1
|
Morandini F, Lu JY, Rechsteiner C, Shadyab AH, Casanova R, Snively BM, Seluanov A, Gorbunova V. Transposable element 5mC methylation state of blood cells predicts age and disease. NATURE AGING 2024:10.1038/s43587-024-00757-2. [PMID: 39604704 DOI: 10.1038/s43587-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Transposable elements (TEs) are DNA sequences that expand selfishly in the genome, possibly causing severe cellular damage. While normally silenced, TEs have been shown to activate during aging. DNA 5-methylcytosine (5mC) is one of the main epigenetic modifications by which TEs are silenced and has been used to train highly accurate age predictors. Yet, one common criticism of such predictors is that they lack interpretability. In this study, we investigate the changes in TE 5mC methylation that occur during aging in human blood using published methylation array data. We find that evolutionarily young long interspersed nuclear elements 1 (L1s), the only known TEs capable of autonomous transposition in humans, undergo the fastest loss of 5mC methylation, suggesting an active mechanism of de-repression. The same young L1s also showed preferential gain in chromatin accessibility but not expression. The long terminal repeat retrotransposons THE1A and THE1C also showed very rapid 5mC loss. We then show that accurate age predictors can be trained on both 5mC methylation of individual TE copies and average methylation of TE families genome wide. Lastly, we show that while old L1s gradually lose 5mC during the entire lifespan, demethylation of young L1s only happens late in life and is associated with cancer.
Collapse
Affiliation(s)
| | - Jinlong Y Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science and Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ramon Casanova
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Beverly M Snively
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Poudel SB, Ruff RR, He Z, Dixit M, Yildirim G, Jayarathne H, Manchanayake DH, Basta-Pljakic J, Duran-Ortiz S, Schaffler MB, Kopchick JJ, Sadagurski M, Yakar S. The impact of inactivation of the GH/IGF axis during aging on healthspan. GeroScience 2024:10.1007/s11357-024-01426-3. [PMID: 39535693 DOI: 10.1007/s11357-024-01426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Several mouse lines with congenital growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis disruption have shown improved health and extended lifespan. The current study investigated how inactivating this axis, specifically during aging, impacts the healthspan. We used a tamoxifen-inducible global GH receptor (GHR) knockout mouse model starting at 12 months and followed the mice until 24 months of age (iGHRKO12-24 mice). We found sex- and tissue-specific effects, with some being pro-aging and others anti-aging. Measuring an array of cytokines in serum revealed that inactivation of the GH/IGF-1 axis at 12 months did not affect systemic inflammation during aging. On the other hand, hypothalamic inflammation was significantly reduced in iGHRKO12-24 mice, evidenced by GFAP+ (glial fibrillary acidic protein, a marker of astrocytes) and Iba-1+ (a marker for microglia). Liver RNAseq analysis indicated feminization of the male transcriptome, with significant changes in the expression of monooxygenase, sulfotransferase, and solute-carrier-transporter gene clusters. Finally, we found impaired bone morphology, more pronounced in male iGHRKO12-24 mice and correlated with GH/IGF-1 inactivation onset age. We conclude that inhibiting the GH/IGF-1 axis during aging only partially preserves the beneficial healthspan effects observed with congenital GH deficiency.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Ryan R Ruff
- David B. Kriser Dental Center, Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010-4086, USA
| | - Zhiming He
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Godze Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Dulmalika Herath Manchanayake
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA.
| |
Collapse
|
3
|
Trinchillo A, Esposito M, Terranova C, Rizzo V, Fabbrini G, Ferrazzano G, Belvisi D, Erro R, Barone P, Bono F, Di Biasio F, Bentivoglio AR, Lettieri C, Altavista MC, Scaglione CLM, Albanese A, Mascia MM, Muroni A, Pisani A, Berardelli A, Defazio G. Oromandibular dystonia: from onset to spread a multicenter italian study. Neurol Sci 2024; 45:4341-4348. [PMID: 38536550 DOI: 10.1007/s10072-024-07488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Detailed information about the epidemiological and phenomenological differences among the aetiological subtypes of oromandibular dystonia (OMD) is lacking. Moreover, the OMD tendency to spread to other body sites has never been investigated. AIM To compare the main demographic and clinical features of OMD in different aetiological groups and assess the risk of spread. MATERIALS AND METHODS We retrospectively analysed data from patients contained in the Italian Dystonia Registry. The risk of spread was assessed by Kaplan Meyer curves and Cox regression analysis. RESULTS The study included 273 patients (175 women) aged 55.7 years (SD 12.7) at OMD onset. Female predominance was observed. Idiopathic dystonia was diagnosed in 241 patients, acquired dystonia in 22. In 50/273 patients, dystonia started in the oromandibular region (focal OMD onset); in 96/273 patients the onset involved the oromandibular region and a neighbouring body site (segmental/multifocal OMD onset); and in 127/273 patients OMD was a site of spread from another body region. Sensory trick (ST) and positive family history predominated in the idiopathic group. No dystonia spread was detected in the acquired group, whereas spread mostly occurred within the first five years of history in 34% of the focal OMD onset idiopathic patients. Cox regression analysis revealed ST as a significant predictor of spread (HR, 12.1; 95% CI, 2.5 - 18.8; P = 0.002). CONCLUSION This large study provides novel information about the clinical phenomenology of idiopathic and acquired OMD. We pointed out a possible role of oestrogens in favouring dystonia development. Moreover, we described for the first time the association between ST and dystonia spread, revealing possible common pathophysiological mechanisms. Our findings may be suggested as a referral point for future pathophysiological and therapeutic studies on OMD.
Collapse
Affiliation(s)
- Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | | | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Roma, Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Roma, Rome, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Roma, Rome, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Baronissi, SA, Italy
| | - Francesco Bono
- Academic Hospital - A.O.U. "R. Dulbecco", Catanzaro, Italy
| | | | - Anna Rita Bentivoglio
- Clinical Neurology Unit - Movement Disorders, University of Rome "Università Cattolica del Sacro Cuore", Hospital of Rome "Agostino Gemelli", Rome, Italy
| | - Christian Lettieri
- Clinical Neurology Unit "S. Maria Della Misericordia" University, Hospital of Udine, Udine, Italy
| | | | | | - Alberto Albanese
- Clinical Institute, Department of Neurology, "Humanitas", Milan, Italy
| | | | - Antonella Muroni
- Neurology Unit, University Hospital of Cagliari, Cagliari, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Roma, Rome, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Bonder MJ, Clark SJ, Krueger F, Luo S, Agostinho de Sousa J, Hashtroud AM, Stubbs TM, Stark AK, Rulands S, Stegle O, Reik W, von Meyenn F. scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood. Nat Commun 2024; 15:7567. [PMID: 39217176 PMCID: PMC11366017 DOI: 10.1038/s41467-024-51833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ageing is the accumulation of changes and decline of function of organisms over time. The concept and biomarkers of biological age have been established, notably DNA methylation-based clocks. The emergence of single-cell DNA methylation profiling methods opens the possibility of studying the biological age of individual cells. Here, we generate a large single-cell DNA methylation and transcriptome dataset from mouse peripheral blood samples, spanning a broad range of ages. The number of genes expressed increases with age, but gene-specific changes are small. We next develop scEpiAge, a single-cell DNA methylation age predictor, which can accurately predict age in (very sparse) publicly available datasets, and also in single cells. DNA methylation age distribution is wider than technically expected, indicating epigenetic age heterogeneity and functional differences. Our work provides a foundation for single-cell and sparse data epigenetic age predictors, validates their functionality and highlights epigenetic heterogeneity during ageing.
