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
de Ruiter JR, Wessels LFA, Jonkers J. Mouse models in the era of large human tumour sequencing studies. Open Biol 2018; 8:180080. [PMID: 30111589 PMCID: PMC6119864 DOI: 10.1098/rsob.180080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease in which cells progressively accumulate mutations disrupting their cellular processes. A fraction of these mutations drive tumourigenesis by affecting oncogenes or tumour suppressor genes, but many mutations are passengers with no clear contribution to tumour development. The advancement of DNA and RNA sequencing technologies has enabled in-depth analysis of thousands of human tumours from various tissues to perform systematic characterization of their (epi)genomes and transcriptomes in order to identify (epi)genetic changes associated with cancer. Combined with considerable progress in algorithmic development, this expansion in scale has resulted in the identification of many cancer-associated mutations, genes and pathways that are considered to be potential drivers of tumour development. However, it remains challenging to systematically identify drivers affected by complex genomic rearrangements and drivers residing in non-coding regions of the genome or in complex amplicons or deletions of copy-number driven tumours. Furthermore, functional characterization is challenging in the human context due to the lack of genetically tractable experimental model systems in which the effects of mutations can be studied in the context of their tumour microenvironment. In this respect, mouse models of human cancer provide unique opportunities for pinpointing novel driver genes and their detailed characterization. In this review, we provide an overview of approaches for complementing human studies with data from mouse models. We also discuss state-of-the-art technological developments for cancer gene discovery and validation in mice.
Collapse
Affiliation(s)
- J R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Berry C. The failure of rodent carcinogenesis as a model for Man. Toxicol Res (Camb) 2018; 7:553-557. [PMID: 30090605 PMCID: PMC6062156 DOI: 10.1039/c7tx00283a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022] Open
Abstract
Recent advances in our understanding of the process of carcinogenesis in Man have required revision of our thinking about the classical initiation/promotion sequence; understanding must now encompass the roles of both genetic and epigenetic change, realisation of the importance of the variable genetic backgrounds of the tumour bearers in any group and an understanding of the importance of random genetic events over time. The behavior of tumours, once established, is more complex than has been thought. Current views of the processes involved are not modelled in toxicity testing programmes.
Collapse
Affiliation(s)
- Colin Berry
- Queen Mary , London , Mile End Rd , London E1 4NS , UK .
| |
Collapse
|
43
|
D'Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, Bianchi V, Casoli L, Sabò A, Mironov A, Beznoussenko GV, Amati B. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget 2018; 7:72415-72430. [PMID: 27635472 PMCID: PMC5341918 DOI: 10.18632/oncotarget.11719] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
The oncogenic transcription factor Myc is required for the progression and maintenance of diverse tumors. This has led to the concept that Myc itself, Myc-activated gene products, or associated biological processes might constitute prime targets for cancer therapy. Here, we present an in vivo reverse-genetic screen targeting a set of 241 Myc-activated mRNAs in mouse B-cell lymphomas, unraveling a critical role for the mitochondrial ribosomal protein (MRP) Ptcd3 in tumor maintenance. Other MRP-coding genes were also up regulated in Myc-induced lymphoma, pointing to a coordinate activation of the mitochondrial translation machinery. Inhibition of mitochondrial translation with the antibiotic Tigecycline was synthetic-lethal with Myc activation, impaired respiratory activity and tumor cell survival in vitro, and significantly extended lifespan in lymphoma-bearing mice. We have thus identified a novel Myc-induced metabolic dependency that can be targeted by common antibiotics, opening new therapeutic perspectives in Myc-overexpressing tumors.
