1
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two germ granule eIF4E isoforms reside in different mRNPs to hand off C elegans mRNAs from translational repression to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595216. [PMID: 38826235 PMCID: PMC11142241 DOI: 10.1101/2024.05.24.595216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.
Collapse
|
2
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala R, Yu G, Benner LK, Joshua-Tor L, McJunkin K. Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans. Nucleic Acids Res 2024; 52:4985-5001. [PMID: 38471816 PMCID: PMC11109956 DOI: 10.1093/nar/gkae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Chen S, Phillips CM. HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1. Nat Commun 2024; 15:957. [PMID: 38302462 PMCID: PMC10834429 DOI: 10.1038/s41467-024-45245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
RNA interference (RNAi) is a conserved gene silencing process that exists in diverse organisms to protect genome integrity and regulate gene expression. In C. elegans, the majority of RNAi pathway proteins localize to perinuclear, phase-separated germ granules, which are comprised of sub-domains referred to as P granules, Mutator foci, Z granules, and SIMR foci. However, the protein components and function of the newly discovered SIMR foci are unknown. Here we demonstrate that HRDE-2 localizes to SIMR foci and interacts with the germline nuclear Argonaute HRDE-1 in its small RNA unbound state. In the absence of HRDE-2, HRDE-1 exclusively loads CSR-class 22G-RNAs rather than WAGO-class 22G-RNAs, resulting in inappropriate H3K9me3 deposition on CSR-target genes. Thus, our study demonstrates that the recruitment of unloaded HRDE-1 to germ granules, mediated by HRDE-2, is critical to ensure that the correct small RNAs are used to guide nuclear RNA silencing in the C. elegans germline.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Goddard C, Nejman-Faleńczyk B, Donaldson LW. The NMR structure of the Ea22 lysogenic developmental protein from lambda bacteriophage. Sci Rep 2024; 14:2685. [PMID: 38302537 PMCID: PMC10834534 DOI: 10.1038/s41598-024-52996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.
Collapse
Affiliation(s)
- Cameron Goddard
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
5
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
6
|
Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF. piRNA processing by a trimeric Schlafen-domain nuclease. Nature 2023; 622:402-409. [PMID: 37758951 PMCID: PMC10567574 DOI: 10.1038/s41586-023-06588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.
Collapse
Affiliation(s)
- Nadezda Podvalnaya
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Alfred W Bronkhorst
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Svenja Hellmann
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Emily Nischwitz
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
- Quantitative Proteomics group, Institute of Molecular Biology, Mainz, Germany
| | - Torben Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Falk Butter
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - René F Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany.
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Loubalova Z, Konstantinidou P, Haase AD. Themes and variations on piRNA-guided transposon control. Mob DNA 2023; 14:10. [PMID: 37660099 PMCID: PMC10474768 DOI: 10.1186/s13100-023-00298-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are responsible for preventing the movement of transposable elements in germ cells and protect the integrity of germline genomes. In this review, we examine the common elements of piRNA-guided silencing as well as the differences observed between species. We have categorized the mechanisms of piRNA biogenesis and function into modules. Individual PIWI proteins combine these modules in various ways to produce unique PIWI-piRNA pathways, which nevertheless possess the ability to perform conserved functions. This modular model incorporates conserved core mechanisms and accommodates variable co-factors. Adaptability is a hallmark of this RNA-based immune system. We believe that considering the differences in germ cell biology and resident transposons in different organisms is essential for placing the variations observed in piRNA biology into context, while still highlighting the conserved themes that underpin this process.
Collapse
Affiliation(s)
- Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Graille M. ERH: a plug-and-play protein important for gene silencing and cell cycle progression. FEBS J 2023; 290:688-691. [PMID: 36334004 DOI: 10.1111/febs.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
In metazoans, most proteins have pleiotropic cellular functions and have the ability to interact with several factors to accomplish these different functions. This is the case of eukaryotic ERH proteins, a family of homodimeric proteins involved in DNA replication and cell cycle control as well as in gene silencing by contributing either to the biogenesis of small interference RNAs (miRNAs, piRNAs) or to the recruitment of RNA decay machineries. Very recently, several crystal structures describing complexes formed by eukaryotic ERH proteins and several small peptides from various partners have highlighted the existence of different binding sites on the surface of ERH proteins. In this issue of The FEBS Journal, Wang et al. present the crystal structure of the complex formed between the human ERH protein and a short peptide of the CIZ1 protein, one of its partners. Altogether, this information will be particularly important for future studies aimed at dissecting the different biological functions governed by this family of highly conserved proteins. Comment on: https://doi.org/10.1111/febs.16611.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
9
|
Wang X, Xie H, Zhu Z, Zhang J, Xu C. Molecular basis for the recognition of CIZ1 by ERH. FEBS J 2023; 290:712-723. [PMID: 36047590 DOI: 10.1111/febs.16611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Enhancer of rudimentary homologue (ERH), a small protein conserved in eukaryotes, is involved in a wide spectrum of cellular events, including cell cycle progression, piRNA biogenesis, miRNA maturation and gene expression. Human ERH is recruited to replication foci by CDKN1A-interacting zinc finger protein 1 (CIZ1), and plays an important role in cell growth control. However, the molecular basis for CIZ1 recognition by ERH remains unknown. By using GST pull-down experiment, we found that a fragment within CIZ1, upstream of its first zinc finger, is sufficient for binding to ERH. We solved the structure of CIZ1-bound ERH, in which the ERH dimer binds to two CIZ1 fragments to form a 2 : 2 heterotetramer. CIZ1 forms intermolecular antiparallel β-strands with ERH, and its binding surface on ERH is distinct from those of other known ERH-binding ligands. The ERH-CIZ1 interface was further validated by mutagenesis and binding experiments. Our structural study complemented by biochemistry experiments not only provides insights into a previously unidentified ligand-binding mode for ERH but also sheds light on the understanding of evolutionarily conserved roles for ERH orthologs.
Collapse
Affiliation(s)
- Xiaoyang Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huabin Xie
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|