Collapse
Affiliation(s)
- Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Stephen J Clark
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | - Felix Krueger
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Siyuan Luo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Aida M Hashtroud
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Chronomics Limited, London, UK
| | | | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolf Reik
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
5
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Yao S, Prates K, Freydenzon A, Assante G, McRae AF, Morris MJ, Youngson NA. Liver-specific deletion of de novo DNA methyltransferases protects against glucose intolerance in high-fat diet-fed male mice. FASEB J 2024; 38:e23690. [PMID: 38795327 DOI: 10.1096/fj.202301546rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.
Collapse
Affiliation(s)
- S Yao
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K Prates
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - A Freydenzon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - G Assante
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M J Morris
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - N A Youngson
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
7
|
Fóthi Á, Liu H, Susztak K, Aranyi T. Improve-RRBS: a novel tool to correct the 3' trimming of reduced representation sequencing reads. BIOINFORMATICS ADVANCES 2024; 4:vbae076. [PMID: 38846137 PMCID: PMC11154647 DOI: 10.1093/bioadv/vbae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
Motivation Reduced Representation Bisulfite Sequencing (RRBS) is a popular approach to determine DNA methylation of the CpG-rich regions of the genome. However, we observed that false positive differentially methylated sites (DMS) are also identified using the standard computational analysis. Results During RRBS library preparation the MspI digested DNA undergo end-repair by a cytosine at the 3' end of the fragments. After sequencing, Trim Galore cuts these end-repaired nucleotides. However, Trim Galore fails to detect end-repair when it overlaps with the 3' end of the sequencing reads. We found that these non-trimmed cytosines bias methylation calling, thus, can identify DMS erroneously. To circumvent this problem, we developed improve-RRBS, which efficiently identifies and hides these cytosines from methylation calling with a false positive rate of maximum 0.5%. To test improve-RRBS, we investigated four datasets from four laboratories and two different species. We found non-trimmed 3' cytosines in all datasets analyzed and as much as >50% of false positive DMS under certain conditions. By applying improve-RRBS, these DMS completely disappeared from all comparisons. Availability and implementation Improve-RRBS is a freely available python package https://pypi.org/project/iRRBS/ or https://github.com/fothia/improve-RRBS to be implemented in RRBS pipelines.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, HUN-REN, Budapest 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tamas Aranyi
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, HUN-REN, Budapest 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
8
|
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, Turcsányiová Z, Minárik G. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med (Lausanne) 2024; 11:1291429. [PMID: 38314203 PMCID: PMC10835804 DOI: 10.3389/fmed.2024.1291429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background The mode of delivery represents an epigenetic factor with potential to affect further development of the individual by multiple mechanisms. DNA methylation may be one of them, representing a major epigenetic mechanism involving direct chemical modification of the individual's DNA. This pilot study aims to examine whether a specific mode of delivery induces changes of DNA methylation by comparing the umbilical cord blood and peripheral blood of the newborns. Methods Blood samples from infants born by vaginal delivery and caesarean section were analysed to prepare the Methylseq library according to NEBNext enzymatic Methyl-seq Methylation Library Preparation Kit with further generation of target-enriched DNA libraries using the Twist Human Methylome Panel. DNA methylation status was determined using Illumina next-generation sequencing (NGS). Results We identified 168 differentially methylated regions in umbilical cord blood samples and 157 regions in peripheral blood samples. These were associated with 59 common biological, metabolic and signalling pathways for umbilical cord and peripheral blood samples. Conclusion Caesarean section is likely to represent an important epigenetic factor with the potential to induce changes in the genome that could play an important role in development of a broad spectrum of disorders. Our results could contribute to the elucidation of how epigenetic factors, such as a specific mode of delivery, could have adverse impact on health of an individual later in their life.
Collapse
Affiliation(s)
| | - Dominik Kodada
- Medirex Group Academy n.o., Nitra, Slovakia
- Department of Clinical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | | | | | - Erik Dosedla
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Zuzana Turcsányiová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | | |
Collapse
|
9
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
10
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
11
|
Dai Z, Wang S, Guo X, Wang Y, Yin H, Tan J, Mu C, Sun S, Liu H, Yang F. Gender dimorphism in hepatocarcinogenesis-DNA methylation modification regulated X-chromosome inactivation escape molecule XIST. Clin Transl Med 2023; 13:e1518. [PMID: 38148658 PMCID: PMC10751514 DOI: 10.1002/ctm2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Sex disparities constitute a significant issue in hepatocellular carcinoma (HCC). However, the mechanism of gender dimorphism in HCC is still not completely understood. METHODS 5-Hydroxymethylcytosine (5hmC)-Seal technology was utilised to detect the global 5hmC levels from four female and four male HCC samples. Methylation of XIST was detected by Sequenom MassARRAY methylation profiling between HCC tissues (T) and adjacent normal liver tissues (L). The role of Tet methylcytosine dioxygenase 2 (TET2) was investigated using diethylnitrosamine (DEN)-administered Tet2-/- female mice, which regulated XIST in hepatocarcinogenesis. All statistical analyses were carried out by GraphPad Prism 9.0 and SPSS version 19.0 software. RESULTS The results demonstrated that the numbers of 5hmC reads in the first exon of XIST from female HCC tissues (T) were remarkably lower than that in female adjacent normal liver tissues (L). Correspondingly, DNA methylation level of XIST first exon region was significantly increased in female T than in L. By contrast, no significant change was observed in male HCC patients. Compared to L, the expression of XIST in T was also significantly downregulated. Female patients with higher XIST in HCC had a higher overall survival (OS) and more extended recurrence-free survival (RFS). Moreover, TET2 can interact with YY1 binding to the promoter region of XIST and maintain the hypomethylation state of XIST. In addition, DEN-administered Tet2-/- mice developed more tumours than controls in female mice. CONCLUSIONS Our study provided that YY1 and TET2 could interact to form protein complexes binding to the promoter region of XIST, regulating the methylation level of XIST and then affecting the expression of XIST. This research will provide a new clue for studying sex disparities in hepatocarcinogenesis. HIGHLIGHTS XIST was significantly downregulated in HCC tissues and had gender disparity. Methylation levels in the XIST first exon were higher in female HCC tissues, but no significant change in male HCC patients. The TET2-YY1 complex regulate XIST expression in female hepatocytes. Other ways regulate XIST expression in male hepatocytes.
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Sijie Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xinggang Guo
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Yuefan Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Haozan Yin
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Jian Tan
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Chenyang Mu
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Shu‐Han Sun
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Hui Liu
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Fu Yang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionShanghaiChina
- Key Laboratory of Biological Defense, Ministry of EducationShanghaiChina
| |
Collapse
|
12
|
Mayne B, Berry O, Jarman S. Calibrating epigenetic clocks with training data error. Evol Appl 2023; 16:1496-1502. [PMID: 37622096 PMCID: PMC10445086 DOI: 10.1111/eva.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Animal age data are valuable for management of wildlife populations. Yet, for most species, there is no practical method for determining the age of unknown individuals. However, epigenetic clocks, a molecular-based method, are capable of age prediction by sampling specific tissue types and measuring DNA methylation levels at specific loci. Developing an epigenetic clock requires a large number of samples from animals of known ages. For most species, there are no individuals whose exact ages are known, making epigenetic clock calibration inaccurate or impossible. For many epigenetic clocks, calibration samples with inaccurate age estimates introduce a degree of error to epigenetic clock calibration. In this study, we investigated how much error in the training data set of an epigenetic clock can be tolerated before it resulted in an unacceptable increase in error for age prediction. Using four publicly available data sets, we artificially increased the training data age error by iterations of 1% and then tested the model against an independent set of known ages. A small effect size increase (Cohen's d >0.2) was detected when the error in age was higher than 22%. The effect size increased linearly with age error. This threshold was independent of sample size. Downstream applications for age data may have a more important role in deciding how much error can be tolerated for age prediction. If highly precise age estimates are required, then it may be futile to embark on the development of an epigenetic clock when there is no accurately aged calibration population to work with. However, for other problems, such as determining the relative age order of pairs of individuals, a lower-quality calibration data set may be adequate.