Collapse
Affiliation(s)
- Aleco D'Andrea
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Ilaria Gritti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Present address: IRCCS San Raffaele, Functional Genomics of Cancer Unit, Division of Experimental Oncology, Milan, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Annalisa Conti
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Valerio Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy.,Present address: Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan, Utrecht, The Netherlands
| | - Lucia Casoli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Alexandre Mironov
- The Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Milan, Italy
| | - Galina V Beznoussenko
- The Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
44
|
D'Alesio C, Punzi S, Cicalese A, Fornasari L, Furia L, Riva L, Carugo A, Curigliano G, Criscitiello C, Pruneri G, Pelicci PG, Faretta M, Bossi D, Lanfrancone L. RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget 2018; 7:80901-80915. [PMID: 27779108 PMCID: PMC5348363 DOI: 10.18632/oncotarget.12646] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation plays an essential role in tumor development and epigenetic modifiers are considered optimal potential druggable candidates. In order to identify new breast cancer vulnerabilities and improve therapeutic chances for patients, we performed in vivo and in vitro shRNA screens in a human breast cancer cell model (MCF10DCIS.com cell line) using epigenetic libraries. Among the genes identified in our screening, we deeply investigated the role of Chromodomain Helicase DNA binding Protein 4 (CHD4) in breast cancer tumorigenesis. CHD4 silencing significantly reduced tumor growth in vivo and proliferation in vitro of MCF10DCIS.com cells. Similarly, in vivo breast cancer growth was decreased in a spontaneous mouse model of breast carcinoma (MMTV-NeuT system) and in metastatic patient-derived xenograft models. Conversely, no reduction in proliferative ability of non-transformed mammary epithelial cells (MCF10A) was detected. Moreover, we showed that CHD4 depletion arrests proliferation by inducing a G0/G1 block of cell cycle associated with up-regulation of CDKN1A (p21). These results highlight the relevance of genetic screens in the identification of tumor frailties and the role of CHD4 as a potential pharmacological target to inhibit breast cancer growth.
Collapse
Affiliation(s)
- Carolina D'Alesio
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Simona Punzi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Angelo Cicalese
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Laura Riva
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan 20139, Italy
| | - Alessandro Carugo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy.,Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Carmen Criscitiello
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Giancarlo Pruneri
- School of Medicine, University of Milan, Milan 20122, Italy.,Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milan 20141, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy.,Department of Oncology, University of Milan, Milan 20139, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
45
|
New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resist Updat 2018; 36:30-46. [PMID: 29499836 PMCID: PMC5844649 DOI: 10.1016/j.drup.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 12/26/2022]
Abstract
Despite substantial advances in the treatment of various cancers, many patients still receive anti-cancer therapies that hardly eradicate tumor cells but inflict considerable side effects. To provide the best treatment regimen for an individual patient, a major goal in molecular oncology is to identify predictive markers for a personalized therapeutic strategy. Regarding novel targeted anti-cancer therapies, there are usually good markers available. Unfortunately, however, targeted therapies alone often result in rather short remissions and little cytotoxic effect on the cancer cells. Therefore, classical chemotherapy with frequent long remissions, cures, and a clear effect on cancer cell eradication remains a corner stone in current anti-cancer therapy. Reliable biomarkers which predict the response of tumors to classical chemotherapy are rare, in contrast to the situation for targeted therapy. For the bulk of cytotoxic therapeutic agents, including DNA-damaging drugs, drugs targeting microtubules or antimetabolites, there are still no reliable biomarkers used in the clinic to predict tumor response. To make progress in this direction, meticulous studies of classical chemotherapeutic drug action and resistance mechanisms are required. For this purpose, novel functional screening technologies have emerged as successful technologies to study chemotherapeutic drug response in a variety of models. They allow a systematic analysis of genetic contributions to a drug-responsive or −sensitive phenotype and facilitate a better understanding of the mode of action of these drugs. These functional genomic approaches are not only useful for the development of novel targeted anti-cancer drugs but may also guide the use of classical chemotherapeutic drugs by deciphering novel mechanisms influencing a tumor’s drug response. Moreover, due to the advances of 3D organoid cultures from patient tumors and in vivo screens in mice, these genetic screens can be applied using conditions that are more representative of the clinical setting. Patient-derived 3D organoid lines furthermore allow the characterization of the “essentialome”, the specific set of genes required for survival of these cells, of an individual tumor, which could be monitored over the course of treatment and help understanding how drug resistance evolves in clinical tumors. Thus, we expect that these functional screens will enable the discovery of novel cancer-specific vulnerabilities, and through clinical validation, move the field of predictive biomarkers forward. This review focuses on novel advanced techniques to decipher the interplay between genetic alterations and drug response.
Collapse
|
46
|
Poirier JT. CRISPR Libraries and Screening. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:69-82. [PMID: 29150005 DOI: 10.1016/bs.pmbts.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 technology has revolutionized large-scale functional genomic screening in mammalian cell-culture systems. Due in part to optimized lentiviral delivery vectors; it is now possible to perform CRISPR-Cas9 screens in animals in order to study biological processes in the context of a whole organism and within more physiologically relevant environment. This chapter focuses primarily on mouse models of human cancers; viral vectors used for simultaneous tumor initiation and genome editing and sgRNA library design considerations. Experience with direct and indirect in vivo RNAi screens in the literature is also discussed in order to highlight the challenges of delivering diverse libraries of small RNAs in vivo.
Collapse
Affiliation(s)
- John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
47
|
|
48
|
Ashenden M, van Weverwijk A, Murugaesu N, Fearns A, Campbell J, Gao Q, Iravani M, Isacke CM. An In Vivo Functional Screen Identifies JNK Signaling As a Modulator of Chemotherapeutic Response in Breast Cancer. Mol Cancer Ther 2017; 16:1967-1978. [PMID: 28611109 DOI: 10.1158/1535-7163.mct-16-0731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/15/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
Abstract
Chemotherapy remains the mainstay of treatment for advanced breast cancer; however, resistance is an inevitable event for the majority of patients with metastatic disease. Moreover, there is little information available to guide stratification of first-line chemotherapy, crucial given the common development of multidrug resistance. Here, we describe an in vivo screen to interrogate the response to anthracycline-based chemotherapy in a syngeneic metastatic breast cancer model and identify JNK signaling as a key modulator of chemotherapy response. Combining in vitro and in vivo functional analyses, we demonstrate that JNK inhibition both promotes tumor cell cytostasis and blocks activation of the proapoptotic protein Bax, thereby antagonizing chemotherapy-mediated cytotoxicity. To investigate the clinical relevance of this dual role of JNK signaling, we developed a proliferation-independent JNK activity signature and demonstrate high JNK activity to be enriched in triple-negative and basal-like breast cancer subtypes. Consistent with the dual role of JNK signaling in vitro, high-level JNK pathway activation in triple-negative breast cancers is associated both with poor patient outcome in the absence of chemotherapy treatment and, in neoadjuvant clinical studies, is predictive of enhanced chemotherapy response. These data highlight the potential of monitoring JNK activity as early biomarker of response to chemotherapy and emphasize the importance of rational treatment regimes, particularly when combining cytostatic and chemotherapeutic agents. Mol Cancer Ther; 16(9); 1967-78. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew Ashenden
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Antoinette van Weverwijk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nirupa Murugaesu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Antony Fearns
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
49
|
Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sánchez-Rivera FJ, Bhutkar A, Weintraub AS, Buenrostro JD, Cheng CS, Regev A, Jacks TE, Young RA, Hemann MT. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev 2017; 31:973-989. [PMID: 28607179 PMCID: PMC5495126 DOI: 10.1101/gad.295857.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
In this study, Soto-Feliciano et al. describe the function of the plant homeodomain finger 6 (PHF6) protein in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. Their findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.
Collapse
Affiliation(s)
- Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jordan M E Bartlebaugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yunpeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Abraham S Weintraub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jason D Buenrostro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Christine S Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tyler E Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard A Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
50
|
Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival. Proc Natl Acad Sci U S A 2016; 114:E496-E505. [PMID: 27994142 DOI: 10.1073/pnas.1614876114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival ("nononcogene addiction"). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation.
Collapse
|