Collapse
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Simon Jarman
- Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
13
|
Batdorj E, AlOgayil N, Zhuang QKW, Galvez JH, Bauermeister K, Nagata K, Kimura T, Ward MA, Taketo T, Bourque G, Naumova AK. Genetic variation in the Y chromosome and sex-biased DNA methylation in somatic cells in the mouse. Mamm Genome 2023; 34:44-55. [PMID: 36454369 PMCID: PMC9947081 DOI: 10.1007/s00335-022-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.
Collapse
Affiliation(s)
- Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Kei Nagata
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, HonoluluHonolulu, HIHI, 96822, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
14
|
Wasserzug Pash P, Karavani G, Reich E, Zecharyahu L, Kay Z, Bauman D, Mordechai-Daniel T, Imbar T, Klutstein M. Pre-pubertal oocytes harbor altered histone modifications and chromatin configuration. Front Cell Dev Biol 2023; 10:1060440. [PMID: 36704200 PMCID: PMC9871384 DOI: 10.3389/fcell.2022.1060440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Pre-pubertal oocytes are still dormant. They are arrested in a GV state and do not undergo meiotic divisions naturally. A multitude of molecular pathways are changed and triggered upon initiation of puberty. It is not yet clear which epigenetic events occur in oocytes upon pubertal transition, and how significant these epigenetic events may be. We evaluated epigenetic marker levels in mouse pre-pubertal and post-pubertal female oocytes. In addition, we evaluated H3K9me2 levels in human oocytes collected from fertility preservation patients, comparing the levels between pre-pubertal patients and post-pubertal patients. The chromatin structure shows a lower number of chromocenters in mouse post-pubertal oocytes in comparison to pre-pubertal oocytes. All heterochromatin marker levels checked (H3K9me2, H3K27me3, H4K20me1) significantly rise across the pubertal transition. Euchromatin markers vary in their behavior. While H3K4me3 levels rise with the pubertal transition, H3K27Ac levels decrease with the pubertal transition. Treatment with SRT1720 [histone deacetylase (HDAC) activator] or overexpression of heterochromatin factors does not lead to increased heterochromatin in pre-pubertal oocytes. However, treatment of pre-pubertal oocytes with follicle-stimulating hormone (FSH) for 24 h - changes their chromatin structure to a post-pubertal configuration, lowers the number of chromocenters and elevates their histone methylation levels, showing that hormones play a key role in chromatin regulation of pubertal transition. Our work shows that pubertal transition leads to reorganization of oocyte chromatin and elevation of histone methylation levels, thus advancing oocyte developmental phenotype. These results provide the basis for finding conditions for in-vitro maturation of pre-pubertal oocytes, mainly needed to artificially mature oocytes of young cancer survivors for fertility preservation purposes.
Collapse
Affiliation(s)
- Pe’era Wasserzug Pash
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilad Karavani
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Reich
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lital Zecharyahu
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zehava Kay
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dvora Bauman
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talya Mordechai-Daniel
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Imbar
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,*Correspondence: Tal Imbar, ; Michael Klutstein,
| | - Michael Klutstein
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,*Correspondence: Tal Imbar, ; Michael Klutstein,
| |
Collapse
|
15
|
Abstract
Injury to muscle brings about the activation of stem cells, which then generate new myocytes to replace damaged tissue. We demonstrate that this activation is accompanied by a dramatic change in the stem-cell methylation pattern that prepares them epigenetically for terminal myocyte differentiation. These de- and de novo methylation events occur at regulatory elements associated with genes involved in myogenesis and are necessary for activation and regeneration. Local injury of one muscle elicits an almost identical epigenetic change in satellite cells from other muscles in the body, in a process mediated by circulating factors. Furthermore, this same methylation state is also generated in muscle stem cells (MuSCs) of female animals following pregnancy, even in the absence of any injury. Unlike the activation-induced expression changes, which are transient, the induced methylation profile is stably maintained in resident MuSCs and thus represents a molecular memory of previous physiological events that is probably programmed to provide a mechanism for long-term adaptation.
Collapse
|
16
|
Biskup E, Marra AM, Ambrosino I, Barbagelata E, Basili S, de Graaf J, Gonzalvez-Gasch A, Kaaja R, Karlafti E, Lotan D, Kautzky-Willer A, Perticone M, Politi C, Schenck-Gustafsson K, Vilas-Boas A, Roeters van Lennep J, Gans EA, Regitz-Zagrosek V, Pilote L, Proietti M, Raparelli V. Awareness of sex and gender dimensions among physicians: the European federation of internal medicine assessment of gender differences in Europe (EFIM-IMAGINE) survey. Intern Emerg Med 2022; 17:1395-1404. [PMID: 35604515 PMCID: PMC9352607 DOI: 10.1007/s11739-022-02951-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Sociocultural gender is a complex construct encompassing different aspects of individuals' life, whereas sex refers to biological factors. These terms are often misused, although they impact differently on individuals' health. Recognizing the role of sex and gender on health status is fundamental in the pursuit of a personalized medicine. Aim of the current study was to investigate the awareness in approaching clinical and research questions on the impact of sex and gender on health among European internists. Clinicians affiliated with the European Federation of Internal Medicine from 33 countries participated to the study on a voluntary basis between January 1st, 2018 and July 31st, 2019. Internists' awareness and knowledge on sex and gender issues in clinical medicine were measured by an online anonymized 7-item survey. A total of 1323 European internists responded to the survey of which 57% were women, mostly young or middle-aged (78%), and practicing in public general medicine services (74.5%). The majority (79%) recognized that sex and gender are not interchangeable terms, though a wide discrepancy exists on what clinicians think sex and gender concepts incorporate. Biological sex and sociocultural gender were recognized as determinants of health mainly in cardiovascular and autoimmune/rheumatic diseases. Up to 80% of respondents acknowledged the low participation of female individuals in trials and more than 60% the lack of sex-specific clinical guidelines. Internists also express the willingness of getting more knowledge on the impact of sex and gender in cerebrovascular/cognitive and inflammatory bowel diseases. Biological sex and sociocultural gender are factors influencing health and disease. Although awareness and knowledge remain suboptimal across European internists, most acknowledge the underrepresentation of female subjects in trials, the lack of sex-specific guidelines and the need of being more informed on sex and gender-based differences in diseases.
Collapse
Affiliation(s)
- Ewelina Biskup
- Division of Internal Medicine, University Hospital of Basel, Basel, Switzerland
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Alberto M Marra
- Department of Translational Medical Sciences, "Federico II" University of Naples, Naples, Italy
- Center for Pulmonary Hypertension, Thoraxklinic, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Elena Barbagelata
- Department of Internal Medicine, Lavagna Hospital ASL 4 Chiavarese, Genoa, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jacqueline de Graaf
- Radboud University Medical Centre, Radboud Health Academy - division of PGME, Nijmegen, Netherlands
| | | | - Risto Kaaja
- Internal Medicine, University of Turku, Turku, Finland
| | - Eleni Karlafti
- 1st Propedeutic Clinic of Internal Medicine, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dor Lotan
- Division of Cardiology, Columbia University Irving Medical Center, New York, USA
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal MedicineIII, Medical University Vienna, Vienna, Austria
- Gender Institute, Gars am Kamp, Austria
| | - Maria Perticone
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Cecilia Politi
- Internal Medicine, "F. Veneziale" Hospital, Isernia, Italy
| | - Karin Schenck-Gustafsson
- Centre for Gender Medicine, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andreia Vilas-Boas
- Internal Medicine, Hospital da Luz Arrábida, Vila Nova de Gaia, Portugal
| | | | - Emma A Gans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Vera Regitz-Zagrosek
- Charité, University Medicine Berlin, DZHK, Berlin, Germany
- University of Zurich, Zurich, Switzerland
| | - Louise Pilote
- Division of Clinical Epidemiology and General Internal Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Via dei Borsari 46, 44121, Ferrara, Italy.
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy.
- Faculty of Nursing, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Cedar H, Sabag O, Reizel Y. The role of DNA methylation in genome-wide gene regulation during development. Development 2022; 149:274050. [DOI: 10.1242/dev.200118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Although it is well known that DNA methylation serves to repress gene expression, precisely how it functions during the process of development remains unclear. Here, we propose that the overall pattern of DNA methylation established in the early embryo serves as a sophisticated mechanism for maintaining a genome-wide network of gene regulatory elements in an inaccessible chromatin structure throughout the body. As development progresses, programmed demethylation in each cell type then provides the specificity for maintaining select elements in an open structure. This allows these regulatory elements to interact with a large range of transcription factors and thereby regulate the gene expression profiles that define cell identity.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Yitzhak Reizel
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
18
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Lefebvre P, Staels B. Hepatic sexual dimorphism - implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 2021; 17:662-670. [PMID: 34417588 DOI: 10.1038/s41574-021-00538-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Bart Staels
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
20
|
Sikes-Keilp C, Rubinow DR. In search of sex-related mediators of affective illness. Biol Sex Differ 2021; 12:55. [PMID: 34663459 PMCID: PMC8524875 DOI: 10.1186/s13293-021-00400-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the rates of affective disorders have been recognized for decades. Studies of physiologic sex-related differences in animals and humans, however, have generally yielded little in terms of explaining these differences. Furthermore, the significance of these findings is difficult to interpret given the dynamic, integrative, and highly context-dependent nature of human physiology. In this article, we provide an overview of the current literature on sex differences as they relate to mood disorders, organizing existing findings into five levels at which sex differences conceivably influence physiology relevant to affective states. These levels include the following: brain structure, network connectivity, signal transduction, transcription/translation, and epigenesis. We then evaluate the importance and limitations of this body of work, as well as offer perspectives on the future of research into sex differences. In creating this overview, we attempt to bring perspective to a body of research that is complex, poorly synthesized, and far from complete, as well as provide a theoretical framework for thinking about the role that sex differences ultimately play in affective regulation. Despite the overall gaps regarding both the underlying pathogenesis of affective illness and the role of sex-related factors in the development of affective disorders, it is evident that sex should be considered as an important contributor to alterations in neural function giving rise to susceptibility to and expression of depression.
Collapse
Affiliation(s)
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
AlOgayil N, Bauermeister K, Galvez JH, Venkatesh VS, Zhuang QKW, Chang ML, Davey RA, Zajac JD, Ida K, Kamiya A, Taketo T, Bourque G, Naumova AK. Distinct roles of androgen receptor, estrogen receptor alpha, and BCL6 in the establishment of sex-biased DNA methylation in mouse liver. Sci Rep 2021; 11:13766. [PMID: 34215813 PMCID: PMC8253761 DOI: 10.1038/s41598-021-93216-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism in gene regulation, including DNA methylation, is the main driver of sexual dimorphism in phenotypes. However, the questions of how and when sex shapes DNA methylation remain unresolved. Recently, using mice with different combinations of genetic and phenotypic sex, we identified sex-associated differentially methylated regions (sDMRs) that depended on the sex phenotype. Focusing on a panel of validated sex-phenotype dependent male- and female-biased sDMRs, we tested the developmental dynamics of sex bias in liver methylation and the impacts of mutations in the androgen receptor, estrogen receptor alpha, or the transcriptional repressor Bcl6 gene. True hermaphrodites that carry both unilateral ovaries and contralateral testes were also tested. Our data show that sex bias in methylation either coincides with or follows sex bias in the expression of sDMR-proximal genes, suggesting that sex bias in gene expression may be required for demethylation at certain sDMRs. Global ablation of AR, ESR1, or a liver-specific loss of BCL6, all alter sDMR methylation, whereas presence of both an ovary and a testis delays the establishment of male-type methylation levels in hermaphrodites. Moreover, the Bcl6-LKO shows dissociation between expression and methylation, suggesting a distinct role of BCL6 in demethylation of intragenic sDMRs.
Collapse
Affiliation(s)
- Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | | | | | - Varun S Venkatesh
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | | | - Matthew L Chang
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 1J3, Canada.,Department of Surgery, McGill University, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Canadian Centre for Computational Genomics, Montréal, QC, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 1J3, Canada. .,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Real ÁD, Santurtún A, Teresa Zarrabeitia M. Epigenetic related changes on air quality. ENVIRONMENTAL RESEARCH 2021; 197:111155. [PMID: 33891958 DOI: 10.1016/j.envres.2021.111155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The exposure to airborne particulate matter (PM) increases the risk of developing human diseases. Epigenetic mechanisms have been related to environmental exposures and human diseases. The present review is focused on current available studies, which show the relationship between epigenetic marks, exposure to air pollution and human's health. Air contaminants involved in epigenetic changes have been related to different specific mechanisms (DNA methylation, post-translational histone modifications and non-coding RNA transcripts), which are described in separate sections. Several studies describe how these epigenetic mechanisms are influenced by environmental factors including air pollution. This interaction between PM and epigenetic factors results in an altered profile of these marks, in both, globally and locus specific. Following this connection, specific epigenetic marks can be used as biomarkers, as well as, to find new therapeutic targets. For this purpose, some significant characteristics have been highlighted, such as, the spatiotemporal specificity of these marks, the relevance of the collected tissue and the specific changes stability. Air pollution has been related to a higher mortality rate due to non-accidental deaths. This exposure to particulate matter induces changes to the epigenome, which are increasing the susceptibility of human diseases. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PM exposure must be performed to find new targets and disease biomarkers.
Collapse
Affiliation(s)
- Álvaro Del Real
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain.
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - M Teresa Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
23
|
Pang H, Ling D, Cheng Y, Akbar R, Jin L, Ren J, Wu H, Chen B, Zhou Y, Zhu H, Zhou Y, Huang H, Sheng J. Gestational high-fat diet impaired demethylation of Pparα and induced obesity of offspring. J Cell Mol Med 2021; 25:5404-5416. [PMID: 33955677 PMCID: PMC8184666 DOI: 10.1111/jcmm.16551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/06/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gestational and postpartum high‐fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post‐weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator‐activated receptor‐α (Pparα), and the decreased mRNA levels of ten‐eleven translocation 1 (Tet1) and/or ten‐eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long‐term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.
Collapse
Affiliation(s)
- Haiyan Pang
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Dandan Ling
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Yi Cheng
- Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rubab Akbar
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Jin
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Jun Ren
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Wu
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Bin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Center for Reproductive Medicine, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuzhong Zhou
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China.,Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jianzhong Sheng
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are defined as unspecialized cells that give rise to more differentiated cells. In a similar way, leukaemic stem and progenitor cells (LSPCs) are defined as unspecialized leukaemic cells, which can give rise to more differentiated cells. Leukaemic cells carry leukaemic mutations/variants and have clear differentiation abnormalities. Pre-leukaemic HSPCs (PreL-HSPCs) carry pre-leukaemic mutations/variants (pLMs) and are capable of producing mature functional cells, which will carry the same variants. Under the roof of LSPCs, one can find a broad range of cell types genetic and disease phenotypes. Present-day knowledge suggests that this phenotypic heterogeneity is the result of interactions between the cell of origin, the genetic background and the microenvironment background. The combination of these attributes will define the LSPC phenotype, frequency, differentiation capacity and evolutionary trajectory. Importantly, as LSPCs are leukaemia-initiating cells that sustain clinical remission and are the source of relapse, an improved understanding of LSPCs phenotype would offer better clinical opportunities for the treatment and hopefully prevention of human leukaemia. The current review will focus on LSPCs attributes in the context of human haematologic malignancies.
Collapse
Affiliation(s)
- L I Shlush
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T Feldman
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Singh M, Hardin SJ, George AK, Eyob W, Stanisic D, Pushpakumar S, Tyagi SC. Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Front Physiol 2021; 11:617953. [PMID: 33708132 PMCID: PMC7940193 DOI: 10.3389/fphys.2020.617953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
26
|
STAT5 Regulation of Sex-Dependent Hepatic CpG Methylation at Distal Regulatory Elements Mapping to Sex-Biased Genes. Mol Cell Biol 2021; 41:MCB.00166-20. [PMID: 33199496 DOI: 10.1128/mcb.00166-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Growth hormone-activated STAT5b is an essential regulator of sex-differential gene expression in mouse liver; however, its impact on hepatic gene expression and epigenetic responses is poorly understood. Here, we found a substantial, albeit incomplete loss of liver sex bias in hepatocyte-specific STAT5a/STAT5b (collectively, STAT5)-deficient mouse liver. In male liver, many male-biased genes were downregulated in direct association with the loss of STAT5 binding; many female-biased genes, which show low STAT5 binding, were derepressed, indicating an indirect mechanism for repression by STAT5. Extensive changes in CpG methylation were seen in STAT5-deficient liver, where sex differences were abolished at 88% of ∼1,500 sex-differentially methylated regions, largely due to increased DNA methylation upon STAT5 loss. STAT5-dependent CpG hypomethylation was rarely found at proximal promoters of STAT5-dependent genes. Rather, STAT5 primarily regulated the methylation of distal enhancers, where STAT5 deficiency induced widespread hypermethylation at genomic regions enriched for accessible chromatin, enhancer histone marks (histone H3 lysine 4 monomethylation [H3K4me1] and histone H3 lysine 27 acetylation [H3K27ac]), STAT5 binding, and DNA motifs for STAT5 and other transcription factors implicated in liver sex differences. Thus, the sex-dependent binding of STAT5 to liver chromatin is closely linked to the sex-dependent demethylation of distal regulatory elements linked to STAT5-dependent genes important for liver sex bias.
Collapse
|
27
|
Melia T, Waxman DJ. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in Diversity Outbred mice. PLoS One 2020; 15:e0242665. [PMID: 33264334 PMCID: PMC7710091 DOI: 10.1371/journal.pone.0242665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many long non-coding RNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-Wide Sex and Gender Differences in Cancer. Front Oncol 2020; 10:597788. [PMID: 33330090 PMCID: PMC7719817 DOI: 10.3389/fonc.2020.597788] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Despite their known importance in clinical medicine, differences based on sex and gender are among the least studied factors affecting cancer susceptibility, progression, survival, and therapeutic response. In particular, the molecular mechanisms driving sex differences are poorly understood and so most approaches to precision medicine use mutational or other genomic data to assign therapy without considering how the sex of the individual might influence therapeutic efficacy. The mandate by the National Institutes of Health that research studies include sex as a biological variable has begun to expand our understanding on its importance. Sex differences in cancer may arise due to a combination of environmental, genetic, and epigenetic factors, as well as differences in gene regulation, and expression. Extensive sex differences occur genome-wide, and ultimately influence cancer biology and outcomes. In this review, we summarize the current state of knowledge about sex-specific genetic and genome-wide influences in cancer, describe how differences in response to environmental exposures and genetic and epigenetic alterations alter the trajectory of the disease, and provide insights into the importance of integrative analyses in understanding the interplay of sex and genomics in cancer. In particular, we will explore some of the emerging analytical approaches, such as the use of network methods, that are providing a deeper understanding of the drivers of differences based on sex and gender. Better understanding these complex factors and their interactions will improve cancer prevention, treatment, and outcomes for all individuals.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
29
|
Kim SY, Song HK, Lee SK, Kim SG, Woo HG, Yang J, Noh HJ, Kim YS, Moon A. Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients. Biomol Ther (Seoul) 2020; 28:491-502. [PMID: 33077700 PMCID: PMC7585639 DOI: 10.4062/biomolther.2020.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye Kyung Song
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06649, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang 10326, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
30
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Yamasaki S, Kimura G, Koizumi K, Dai N, Ketema RM, Tomihara T, Ueno Y, Ohno Y, Sato S, Kurasaki M, Hosokawa T, Saito T. Maternal green tea extract intake during lactation attenuates hepatic lipid accumulation in adult male rats exposed to a continuous high-fat diet from the foetal period. Food Nutr Res 2020; 64:5231. [PMID: 34908919 PMCID: PMC8634344 DOI: 10.29219/fnr.v64.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Maternal lipid intake in the early postnatal period has a long-term effect on the possibility of fatty liver formation in children; besides, the importance of lipid consumption during lactation for children’s health has been suggested. Green tea extract (GTE) contains abundant catechins, and it has been reported to improve lipid metabolism and prevent fatty liver. Objective The aim of this study was to examine the effects of maternal GTE intake during lactation on hepatic lipid accumulation in adult male rats exposed to a continuous high-fat (HF) diet from the foetal period. Methods Pregnant Wistar rats received diets containing 13% (control-fat, CON) or 45% (high-fat, HF) fat. CON-fed mothers received the same diet during lactation, whereas HF-fed mothers received either HF diet alone or HF diet supplemented with 0.24% GTE. At weaning, male offspring were divided into three groups, i.e. CON/CON/CON, HF/HF/HF (HF-offspring) or HF/HF+GTE/HF (GTE-offspring), and were fed until 51 weeks. Results A significant hepatic triglyceride (Tg) accumulation was observed in the HF-offspring when compared with the other offspring. This is presumed to be caused by the promotion of Tg synthesis derived from exogenous fatty acid due to a significant increase in diacylglycerol O-acyltransferase 1 and a decrease in Tg expenditure caused by decreasing microsomal triglyceride transfer protein (MTTP) and long-chain acyl-CoA dehydrogenase. On the other hand, attenuated hepatic Tg accumulation was observed in the GTE-offspring. The levels of the hepatic lipid metabolism-related enzymes were improved to the same level as the CON-offspring, and particularly, MTTP was significantly increased as compared with the HF-offspring. Conclusion This study indicates the potential protective effects of maternal GTE intake during lactation on HF diet-induced hepatic lipid accumulation in adult male rat offspring and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kazunari Koizumi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ning Dai
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Tomomi Tomihara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Ohno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Sousa A, Ferreira M, Oliveira C, Ferreira PG. Gender Differential Transcriptome in Gastric and Thyroid Cancers. Front Genet 2020; 11:808. [PMID: 32849808 PMCID: PMC7406663 DOI: 10.3389/fgene.2020.00808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Cancer has an important and considerable gender differential susceptibility confirmed by several epidemiological studies. Gastric (GC) and thyroid cancer (TC) are examples of malignancies with a higher incidence in males and females, respectively. Beyond environmental predisposing factors, it is expected that gender-specific gene deregulation contributes to this differential incidence. We performed a detailed characterization of the transcriptomic differences between genders in normal and tumor tissues from stomach and thyroid using Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) data. We found hundreds of sex-biased genes (SBGs). Most of the SBGs shared by normal and tumor belong to sexual chromosomes, while the normal and tumor-specific tend to be found in the autosomes. Expression of several cancer-associated genes is also found to differ between sexes in both types of tissue. Thousands of differentially expressed genes (DEGs) between paired tumor-normal tissues were identified in GC and TC. For both cancers, in the most susceptible gender, the DEGs were mostly under-expressed in the tumor tissue, with an enrichment for tumor-suppressor genes (TSGs). Moreover, we found gene networks preferentially associated to males in GC and to females in TC and correlated with cancer histological subtypes. Our results shed light on the molecular differences and commonalities between genders and provide novel insights in the differential risk underlying these cancers.
Collapse
Affiliation(s)
- Abel Sousa
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Marta Ferreira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro G Ferreira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Computer Science, Faculty of Sciences of the University of Porto, Porto, Portugal.,Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| |
Collapse
|
33
|
Matthews BJ, Waxman DJ. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Epigenetics Chromatin 2020; 13:30. [PMID: 32680543 PMCID: PMC7368777 DOI: 10.1186/s13072-020-00350-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several thousand sex-differential distal enhancers have been identified in mouse liver; however, their links to sex-biased genes and the impact of any sex-differences in nuclear organization and chromatin interactions are unknown. To address these issues, we first characterized 1847 mouse liver genomic regions showing significant sex differential occupancy by cohesin and CTCF, two key 3D nuclear organizing factors. These sex-differential binding sites were primarily distal to sex-biased genes but rarely generated sex-differential TAD (topologically associating domain) or intra-TAD loop anchors, and were sometimes found in TADs without sex-biased genes. A substantial subset of sex-biased cohesin-non-CTCF binding sites, but not sex-biased cohesin-and-CTCF binding sites, overlapped sex-biased enhancers. Cohesin depletion reduced the expression of male-biased genes with distal, but not proximal, sex-biased enhancers by >10-fold, implicating cohesin in long-range enhancer interactions regulating sex-biased genes. Using circularized chromosome conformation capture-based sequencing (4C-seq), we showed that sex differences in distal sex-biased enhancer-promoter interactions are common. Intra-TAD loops with sex-independent cohesin-and-CTCF anchors conferred sex specificity to chromatin interactions indirectly, by insulating sex-biased enhancer-promoter contacts and by bringing sex-biased genes into closer proximity to sex-biased enhancers. Furthermore, sex-differential chromatin interactions involving sex-biased gene promoters, enhancers, and lncRNAs were associated with sex-biased binding of cohesin and/or CTCF. These studies elucidate how 3D genome organization impacts sex-biased gene expression in a non-reproductive tissue through both direct and indirect effects of cohesin and CTCF looping on distal enhancer interactions with sex-differentially expressed genes.
Collapse
Affiliation(s)
- Bryan J Matthews
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Sarne V, Huter S, Braunmueller S, Rakob L, Jacobi N, Kitzwögerer M, Wiesner C, Obrist P, Seeboeck R. Promoter Methylation of Selected Genes in Non-Small-Cell Lung Cancer Patients and Cell Lines. Int J Mol Sci 2020; 21:E4595. [PMID: 32605217 PMCID: PMC7369760 DOI: 10.3390/ijms21134595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
Specific gene promoter DNA methylation is becoming a powerful epigenetic biomarker in cancer diagnostics. Five genes (CDH1, CDKN2Ap16, RASSF1A, TERT, and WT1) were selected based on their frequently published potential as epigenetic markers. Diagnostic promoter methylation assays were generated based on bisulfite-converted DNA pyrosequencing. The methylation patterns of 144 non-small-cell lung cancer (NSCLC) and 7 healthy control formalin-fixed paraffin-embedded (FFPE) samples were analyzed to evaluate the applicability of the putative diagnostic markers. Statistically significant changes in methylation levels are shown for TERT and WT1. Furthermore, 12 NSCLC and two benign lung cell lines were characterized for promoter methylation. The in vitro tests involved a comparison of promoter methylation in 2D and 3D cultures, as well as therapeutic tests investigating the impact of CDH1/CDKN2Ap16/RASSF1A/TERT/WT1 promoter methylation on sensitivity to tyrosine kinase inhibitor (TKI) and DNA methyl-transferase inhibitor (DNMTI) treatments. We conclude that the selected markers have potential and putative impacts as diagnostic or even predictive marker genes, although a closer examination of the resulting protein expression and pathway regulation is needed.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Promoter Regions, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Victoria Sarne
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Samuel Huter
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Sandrina Braunmueller
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Lisa Rakob
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Nico Jacobi
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Melitta Kitzwögerer
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| | - Christoph Wiesner
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Peter Obrist
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Rita Seeboeck
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| |
Collapse
|
35
|
Zhuang QKW, Galvez JH, Xiao Q, AlOgayil N, Hyacinthe J, Taketo T, Bourque G, Naumova AK. Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells 2020; 9:E1436. [PMID: 32527045 PMCID: PMC7349295 DOI: 10.3390/cells9061436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Qian Xiao
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA;
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jeffrey Hyacinthe
- Department of Quantitative Life Sciences, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Anna K. Naumova
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
36
|
Lau-Corona D, Bae WK, Hennighausen L, Waxman DJ. Sex-biased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2. PLoS Genet 2020; 16:e1008796. [PMID: 32428001 PMCID: PMC7263639 DOI: 10.1371/journal.pgen.1008796] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Sex differences in the incidence and progression of many liver diseases, including liver fibrosis and hepatocellular carcinoma, are associated with sex-biased hepatic expression of hundreds of genes. This sexual dimorphism is largely determined by the sex-specific pattern of pituitary growth hormone secretion, which controls a transcriptional regulatory network operative in the context of sex-biased and growth hormone-regulated chromatin states. Histone H3K27-trimethylation yields a major sex-biased repressive chromatin mark deposited at many strongly female-biased genes in male mouse liver, but not at male-biased genes in female liver, and is catalyzed by polycomb repressive complex-2 through its homologous catalytic subunits, Ezh1 and Ezh2. Here, we used Ezh1-knockout mice with a hepatocyte-specific knockout of Ezh2 to investigate the sex bias of liver H3K27-trimethylation and its functional role in regulating sex-differences in the liver. Combined hepatic Ezh1/Ezh2 deficiency led to a significant loss of sex-biased gene expression, particularly in male liver, where many female-biased genes were increased in expression while male-biased genes showed decreased expression. The associated loss of H3K27me3 marks, and increases in the active enhancer marks H3K27ac and H3K4me1, were also more pronounced in male liver. Further, Ezh1/Ezh2 deficiency in male liver, and to a lesser extent in female liver, led to up regulation of many genes linked to liver fibrosis and liver cancer, which may contribute to the observed liver pathologies and the increased sensitivity of these mice to hepatotoxin exposure. Thus, Ezh1/Ezh2-catalyzed H3K27-trimethyation regulates sex-dependent genetic programs in liver metabolism and liver fibrosis through its sex-dependent effects on the epigenome, and may thereby determine the sex-bias in liver disease susceptibility. Sex-differences in the expression of genes in liver have a direct impact on liver diseases whose incidence and severity is sex-biased, and is controlled by hormones that regulate chemical alterations to histone proteins used to package chromosomal DNA. However, a direct demonstration of the functional importance of such sex differences in histone protein modifications has been elusive. Here, we address this question using a mouse model deficient in two enzymes, Ezh1/Ezh2, which generate the histone repressive mark H3K27me3. Remarkably, although H3K27me3 marks are formed by Ezh1/Ezh2 throughout the genome, loss of liver Ezh1/Ezh2 preferentially disrupts the control of sex-biased genes, with expression increasing in male mouse liver for many female-biased genes and decreasing for many male-biased genes. Sex-biased H3K27me3 repressive marks were abolished, and there was a gain of active histone marks at gene enhancers. We also found increased expression of many genes associated with liver fibrosis and hepatocellular carcinoma, which may help explain the increased sensitivity of Ezh1/Ezh2-deficient livers to hepatotoxic chemicals whose exposure may lead to sex differences in liver disease incidence and susceptibility. Thus, our findings highlight the potential role of sex differences in histone modifications catalyzed by Ezh1/Ezh2 in widespread sex differences in liver diseases.
Collapse
Affiliation(s)
- Dana Lau-Corona
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Woo Kyun Bae
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
38
|
Krishna RG, Vishnu Bhat B, Bobby Z, Papa D, Badhe B, Kalidoss VK, Karli S. Identification of differentially methylated candidate genes and their biological significance in IUGR neonates by methylation EPIC array. J Matern Fetal Neonatal Med 2020; 35:525-533. [PMID: 32091279 DOI: 10.1080/14767058.2020.1727881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Intrauterine growth restriction (IUGR) is a pregnancy-associated disease manifested by decreased growth rate of fetus than the normal genetic growth potential. It is associated with increased susceptibility to metabolic diseases later in life. Although the mechanisms underlying the origin of metabolic diseases are poorly understood, DNA methylation is a crucial investigation for the identification of epigenetic changes.Objectives: To assess the degree of change of DNA methylation in IUGR neonates and compare with that of appropriate for gestational age (AGA) neonates and to explore the differentially methylated candidate genes and their biological significance.Methods: This cohort study was conducted in the Neonatology Department of JIPMER during the period of November 2017 to December 2018. Forty each of IUGR and gestation matched AGA neonates were recruited. Umbilical cord blood samples were collected at birth. DNA was separated from the blood samples; and, using 5-mC DNA ELISA method, the percentage of genomic DNA methylated in these neonates was established. Data were expressed as mean ± standard deviation. Methylation EPIC array was performed to identify the differentially methylated candidate genes. David analysis was used to find out the functional annotation chart by KEGG pathway.Results: Genomic DNA methylation varied significantly between IUGR and AGA neonates (IUGR: 3.12 ± 1.24; AGA: 4.40 ± 2.03; p value: <.01). A global shift toward hypomethylation was seen in IUGR compared with AGA, targeted to regulatory regions of the genome, and specifically promoters. Pathway analysis identified deregulation of pathways involved in metabolic diseases. Altered methylation of PTPRN2 & HLADQB1 genes leads to dysregulation of T-cells and reactive oxygen species (ROS). These changes may lead to complications later among these neonates subjected to IUGR.Conclusion: Our findings show significant changes in the methylation pattern of genes among IUGR and AGA babies. Steps for correcting the changes may help in reducing later complications among IUGR babies.
Collapse
Affiliation(s)
- Rao Gurugubelli Krishna
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Andhra Pradesh, India.,Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ballambattu Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.,Department of Pediatrics, AVMC, Puducherry, India
| | | | - Dasari Papa
- Department of Obstetrics & Gynaecology, JIPMER, Puducherry, India
| | | | | | | |
Collapse
|
39
|
Masuda K, Akagi T, Esumi T, Tao R. Epigenetic Flexibility Underlies Somaclonal Sex Conversions in Hexaploid Persimmon. PLANT & CELL PHYSIOLOGY 2020; 61:393-402. [PMID: 31693144 DOI: 10.1093/pcp/pcz207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Epigenetic regulation adds a flexible layer to genetic variations, potentially enabling long-term, but reversible, changes to a trait, while maintaining genetic information. In the hexaploid Oriental persimmon (Diospyros kaki), genetically monoecious cultivars bearing male flowers require the Y-encoded small RNA (smRNA) gene, OGI. This gene represses the expression of its autosomal counterpart gene, MeGI, as part of the canonical male production system. However, a D. kaki cultivar, Saijo, which lacks the OGI gene and originally bears only female flowers, occasionally produces somaclonal mutant male and revertant female (RF) branches. In this study, we investigated the mechanisms underlying these somaclonal sex conversions in persimmon. Specifically, we aimed to unravel how a genetically female tree without the OGI gene can produce male flowers and RF flowers. Applying multi-omics approaches, we revealed that this noncanonical male production system is basically consistent with the canonical system, in which the accumulation of smRNA targeting MeGI and the considerable DNA methylation of MeGI are involved. The epigenetic status of MeGI on CGN and CHG was synchronized to the genome-wide methylation patterns, both in transition to and from the male production system. These results suggest that the somaclonal sex conversions in persimmon are driven by the genome-wide epigenetic regulatory activities. Moreover, flexibility in the epigenetic layers of long-lived plant species (e.g. trees) is important for overcoming genetic robustness.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi-shi, Saitama, 332-0012 Japan
| | - Tomoya Esumi
- Academic Assembly Institute of Agricultural and Life Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
40
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
41
|
Thompson MJ, Chwiałkowska K, Rubbi L, Lusis AJ, Davis RC, Srivastava A, Korstanje R, Churchill GA, Horvath S, Pellegrini M. A multi-tissue full lifespan epigenetic clock for mice. Aging (Albany NY) 2019; 10:2832-2854. [PMID: 30348905 PMCID: PMC6224226 DOI: 10.18632/aging.101590] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Human DNA-methylation data have been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Recent studies demonstrate that similar epigenetic clocks for mice (Mus Musculus) can be slowed by gold standard anti-aging interventions such as calorie restriction and growth hormone receptor knock-outs. Using DNA methylation data from previous publications with data collected in house for a total 1189 samples spanning 193,651 CpG sites, we developed 4 novel epigenetic clocks by choosing different regression models (elastic net- versus ridge regression) and by considering different sets of CpGs (all CpGs vs highly conserved CpGs). We demonstrate that accurate age estimators can be built on the basis of highly conserved CpGs. However, the most accurate clock results from applying elastic net regression to all CpGs. While the anti-aging effect of calorie restriction could be detected with all types of epigenetic clocks, only ridge regression based clocks replicated the finding of slow epigenetic aging effects in dwarf mice. Overall, this study demonstrates that there are trade-offs when it comes to epigenetic clocks in mice. Highly accurate clocks might not be optimal for detecting the beneficial effects of anti-aging interventions.
Collapse
Affiliation(s)
- Michael J Thompson
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, Department of Medicine, and Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard C Davis
- Department of Microbiology, Immunology and Molecular Genetics, Department of Medicine, and Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Steve Horvath
- Department of Human Genetics and Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun 2019; 10:4361. [PMID: 31554804 PMCID: PMC6761124 DOI: 10.1038/s41467-019-12293-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Age-related tissue alterations have been associated with a decline in stem cell number and function. Although increased cell-to-cell variability in transcription or epigenetic marks has been proposed to be a major hallmark of ageing, little is known about the molecular diversity of stem cells during ageing. Here we present a single cell multi-omics study of mouse muscle stem cells, combining single-cell transcriptome and DNA methylome profiling. Aged cells show a global increase of uncoordinated transcriptional heterogeneity biased towards genes regulating cell-niche interactions. We find context-dependent alterations of DNA methylation in aged stem cells. Importantly, promoters with increased methylation heterogeneity are associated with increased transcriptional heterogeneity of the genes they drive. These results indicate that epigenetic drift, by accumulation of stochastic DNA methylation changes in promoters, is associated with the degradation of coherent transcriptional networks during stem cell ageing. Furthermore, our observations also shed light on the mechanisms underlying the DNA methylation clock. Age-related tissue alterations have been associated with a decline in stem cell number and function. Here the authors report a single cell multi-omics study of mouse muscle stem cells, combining single cell transcriptome and DNA methylome profiling and find that aged cells have a global increase of uncoordinated transcriptional heterogeneity biased towards genes regulating cell-niche interactions.
Collapse
|
43
|
George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 2019; 235:2590-2598. [PMID: 31489638 DOI: 10.1002/jcp.29163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.
Collapse
Affiliation(s)
- Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - S Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
44
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
45
|
Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, Foata F, Berger B, Balvay A, Foussier A, Charpagne A, Boizet-Bonhoure B, Chou CJ, Naef F, Gachon F. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab 2019; 29:362-382.e8. [PMID: 30344015 PMCID: PMC6370974 DOI: 10.1016/j.cmet.2018.09.023] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/27/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
The circadian clock and associated feeding rhythms have a profound impact on metabolism and the gut microbiome. To what extent microbiota reciprocally affect daily rhythms of physiology in the host remains elusive. Here, we analyzed transcriptome and metabolome profiles of male and female germ-free mice. While mRNA expression of circadian clock genes revealed subtle changes in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated with rhythmic physiology. Strikingly, the absence of the microbiome attenuated liver sexual dimorphism and sex-specific rhythmicity. The resulting feminization of male and masculinization of female germ-free animals is likely caused by altered sexual development and growth hormone secretion, associated with differential activation of xenobiotic receptors. This defines a novel mechanism by which the microbiome regulates host metabolism.
Collapse
Affiliation(s)
- Benjamin D Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Sonia Jimenez
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Bertrand Betrisey
- Cellular Metabolism, Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Francis Foata
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Bernard Berger
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Aurélie Balvay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne Foussier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Aline Charpagne
- Genomics, Department of Multi-Omics, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Brigitte Boizet-Bonhoure
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34396 Montpellier, France
| | - Chieh Jason Chou
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Sarne V, Braunmueller S, Rakob L, Seeboeck R. The Relevance of Gender in Tumor-Influencing Epigenetic Traits. EPIGENOMES 2019; 3:epigenomes3010006. [PMID: 34991275 PMCID: PMC8594720 DOI: 10.3390/epigenomes3010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tumorigenesis as well as the molecular orchestration of cancer progression are very complex mechanisms that comprise numerous elements of influence and regulation. Today, many of the major concepts are well described and a basic understanding of a tumor's fine-tuning is given. Throughout the last decade epigenetics has been featured in cancer research and it is now clear that the underlying mechanisms, especially DNA and histone modifications, are important regulators of carcinogenesis and tumor progression. Another key regulator, which is well known but has been neglected in scientific approaches as well as molecular diagnostics and, consequently, treatment conceptualization for a long time, is the subtle influence patient gender has on molecular processes. Naturally, this is greatly based on hormonal differences, but from an epigenetic point of view, the diverse susceptibility to stress and environmental influences is of prime interest. In this review we present the current view on which and how epigenetic modifications, emphasizing DNA methylation, regulate various tumor diseases. It is our aim to elucidate gender and epigenetics and their interconnectedness, which will contribute to understanding of the prospect molecular orchestration of cancer in individual tumors.
Collapse
|
47
|
Meyer KF, Verkaik-Schakel RN, Timens W, Kobzik L, Plösch T, Hylkema MN. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific. Epigenetics 2018; 12:1076-1091. [PMID: 29160127 PMCID: PMC5810788 DOI: 10.1080/15592294.2017.1403691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.
Collapse
Affiliation(s)
- Karolin F Meyer
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands.,b University of Groningen , University Medical Center Groningen , GRIAC Research Institute , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- c Department of Obstetrics and Gynaecology , University of Groningen , University Medical Center Groningen , Hanzeplein 1, 9713 GZ , Groningen , The Netherlands
| | - Wim Timens
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands.,b University of Groningen , University Medical Center Groningen , GRIAC Research Institute , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands
| | - Lester Kobzik
- d Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T. H. Chan School of Public Health , Building II Room 221, 655 Huntington Avenue, Boston , MA 02115 , USA
| | - Torsten Plösch
- c Department of Obstetrics and Gynaecology , University of Groningen , University Medical Center Groningen , Hanzeplein 1, 9713 GZ , Groningen , The Netherlands
| | - Machteld N Hylkema
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands.,b University of Groningen , University Medical Center Groningen , GRIAC Research Institute , Hanzeplein 1, EA10, 9713 GZ , Groningen , The Netherlands
| |
Collapse
|
48
|
Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. A whole lifespan mouse multi-tissue DNA methylation clock. eLife 2018; 7:e40675. [PMID: 30427307 PMCID: PMC6287945 DOI: 10.7554/elife.40675] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Age predictors based on DNA methylation levels at a small set of CpG sites, DNAm clocks, have been developed for humans and extended to several other species. Three currently available versions of mouse DNAm clocks were either created for individual tissues or tuned toward young ages. Here, we constructed a robust multi-tissue age predictor based on 435 CpG sites, which covers the entire mouse lifespan and remains unbiased with respect to any particular age group. It can successfully detect the effects of certain lifespan-modulating interventions on DNAm age as well as the rejuvenation effect related to the transition from fibroblasts to iPSCs. We have carried out comparative analyses of available mouse DNAm clocks, which revealed their broad applicability, but also certain limitations to the use of tissue-specific and multi-tissue age predictors. Together, these tools should help address diverse questions in aging research.
Collapse
Affiliation(s)
- Margarita V Meer
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Dmitriy I Podolskiy
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Center for Data-Intensive Biomedicine and BiotechnologySkolkovo Institute of Science and TechnologyMoscowRussia
| | - Vadim N Gladyshev
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
49
|
Langille JJ, Brown RE. The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Front Syst Neurosci 2018; 12:52. [PMID: 30416432 PMCID: PMC6212519 DOI: 10.3389/fnsys.2018.00052] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/12/2023] Open
Abstract
Trettenbrein (2016) has argued that the concept of the synapse as the locus of memory is outdated and has made six critiques of this concept. In this article, we examine these six critiques and suggest that the current theories of the neurobiology of memory and the empirical data indicate that synaptic activation is the first step in a chain of cellular and biochemical events that lead to memories formed in cell assemblies and neural networks that rely on synaptic modification for their formation. These neural networks and their modified synaptic connections can account for the cognitive basis of learning and memory and for memory deterioration in neurological disorders. We first discuss Hebb's (1949) theory that synaptic change and the formation of cell assemblies and phase sequences can link neurophysiology to cognitive processes. We then examine each of Trettenbrein's (2016) critiques of the synaptic theory in light of Hebb's theories and recent empirical data. We examine the biochemical basis of memory formation and the necessity of synaptic modification to form the neural networks underlying learning and memory. We then examine the use of Hebb's theories of synaptic change and cell assemblies for integrating neurophysiological and cognitive conceptions of learning and memory. We conclude with an examination of the applications of the Hebb synapse and cell assembly theories to the study of the neuroscience of learning and memory, the development of computational models of memory and the construction of "intelligent" robots. We conclude that the synaptic theory of memory has not met its demise, but is essential to our understanding of the neural basis of memory, which has two components: synaptic plasticity and intrinsic plasticity.
Collapse
Affiliation(s)
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
50
|
Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018; 392:777-786. [PMID: 30100054 DOI: 10.1016/s0140-6736(18)31268-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/18/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation represents an annotation system for marking the genetic text, thus providing instruction as to how and when to read the information and control transcription. Unlike sequence information, which is inherited, methylation patterns are established in a programmed process that continues throughout development, thus setting up stable gene expression profiles. This DNA methylation paradigm is a key player in medicine. Some changes in methylation closely correlate with age providing a marker for biological ageing, and these same sites could also play a part in cancer. The genome continues to undergo programmed variation in methylation after birth in response to environmental inputs, serving as a memory device that could affect ageing and predisposition to various metabolic, autoimmune, and neurological diseases. Taking advantage of tissue-specific differences, methylation can be used to detect cell death and thereby monitor many common diseases with a simple cell-free circulating-DNA blood test.
Collapse
Affiliation(s)
- Yuval Dor
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|